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1 Nature of Solution

In this study, we also investigated the late-time behavior of our models, focusing on the existence and
uniqueness of steady states and convergence properties as t → ∞. Specifically, we address the question:
Does each choice of parameters yield a unique steady state, and do all solutions converge to this steady
state in the long term? Our findings are as follows:

1. For system (1) (Occupancy Model), the answer is affirmative. Given that this system is effectively
one-dimensional, the proof of convergence to a unique steady state is straightforward.

2. For systems (2) and (6) (KPR and KPR with stabilizing activation chain), convergence to a unique
steady state is also established, applying the theorem by Sontag, as referenced in prior communications.

3. For systems (3), (4), and (9) (KPR with limited signaling, sustained signaling, and both ), conver-
gence to a unique steady state is confirmed based on the application of the Deficiency Zero Theorem, as
demonstrated in the following sections.

4. For the system (5) (KPR with negative feedback ), however, the answer is negative, which aligns
with the earlier findings.

5. Lastly, for systems (7) and (8) (KPR with IFF, and limited signalling), the answer is affirmative.
The convergence to a unique steady state is proven below.

1.1 Kinetic Proofreading

Within this framework, a pMHC ligand (L) can bind reversibly to a TCR receptor (R), resulting in the
formation of a pMHC-TCR complex denoted as C0. Once formed, this TCR-pMHC complex (C0)
undergoes a series of biochemical changes to achieve a signaling-competent state represented as CN . If
a pMHC detaches from a TCR at any intermediate stage, all modifications are instantly undone, causing
the TCR to return to its original, unmodified state. T cell activation is directly proportional to the quantity
of TCRs in the CN state.

dL

dt
= −κLR− v

N∑
i=0

Ci

dR

dt
= −κLR− v

N∑
i=0

Ci

dC0

dt
= κLR− (ϕ+ v)C0

dCi

dt
= ϕCi−1 − (ϕ+ v)Ci; 1 ≤ i ≤ N − 1

dCN

dt
= ϕCN−1 − vCN
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Mathematical Formulation
The above equations can be rewritten as:

dC0

dt
= κ(LT −

N∑
i=0

Ci)(RT −
N∑
i=0

Ci)− (ϕ+ v)C0 (1)

dCi

dt
= ϕCi−1 − (ϕ+ v)Ci; 1 ≤ i ≤ N − 1 (2)

dCN

dt
= ϕCN−1 − vCN (3)

Here RT and LT are the total concentrations of the receptor and the ligand.
From equations (1)-(3), it can be deduced that if Σ1 =

∑N
i=0Ci

dΣ1

dt
= κ(LT − Σ1)(RT − Σ1)− vΣ1 (4)

Lemma 1.1. Let (C0(t), C1(t), . . . , CN (t)) be a solution of (1)-(3) contained in the closure K of the
biologically relevant region. Then any ω-limit point (C∗

0 , C
∗
1 , . . . , C

∗
N ) of this solution is contained in

the interior of K. In particular, any steady state is contained in the interior of K.

Proof. For the proof we use Lemma 2.1(main text). It follows from equation (4) that
∑N

i=0C
∗
i is strictly

less than LT and RT . It then follows from (1) that C∗
0 > 0. This in turn implies using (2) and (3) that

C∗
i > 0 for 1 ≤ i ≤ N .

Stability of the solutions
In case of KPR, the binding reaction is of the form L+ R = C0. The bound receptor C0 undergoes

a series of phosphorylations to reach the signalling competent state CN . Each Ci can decay releasing
L, R and the phosphate groups. The network is weakly reversible. In our system, there are n = N + 2
complexes, and it contains only a single linkage class, which means l = 1. To show that the deficiency
of the above weakly reversible network is zero it will be sufficient to show that the rank of the above
system is s = N + 1.

There are N + 2 complexes {L+R,C0, C1, C2, ...., CN}.
The stoichiometric matrix is given by:

a1 a2 . . . aN+1 b1 b2 . . . bN c1
1 1 . . . 1 0 0 . . . 0 −1
1 1 . . . 1 0 0 . . . 0 −1
−1 0 . . . 0 −1 0 . . . 0 1
0 −1 . . . 0 1 −1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . −1 0 0 . . . 1 0


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The first N + 1 columns of this matrix are linearly independent. Hence for this model s ≥ N + 1.
Hence δ ≤ (N + 2)− (N + 1)− 1 = 0. Since δ is always non-negative this implies that δ = 0.

1.2 Kinetic proofreading with limited signaling

This model extends the kinetic proofreading concept, suggesting that once a TCR reaches the signaling-
competent state CN , the bound TCR shifts to a non-signalling state CN+1 at a rate ξ.

Mathematical formulation

dC0

dt
= κ(LT −

N+1∑
i=0

Ci)(RT −
N+1∑
i=0

Ci)− (ϕ+ v)C0 (5)

dCi

dt
= ϕCi−1 − (ϕ+ v)Ci; 1 ≤ i ≤ N − 1 (6)

dCN

dt
= ϕCN−1 − (v + ξ)CN (7)

dCN+1

dt
= ξCN − vCN+1 (8)

Here RT and LT are the total concentrations of receptor and the ligand.
Let Σ1 =

∑N+1
i=0 Ci. Then, from Equations (5)-(8), we have:

dΣ1

dt
= κ(LT − Σ∗

1)(RT − Σ1)− vΣ1 (9)

Lemma 1.2. Let (C0(t), C1(t), . . . , CN+1(t)) be a solution of (5)-(8) contained in the closure K of the
biologically relevant region. Then an ω-limit point (C∗

0 , C
∗
1 , . . . , C

∗
N+1) of this solution is contained in

the interior of K. In particular, any steady state is contained in the interior of K.

Proof. For the proof we use Lemma 2.1(main text). It follows from equation (9) that
∑N+1

i=0 C∗
i is strictly

less than LT and RT . It then follows from (5) that C∗
0 > 0. This in turn implies inductively, using (5)-(8)

that C∗
i > 0 for 1 ≤ i ≤ N − 1.

We have proved the deficiency of this weakly reversible network is zero as in section ??.

1.3 Kinetic proofreading with sustained signalling:

This model extends the KPR scheme by integrating experimental findings that indicate signalling-competent
TCRs can maintain signaling for a defined time frame, even once pMHC unbinding occurs. In this frame-
work, T-cell receptors (TCRs) in the signalling-capable state CN persist in signaling for a designated
period (T ) following the detachment of pMHC, subsequently returning to their baseline state at a rate λ.

Mathematical Formulation
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dC0

dt
= κ(LT −

N∑
i=0

Ci(t))(RT −
N∑
i=0

Ci(t)−R∗(t))− (v + ϕ)C0(t) (10)

dCi

dt
= ϕCi−1(t)− (ϕ+ v)Ci(t); 1 ≤ i ≤ N − 1 (11)

dCN

dt
= ϕCN−1(t)− vCN (t) + κ(LT −

N∑
i=0

Ci(t))R
∗(t) (12)

dR∗

dt
= vCN (t)− κ(LT −

N∑
i=0

Ci(t))R
∗(t)− ΩR∗(t) (13)

Here RT and LT are the total concentrations of receptors and the ligand.
If Σ1 =

∑N+1
i=0 Ci then it follows from equations (10)-(13) that:

N∑
i=0

dCi

dt
= κ(LT −

N∑
i=0

Ci)(RT −
N∑
i=0

Ci −R∗)− v
N∑
i=0

Ci + κ(LT −
N∑
i=0

Ci)R
∗ (14)

and

dΣ1

dt
= κ(LT − Σ1)(RT − Σ1 −R∗) + κR∗(LT − Σ1)− vΣ1 (15)

Lemma 1.3. Let (R∗(t), C0(t), C1(t), . . . , CN (t)) be a solution of (10)-(13) contained in the closure
K of the biologically relevant region. Then any ω-limit point (R∗∗, C∗

0 , C
∗
1 , . . . , C

∗
N ) of this solution is

contained in the interior of K. In particular, any steady state is contained in the interior of K.

Proof. For the proof we use Lemma 2.1(main text). It follows from (15) that
∑N

i=0C
∗
i is strictly less

than LT . Suppose now that
∑N

0 Ci + R∗∗ = RT . Then it follows from (10) that C∗
0 = 0. This

implies, using (11) that C∗
i = 0 for all 1 ≤ i ≤ N − 1. The sum of (12) and (13) then implies that

R∗∗ = 0. Substituting this back in (12) shows that C∗
N = 0. Putting these facts together we see that∑N

i=0Ci + R∗∗ = 0, contradicting our assumption. Thus in fact Σ1 + R∗∗ < RT . Once this has been
established it follows from (10) that C∗

0 > 0. Then (11) implies that C∗
i > 0 for 1 ≤ i ≤ N − 1. From

(12) we can conclude that C∗
N > 0 and from (13) that R∗∗ > 0.

Stability of the Solutions of system:
In the case of kinetic proofreading (KPR) with sustained signaling, the binding reaction follows

L + R = C0, where the bound receptor complex C0 undergoes a sequence of phosphorylation steps to
reach the signaling-competent state CN . Unlike in limited signaling, here the TCRs continue to signal
even after pMHC dissociates. The rate at which these unbound yet signaling-competent TCRs revert to
their unmodified state is governed by a factor Ω. In this model, T cell activation depends on both CN

and R∗. Each intermediate state Ci can decay, releasing L, R, R∗, and phosphate groups, making the
network weakly reversible.

Our system consists of n = N + 3 complexes with a single linkage class (l = 1). To establish that
the deficiency of this weakly reversible network is zero, it suffices to show that its rank is s = N + 2.

The network comprises N + 3 complexes: {L+R,C0, C1, C2, . . . , CN , L+R∗}.
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

a1 a2 . . . aN aN+1 b1 b2 . . . bN c1 c2 c3
1 1 . . . 1 1 0 0 . . . 0 −1 −1 0
1 1 . . . 1 0 0 0 . . . 0 −1 0 1
−1 0 . . . 0 0 −1 0 . . . 0 1 0 0
0 −1 . . . 0 0 1 −1 . . . 0 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

...
0 0 . . . −1 0 0 0 . . . −1 0 0 0
0 0 . . . 0 −1 0 0 . . . 1 0 1 0
0 0 . . . 0 1 0 0 . . . 0 0 −1 −1


The first N + 2 columns of this matrix are linearly independent. Hence for this model s ≥ N + 2.

Hence δ ≤ (N + 3)− (N + 2)− 1 = 0. Since δ is always non-negative this implies that δ = 0.

1.4 Kinetic Proofreading with Stabilizing Activation Chain

The model indicates that KPR complexes enhance the stability of foreign peptides while reducing their
affinity for self-peptides. This selective strengthening and weakening of the Ci complexes, as well
as differences in activation timing, are represented through changes in the respective rate constants
v(i); (i = 0, 1, ..., N) and ϕ(i); (i = 0, 1, ..., N − 1) as the proofreading process advances.

Mathematical formulation

dC0

dt
= κ(LT −

N∑
i=0

Ci)(RT −
N∑
i=0

Ci)− (ϕ(0) + v(0))C0 (16)

dCi

dt
= ϕ(i− 1)Ci−1 − (ϕ(i) + v(i))Ci; 1 ≤ i ≤ N − 1 (17)

dCN

dt
= ϕ(N − 1)CN−1 − v(N)CN (18)

In this model for simplicity v(0) is denoted as v(= 1/τ) which is dissociation time, and ϕ(0) denotes
the propagation rate for the first step C0 → C1. Now for next steps these rates are given by

v(i) =
(1 + i)

(1 + ri)
v; r > 1 ϕ(i) = ϕri; r > 1

Let Σ1 =
∑N

i=0Ci. From Equations (16)-(18), we get:

dΣ1

dt
= κ (LT − Σ1) (RT − Σ1)− Σ1

N∑
i=0

v(i) (19)
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Lemma 1.4. Let (C0(t), C1(t), . . . , CN (t)) be a solution of (16)-(18) contained in the closure K of the
biologically relevant region. Then any ω-limit point (C∗

0 , C
∗
1 , . . . , C

∗
N ) of this solution is contained in

the interior of K. In particular, any steady state is contained in the interior of K.

Proof. For the proof we use Lemma 2.1(main text). It follows from (19) that
∑N

i=0C
∗
i is strictly less

than LT and RT . It then follows from (16) that C∗
0 > 0. This in turn implies using (17) and (18) that

C∗
i > 0 for 1 ≤ i ≤ N .

Stability of the solutions
In the case of KPR with a stabilizing activation chain, the binding reaction follows L+R = C0, where

the bound receptor complex C0 undergoes a sequence of phosphorylation steps to reach the signaling-
competent state CN . T cell activation is determined by CN . Each intermediate state Ci can decay,
leading to the release of L, R, and phosphate groups, making the network weakly reversible.

Our system consists of n = N + 2 complexes with a single linkage class (l = 1). To establish that
the deficiency of this weakly reversible network is zero, it suffices to show that its rank is s = N + 1.

The network comprises N + 2 complexes: {L+R,C0, C1, C2, . . . , CN}.
The stoichiometric matrix is given by:

a1 a2 . . . aN+1 b1 b2 . . . bN c1
1 1 . . . 1 0 0 . . . 0 −1
1 1 . . . 1 0 0 . . . 0 −1
−1 0 . . . 0 −1 0 . . . 0 1
0 −1 . . . 0 1 −1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . −1 0 0 . . . 1 0


The first N + 1 columns of this matrix are linearly independent. Hence for this model s ≥ N + 1.

Hence δ ≤ (N + 2)− (N + 1)− 1 = 0. Since δ is always non-negative this implies that δ = 0.

1.5 Kinetic Proofreading with Limited and Sustained Signaling

This model is a combination of two models KPR with limited and KPR with sustained signaling.

Mathematical formulation

dC0

dt
= κ(LT −

N+1∑
i=0

Ci)(RT −
N+1∑
i=0

Ci −R∗)− (ϕ+ v)C0 (20)

dCi

dt
= ϕCi−1 − (ϕ+ v)Ci; 1 ≤ i ≤ N − 1 (21)
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dCN

dt
= ϕCN−1 − (v + ξ)CN + κ(LT −

N+1∑
i=0

Ci)R
∗ (22)

dCN+1

dt
= ξCN − vCN+1 (23)

dR∗

dt
= vCN − κ(LT −

N+1∑
i=0

Ci)R
∗ − ΩR∗ (24)

Define Σ1 =
∑N+1

i=0 Ci. From equations ( 20)-(23) it follows that:

dΣ1

dt
= κ (LT − Σ1) (RT − Σ1 −R∗)− v

N+1∑
i=0

Ci − ΩR∗ (25)

Lemma 1.5. Let (C0(t), C1(t), . . . , CN+1(t), R
∗(t)) be a solution of (20)-(23) contained in the closure

K of the biologically relevant region. Then any ω-limit point (C∗
0 , C

∗
1 , . . . , C

∗
N+1, R

∗∗) of this solution
is contained in the interior of K. In particular, any steady state is contained in the interior of K.

Proof. For the proof we use Lemma 2.1(main text). It follows from (25) that
∑N+1

i=0 Ci is strictly less
than LT . Suppose now that

∑N
i=0Ci + R∗∗ = RT . Then it follows from (20) that C∗

0 = 0. This
implies, using (21) that C∗

i = 0 for all 1 ≤ i ≤ N − 1. The sum of (22), (23) and (24) implies that
R∗∗ = 0. Substituting this back into (23) gives CN+1 = 0 and substituting this into (12) gives CN = 0.
Putting these facts together we see that

∑N+1
i=0 C∗

i + R∗∗ = 0, contradicting our assumption. Thus in
fact

∑n+1
i=0 Ci + R∗∗ < RT . Once this has been established it follows from (20) that C∗

0 > 0. Then
(21) implies that C∗

i > 0 for 1 ≤ i ≤ N − 1. From (22) we can conclude that C∗
N > 0, from (23) that

C∗
N+1 > 0 and from (24) that R∗∗ > 0.

Stability of the solutions
In case of KPR with limited and sustained signalling the binding reaction is of the form L+R = C0.

The bound receptor C0 undergoes a series of phosphorylations to reach signalling competent state CN .
In this model, T cell activation is determined by both CN and R∗. Each Ci can decay releasing L ,R,
R∗, and the phosphate groups. The network is weakly reversible. In our system we have n = N + 4
complexes; there is only one linkage class i.e., l = 1. To show that the deficiency of the above weakly
reversible network is zero. It will be sufficient to show that the rank of the above system is s = N + 3.

There are N + 4 complexes {L+R,C0, C1, C2, ...., CN+1, L+R∗}.
The stoichiometric matrix is given by:

a1 a2 . . . aN+2 b1 b2 . . . bN+1 c1 c2 c3
1 1 . . . 1 0 0 . . . 0 −1 −1 0
1 1 . . . 1 0 0 . . . 0 −1 −1 1
0 0 . . . 0 0 0 . . . 0 0 0 −1
−1 0 . . . 0 −1 0 . . . 0 1 0 0
0 −1 . . . 0 1 −1 . . . 0 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...
...

0 0 . . . 0 0 0 . . . −1 0 1 0
0 0 . . . −1 0 0 . . . 1 0 0 0


The first N + 3 columns of this matrix are linearly independent. Hence for this model s ≥ N + 3.

Hence δ ≤ (N + 4)− (N + 3)− 1 = 0. Since δ is always non-negative this implies that δ = 0.
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1.6 Kinetic proofreading with limited signaling and incoherent feed forward loop

This model is an extension of KPR with an incoherent feed forward loop, it has been assumed that
signalling is limited and after reaching the signalling competent state the bound TCR transits to a non-
signalling transit state.

dC0

dt
= κ(LT −

N+1∑
i=0

Ci)(RT −
N+1∑
i=0

Ci)− (ϕ+ v)C0() (26)

dCi

dt
= ϕCi−1 − (ϕ+ v)Ci; 1 ≤ i ≤ N − 1 (27)

dCN

dt
= ϕCN−1 − (v + ξ)CN (28)

dCN+1

dt
= ξCN − vCN+1 (29)

dY

dt
= a(m− Y )− bY + σCN (m− Y ) (30)

dX

dt
= c(l −X)− dX + δY (l −X)− µCNX (31)

We aim to demonstrate that the system, an extension of the kinetic proofreading (KPR) model, is
globally asymptotically stable. The system consists of two sets of variables: Z1, consisting of the Ci,
which satisfies a closed system of equations

dZ1

dt
= f(Z1),

and Z2, consisting of X and Y , governed by

dZ2

dt
= g(Z1, Z2).

It has already been proven that the system for Z1 has a unique steady state, and that all solutions for
Z1 converge to this steady state as t → ∞. In other words, as t → ∞ each Ci(t) converges to some
C∗
i > 0. Consider any ω-limit point of a solution (Ci, X, Y ) of (26)-(31) and the solution starting at that

point for t = 0. It lies entirely in the ω-limit set of that solution and so Ci has the constant value C∗
i for

all i. This means that this solution satisfies the equations obtained from (30) and (31) by replacing CN

by C∗
N . Equation (30) is an equation for Y alone and so it it easy to see that the solution converges to

Y ∗ =
a+b+λC∗

N
a+λC∗

N
as t → ∞. Now we can again pass to a solution starting at an ω-limit point to see that

8



for the resulting solution X solves the equation obtained from (31) by replacing CN by C∗
N and Y by

Y ∗. Thus the solution converges to X∗ = (c+δl)Y ∗

c+d+δY ∗+µC∗
N

as t → ∞. Since these statements hold for all
ω-limit points it follows that any solution of (26)-(31) converges to (C∗

i , Y
∗, X∗) as t → ∞. For this

system the unique positive steady state is globally asymptotically stable.

1.7 Kinetic proofreading with incoherent feed forward loop

For this model there is a unique steady state in each stoichiometric compatibility class which is globally
asymptotically stable. The proof of this is based on the fact that we have already proved global asymptotic
stability for the kinetic proofreading model and otherwise the proof is just as in the previous example.
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1.8 Analytical observations on results:

Occupancy model :
Response as a Monotonic Function of Dissociation Time:
In the context of the occupancy model, we analyze the response by examining T cell activation as a

function of receptor-ligand complex concentration, C, which is derived from the equilibrium concentra-
tions of ligand and receptor. It satisfies the equation:

C =
LT +RT +KD −

√
(LT +RT +KD)2 − 4LTRT

2
(32)

and is this model C is a measure of the T cell activation.
C is a solution to a quadratic equation of the form:

C2 − aC + b = 0 (33)

where

a = LT +RT +KD > 0, b = LTRT > 0

Only the negative square root gives a relevant solution, since C < LT and C < RT and therefore
C < a.

The above equation can be reformulated as follows:

C =
a−

√
a2 − 4b

2
(34)

Analysis of the solution
Differentiating the expression for C with respect to KD gives

dC

dKD
=

∂C

∂a
· da

dKD

C is a decreasing function of a since

∂C

∂a
=

1

2

(
1− a√

a2 − 4b

)
< 0

and combining this with

da

dKD
= 1 > 0

we have:

dC

dKD
< 0

Relationship with Dissociation Time
The dissociation constant KD is related to the dissociation rate constant koff and the association rate

constant kon:

KD =
koff

kon

Additionally, the dissociation time τ is inversely proportional to the dissociation rate constant:

τ =
1

koff

As the dissociation time τ increases, the dissociation rate constant koff decreases, resulting in a
decrease in KD. Given that C is a decreasing function of KD, it follows that C becomes an increasing
function of the dissociation time τ .
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This relationship demonstrates that as ligand-receptor binding stabilizes, resulting in a longer dis-
sociation time, T cell activation increases, highlighting the importance of bond longevity in cellular
activation responses.

Response as monotonic function of ligand concentration
To determine how C depends on LT , we differentiate C with respect to LT :

dC

dLT
=

∂C

∂a
· da

dLT
+

∂C

∂b
· db

dLT

We have da
dLT

= 1 and db
dLT

= RT . Differentiating C with respect to b gives:

∂C

∂b
=

1

2

(
2√

a2 − 4b

)
Sign of dC

dLT

Analyzing the derivative dC
dLT

:

dC

dLT
=

1

2

(
1− a√

a2 − 4b

)
+

RT√
a2 − 4b

> 0.

Thus, the equilibrium concentration of the pMHC-TCR complex (C) is an increasing function of
the ligand concentration (LT ). As the ligand concentration increases, the number of available binding
sites increases, which directly enhances the formation of the complex (C). Therefore, in the occupancy
model, the response function is positively dependent on the ligand concentration.

Response of KPR model as increasing function of dissociation time
In the kinetic proofreading model the response function is given by:

Response = aNCT

where

a =
ϕ

(ϕ+ v)

and

CT =
LT +RT +KD −

√
(LT +RT +KD)2 − 4LTRT

2

Similar to the argument in occupancy model it is clear that for this model CT satisfies the same
equation as C does in the occupancy model. Thus it is a decreasing function of koff , which follows that
it is an is an increasing function of the dissociation time (τ ).

Response of KPR model as increasing function of ligand concentration
That the response with respect to ligand concentration is monotone in the kinetic proofreading model

can be attributed again to the fact that in this case CT is increasing (similar to the argument in the case
of the occupancy model ) and α is constant. Thus R is increasing.
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2 Mathematical Formulation and analysis

2.1 Occupancy Model

In this model a pMHC ligand (L) can reversibly bind a T cell receptor (R) to form a pMHC-TCR complex
(C).

dC

dt
= κLR− vC (35)

where

kon = κ and koff = v

and at equilibrium dC
dt = 0 and hence

LR = KDC (36)

where KD = v
κ

Also the total amount of ligand LT and total amount of receptor TCR RT are conserved quantities

LT = L+ C RT = L+ C (37)

By inserting these in equation in (36) we get

C =
LT +RT +KD −

√
(LT +RT +KD)2 − 4LTRT

2

T cell activation = C

Calculating the Emax

The Emax can then be found by finding C in the limit of LT tending to infinity. In this limit, we have

lim
LT→∞

KD

LT
= 0 lim

LT→∞

RT

LT
= 0

Emax = lim
LT→∞

C

= lim
LT→∞

LT +RT +KD −
√
(LT +RT +KD)2 − 4LTRT

2

= lim
LT→∞

2LTRT

LT +RT +KD +
√
(LT +RT +KD)2 − 4LTRT

= lim
LT→∞

2RT

1 + RT
LT

+ KD
LT

+
√
(1 + RT

LT
+ KD

LT
)2 − 4RT

LT

= RT

Hence
Emax = RT

Calculation for EC50

At half the maximal response, we have LT = EC50.
Also, T cell activation =

Emax/2 = RT /2

12



which implies

C = RT /2

Using equation (36) we have

(LT − C)(RT − C) = KDC

hence
(LT −RT /2)(RT −RT /2) = KDRT /2

Rearranging we get
LT = KD +RT /2

Hence

EC50 = KD +RT /2

2.2 Kinetic Proofreading

In this model, a pMHC ligand (L) can reversibly associate with a TCR receptor (R) to form a pMHC-TCR
complex, denoted as C0. Once formed, this complex undergoes a series of biochemical modifications,
progressively transitioning towards a signaling-competent state, labeled as CN . If the pMHC dissociates
from the TCR at any intermediate stage, all modifications are rapidly undone, causing the TCR to revert
to its original, unmodified state. The level of T cell activation is directly linked to the quantity of TCRs
in the fully modified CN state.

dL

dt
= −κLR− v

N∑
i=0

Ci (38)

dR

dt
= −κLR− v

N∑
i=0

Ci (39)

dC0

dt
= κLR− (ϕ+ v)C0 (40)

dCi

dt
= ϕCi−1 − (ϕ+ v)Ci; 1 ≤ i ≤ N − 1 (41)

dCN

dt
= ϕCN−1 − vCN (42)

We have the total amount of ligand LT and total amount of receptor TCR RT as conserved quantities:

LT = L+ CT RT = L+ CT

where CT =
∑N

i=0Ci

Using values of LT and RT in equation (38) we get

CT =
LT +RT +KD −

√
(LT +RT +KD)2 − 4LTRT

2
where KD =

v

κ

13



Let
a =

ϕ

(ϕ+ v)

Hence, at equilibrium

CT =

N∑
i=0

Ci

=
N−1∑
i=0

Ci + CN

=
N−1∑
i=0

aiC0 + CN

=
(1− aN )

(1− a)
C0 + CN

=
(1− aN )

(1− a)
(1− a)CT + CN

=
1

aN
CN

CT =
1

aN
CN

Hence

T cell activation = CN

= aNCT

Calculation for Emax

Emax = lim
LT→∞

CT

= lim
LT→∞

LT +RT +KD −
√
(LT +RT +KD)2 − 4LTRT

2

= lim
LT→∞

2LTRT

LT +RT +KD +
√
(LT +RT +KD)2 − 4LTRT

= lim
LT→∞

2RT

1 + RT
LT

+ KD
LT

+
√
(1 + RT

LT
+ KD

LT
)2 − 4RT

LT

= RT

So Emax = aNRT

Calculation for EC50

At half the maximal response, T cell activation =

Emax/2 = aNRT /2

14



which implies

aNCT = aNRT /2

CT = RT /2

Since, LT = L+ CT RT = L+ CT Using this equation in equation (38)

κ(LT − CT )(RT − CT )− v
N∑
i=0

Ci = 0

(LT − CT )(RT − CT ) = KDCT

LT = KD +RT /2

2.3 Kinetic proofreading with limited signaling

It is an extension of the kinetic proofreading model that proposes that when a TCR has reached signalling
competent state CN , the bound TCR transits to a non signalling state CN+1 with rate ξ.

dL

dt
= −κLR− v

N+1∑
i=0

Ci (43)

dR

dt
= −κLR− v

N+1∑
i=0

Ci (44)

dC0

dt
= κLR− (ϕ+ v)C0 (45)

dCi

dt
= ϕCi−1 − (ϕ+ v)Ci; 1 ≤ i ≤ N − 1 (46)

dCN

dt
= ϕCN−1 − (v + ξ)CN (47)

dCN+1

dt
= ξCN − vCN+1 (48)

Here CT =
∑N+1

i=0 Ci, and T cell activation is given by CN .

CT =

N−1∑
i=0

Ci + CN + CN+1

=

N−1∑
i=0

aiC0 + CN +
ξ

v
CN

=
(1− aN )

(1− a)
(1− a)CT +

v + ξ

v
CN

Hence

CT =
1

aN

(
v + ξ

v

)
CN .

15



and

CN =

(
v

v + ξ

)
aNCT

Calculating the Emax

Similar to the case of kinetic proofreading model, it can be shown that when LT → ∞ CT → RT

Hence

Emax =

(
v

v + ξ

)
aNRT

Calculating the EC50

At half the maximal response, T cell activation

Emax

2
=

(
v

v + ξ

)
aN

RT

2

which implies (
v

v + ξ

)
aNCT =

(
v

v + ξ

)
aN

RT

2

Hence
CT =

RT

2

Since, LT = L+ CT RT = R+ CT Using this equation in (43)

κ(LT − CT )(RT − CT )− v
N+1∑
i=0

Ci = 0

(LT − CT )(RT − CT ) = KDCT

LT = KD +RT /2

2.4 Kinetic proofreading with sustained signaling

It is another modification of the kinetic proofreading model, according to this model, T-cell receptors
(TCRs) in the signaling-competent state CN , persist in signaling for a certain duration (T) after the
unbinding of pMHC. Subsequently, they return to the basal state (T) with a rate of λ.

dL

dt
= −κLR+ v

N∑
i=0

Ci − κLR∗ (49)

dR

dt
= −κLR+ v

N−1∑
i=0

Ci +ΩR∗ (50)

dR∗

dt
= vCN − κLR∗ − ΩR∗ (51)

dC0

dt
= κLR− (v + ϕ)C0 (52)

dCi

dt
= ϕCi−1 − (ϕ+ v)Ci; 1 ≤ i ≤ N − 1 (53)

dCN

dt
= ϕCN−1 − vCN + κLR∗ (54)

The conservation equations are:

LT = L+ CT RT = R+ CT +R∗

16



T cell activation = CN +R∗

From equation (51) at the steady state

R∗ =
vCN

κL+Ω
(55)

Also substituting (55) into (50) at steady state we get

−(v + ϕ)C0 + v
N−1∑
i=0

Ci +ΩR∗ = 0

−(v + ϕ)C0 + v
N−1∑
i=0

aiC0 +Ω
vCN

κL+Ω
= 0

−(v + ϕ)C0 + v
1− an

1− a
C0 +Ω

vCN

κL+Ω
= 0

upon rearrangement and solving we get

C0 =
Ω(1− a)

an(κL+Ω)
CN

Also,

CT =

N∑
i=0

Ci

=
N−1∑
i=0

Ci + CN

=
N−1∑
i=0

aiC0 + CN

=
1− an

1− a
C0 + CN

=

(
1− an

1− a

)
Ω(1− a)

an(κL+Ω)
CN + CN

Solving this we get:

CN =
κL+Ω

Ω+ anκL
anCT (56)

Hence from equation (55) and (56), T cell activation is given by

T cell activation

= CN +R∗

=
κL+Ω

Ω+ anκL
anCT +

vCN

κL+Ω

=

(
κL+ v +Ω

Ω+ anκL

)
anCT

Calculating the Emax

17



Similar to the case of kinetic proofreading model, it can be shown that when LT → ∞ CT → RT

where CT is given by:

CT =
LT +RT +KD −

√
(LT +RT +KD)2 − 4LTRT

2

Emax = lim
LT→∞

(
κL+ v +Ω

Ω+ anκL

)
anCT

= lim
LT→∞

(
κ(LT − CT ) + v +Ω

Ω+ anκ(LT − CT )

)
anCT

= anRT lim
LT→∞

(
κ(1− CT /LT ) + v/LT +Ω/LT

Ω/LT + anκ(1− CT /LT )

)
= RT

Hence Emax = RT

Calculating the EC50

At half the maximal response
T cell activation

Emax

2
=

RT

2

which implies
RT

2
=

(
κ(LT − CT ) + v +Ω

Ω+ anκ(LT − CT )

)
anCT

Rearranging and solving for LT we get:

LT =

(
anCT (v +Ω− κRT /2)− ΩRT /2

anκ(RT /2− CT )

)

2.5 Kinetic proofreading with negative feedback

Kinetic Proofreading with Negative Feedback extends the KPR scheme by introducing the notion that the
rates of complex formation in the activation chain can be modulated at intermediate stages and/or within
the final signaling state CN . This modulation is achieved through a single negative feedback mechanism
mediated by Src homology 2 domain phosphatase-1 (SHP-1).

dL

dt
= −κLR+ v

N∑
i=0

Ci (57)

dR

dt
= −κLR+ v

N∑
i=0

Ci (58)

dC0

dt
= κLR+ (b+ γS)C1 − (ϕ+ v)C0 (59)

dCi

dt
= ϕCi−1 + (b+ γS)Ci+1 − (ϕ+ v + b+ γS)Ci; 1 ≤ i ≤ N − 1 (60)

dCN

dt
= ϕCN−1 − (b+ γS + v)CN (61)

dS

dt
= αC1(ST − S)− βS (62)
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The conservation equations are:

LT = L+ CT RT = R+ CT

Here CT =
∑N+1

i=0 Ci, and T cell activation is given by CN .

T cell activation = CN

Now CN can be expressed in form of CT as in eq (4.17) in [1],

CN =
1− r−/r+

1− (r−/r+)N+1
rN−CT (63)

where

r± =
ϕ+ b+ γS + v ±

√
(ϕ+ b+ γS + v)2 − 4ϕ(b+ γS)

2(b+ γS)

Therefore, the cell activation is given by

T cell activation =
1− r−/r+

1− (r−/r+)N+1
rN−CT (64)

(65)

Calculation for Emax

Similar to the case of kinetic proofreading model, it can be shown that when LT → ∞ CT → RT

where CT is given by:

CT =
LT +RT +KD −

√
(LT +RT +KD)2 − 4LTRT

2

Emax = lim
LT→∞

(
1− r−/r+

1− (r−/r+)N+1

)
rN−CT

=

(
1− r−/r+

1− (r−/r+)N+1

)
rN−RT

Calculation for EC50

At half the maximal response
T cell activation

Emax

2
=

(
1− r−/r+

1− (r−/r+)N+1

)
rN−RT

2(
1− r−/r+

1− (r−/r+)N+1

)
rN−CT =

(
1− r−/r+

1− (r−/r+)N+1

)
rN−RT

2

which implies

CT =
RT

2
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Since, LT = L+ CT RT = L+ CT , using this equation in equation (57)

κ(LT − CT )(RT − CT )− v
N∑
i=0

Ci = 0

(LT − CT )(RT − CT ) = KDCT

LT = KD +RT /2

2.6 Kinetic proofreading with stabilizing activation chain

In this model a pMHC ligand (L) binds to a TCR receptor (R) to form a pMHC-TCR complex C0, which
undergoes series of chemical modifications to reach signalling competent state CN .

This stabilization/destabilization of the Ci complexes and variation in the time taken for activation,
are articulated by variations in the values of corresponding rate constants v(i); (i = 0, 1, ..., N) and
ϕ(i); (i = 0, 1, ..., N − 1) as the proofreading progresses.

dL

dt
= −κLR−

N∑
i=0

v(i)Ci (66)

dR

dt
= −κLR−

N∑
i=0

v(i)Ci (67)

dC0

dt
= κLR− (ϕ(0) + v(0))C0 (68)

dCi

dt
= ϕ(i− 1)Ci−1 − (ϕ(i) + v(i))Ci; 1 ≤ i ≤ N − 1 (69)

dCN

dt
= ϕ(N − 1)CN−1 − v(N)CN (70)

v(i) =
(1 + i)

(1 + ri)
v; r > 1 ϕ(i) = ϕri; r > 1

where v(0) = 1.5 and ϕ(0) = 1.3. In this model for simplicity v(0) is denoted as v(= 1/τ) which

is dissociation time, and ϕ(0) denotes the propagation rate for first step C0 → C1. Now for next steps
these rates are given by

v(i) =
(1 + i)

(1 + ri)
v; r > 1 ϕ(i) = ϕri; r > 1

The conservation equations are:

LT = L+ CT RT = R+ CT CT =

N∑
i=0

Ci

Here we have from [2]

C0 =
CT

µ
; Ci = γC0, 1 ≤ i ≤ N − 1; CN = δCT

where

µ = 1 +
ϕ(N − 1)

v(N)
γ(N − 1) +

N−1∑
i=0

γi
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γi = α1 × ...× αi =
i∏

j=1

αi; αi =
ϕ(i− 1)

ϕ(i) + v(i)

δ =
1

µ

ϕ(N − 1)

v(N)
γ(N − 1)

and where CT is the number of bound receptors or ligands CT =
∑N

i=0Ci which is given by

CT =
2LTRT

LT +RT + ϵ+
√
(LT +RT + ϵ)2 − 4LTRT

; ϵ =
1

µ

v(0) + ϕ(0)

κ

T cell activation = CN

= δCT

Calculating the Emax

Similar to the case of kinetic proofreading model, it can be shown that when LT → ∞ CT → RT

Hence
Emax = δRT

Calculating the EC50

At half the maximal response
T cell activation

Emax

2
= δRT /2

which implies
δCT = δRT /2 CT = RT /2

Since

CT =
2LTRT

LT +RT + ϵ+
√
(LT +RT + ϵ)2 − 4LTRT

; ϵ =
1

µ

v(0) + ϕ(0)

κ

Substituting CT = RT /2 in above equation and solving for LT we get

LT = 2RT + 4ϵ

Hence potency

Potency = 2RT + 4ϵ

2.7 Kinetic proofreading with incoherent feed forward loop

Although the actual model [3] considered the KPR with limited signalling combined with incoherent
feed forward loop. We first considered the KPR with incoherent feed forward loop only for the plotting.

dL

dt
= −κLR− v

N∑
i=0

Ci (71)

dR

dt
= −κLR− v

N∑
i=0

Ci (72)

dC0

dt
= κLR− (ϕ+ v)C0 (73)

dCi

dt
= ϕCi−1 − (ϕ+ v)Ci; 1 ≤ i ≤ N − 1 (74)
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dCN

dt
= ϕCN−1 − vCN (75)

dY

dt
= a(m− Y )− bY + σCN (m− Y ) (76)

dX

dt
= c(l −X)− dX + δY (l −X)− µCNX (77)

where CT =
∑N

i=0Ci, and T cell activation is given by X.

CN = αnCT

Y =
(1 + σCN/a)m

1 + b/a+ σCN/a
X =

(1 + δY/c)l

1 + d/c+ δY/c+ µCN/d

Calculating the Emax

Similar to the case of kinetic proofreading model, it can be shown that when LT → ∞ CT → RT

Hence

Emax = lim
LT→∞

(
(1 + δY/c)l

1 + d/c+ δY/c+ µn
αCT /c

)
=

(
(1 + δY/c)l

1 + d/c+ δY/c+ µαnRT /c

)

Calculating the EC50

At half the maximal response
T cell activation

Emax

2
=

(
(1 + δY/c)l

2(1 + d/c+ δY/c+ µαnRT /c)

)
which implies (

(1 + δY/c)l

1 + d/+̧δY/c+ µαnCT /c

)
=

(
(1 + δY/)̧l

2(1 + d/c+ δY/c+ µαnRT /c)

)

2(1 + d/c+ δY/c+ µαnRT /c) = 1 + d/c+ δY/c+ µαnCT

Rearranging and solving for CT

CT = 2RT +

(
1 + d/c+ δY/c

µαn

)
Since, LT = L+ CT RT = R+ CT Using this equation in (71)

κ(LT − CT )(RT − CT )− v

N+1∑
i=0

Ci = 0

(LT − CT )(RT − CT ) = KDCT

Using value of CT in above equation and solving. we get:

LT =
2R2

T + 3RTU − U2 − 2KDRT − UKD

RT + U
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where

U =

(
1 + d/c+ δY/c

µαn

)

2.8 Kinetic proofreading with limited signaling and incoherent feed forward loop

This model is an extension of KPR with incoherent feed forward loop, it has been assumed that signalling
is limited and after after reaching the signalling competent state the bound TCR transits to non-signalling
transit state.

dL

dt
= −κLR− v

N+1∑
i=0

Ci (78)

dR

dt
= −κLR− v

N+1∑
i=0

Ci (79)

dC0

dt
= κLR− (ϕ+ v)C0 (80)

dCi

dt
= ϕCi−1 − (ϕ+ v)Ci; 1 ≤ i ≤ N − 1 (81)

dCN

dt
= ϕCN−1 − (v + ξ)CN (82)

dCN+1

dt
= ξCN − vCN+1 (83)

dY

dt
= a(m− Y )− bY + σCN (m− Y ) (84)

dX

dt
= c(l −X)− dX + δY (l −X)− µCNX (85)

where CT =
∑N

i=0Ci, and T cell activation is given by X.
Here

CN =

(
v

v + ξ

)
αnCT

Y =
(1 + σCN/c)m

1 + d/c+ σCN/c
X =

(1 + δY/c)l

1 + d/c+ δY/c+ µCN/c

Calculating the Emax

Similar to the case of kinetic proofreading model, it can be shown that when LT → ∞ CT → RT

Hence

Emax = lim
LT→∞

(
(1 + δY/c)l

1 + d/c+ δY/c+ vµαnCT /(v + ξ)c

)
=

(
(1 + δY/c)l

1 + d/c+ δY/c+ vµαnRT /(v + ξ)c

)

Calculating the EC50

At half the maximal response
T cell activation

Emax

2
=

(
(1 + δY/c)l

2(1 + d/c+ δY/c+ vµαnRT /(v + ξ)c)

)
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which implies

(1 + δY/c)l

1 + d/c+ δY/c+ vµαnCT /(v + ξ)c
=

(
(1 + δY/c)l

2(1 + d/c+ δY/c+ vµαnRT /(v + ξ)c)

)

2(1 + d/c+ δY/c+ vµαnRT /(v + η)c) = 1 + d/c+ δY/c+ vµαnCT /(v + ξ)c

Rearranging and solving for CT

CT = 2RT +

(
(c+ d+ δY )(v + ξ)

µvαn

)
Since, LT = L+ CT RT = R+ CT , using this equation in (78)

κ(LT − CT )(RT − CT )− v
N∑
i=0

Ci = 0

(LT − CT )(RT − CT ) = KDCT

Using value of CT in above equation and solving. we get:

LT =
2R2

T + 3RTW −W 2 − 2KDRT −WKD

RT +W

where

W =

(
(c+ d+ δY )(v + ξ)

µvαn

)

2.9 Kinetic proofreading with Limited and Sustained Signaling

It as a combination of two models KPR with limited signaling and KPR with sustained signaling.

dL

dt
= −κLR− κLR∗ − v

N+1∑
i=0

Ci (86)

dR

dt
= −κLR+ v

N−1∑
i=0

Ci + vCN+1 +ΩR∗ (87)

dC0

dt
= κLR− (ϕ+ v)C0 (88)

dCi

dt
= ϕCi−1 − (ϕ+ v)Ci; 1 ≤ i ≤ N − 1 (89)

dCN

dt
= ϕCN−1 − (v + ξ)CN + κLR∗ (90)

dCN+1

dt
= ξCN − vCN+1 (91)

dR∗

dt
= vCN − κLR∗ − ΩR∗ (92)

The conservation equations are:

LT = L+ CT RT = R+ CT +R∗

where CT =
∑N+1

i=0 Ci
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T cell activation = CN +R∗

From (92) at the steady state

R∗ =
vCN

κL+Ω
(93)

Now, using it and (88) at a steady state; for (87) at a steady state we have

−(ϕ+ v)C0 + v
N−1∑
i=0

Ci + vCN+1 +Ω
vCN

κL+Ω
= 0

−(ϕ+ v)C0 + vCT − vCN +Ω
vCN

κL+Ω
= 0

C0 =
v

(ϕ+ v)
CT − v

(ϕ+ v)
CN +

v

(ϕ+ v)

ΩCN

κL+Ω

C0 = (1− a)CT − (1− a)CN + (1− a)
ΩCN

κL+Ω
; where a =

ϕ

(ϕ+ v)

As CT is given by:

CT =

N+1∑
i=0

Ci

=

N−1∑
i=0

Ci + CN + CN+1

=
N−1∑
i=0

aiC0 + CN +
ξ

v
CN

=
1− an

1− a
C0 + CN +

ξ

v
CN

=

(
1− an

1− a

)(
(1− a)CT − (1− a)CN + (1− a)

ΩCN

κL+Ω

)
+ CN +

ξ

v
CN

=
1

an
(anκL+Ωv + ξκL+ ξΩ)

v(κL+Ω)
CN

Which implies CN is given by:

CN =
v(κL+Ω)

(anκL+Ωv + ξκL+ ξΩ)
anCT (94)

T cell activation

= CN +R∗

= CN +
vCN

κL+ V

=
κL+Ω+ v

κL+Ω
CN

=
v(κL+Ω+ v)

(anκL+Ωv + ξκL+ ξΩ)
anCT
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Calculating the Emax

Similar to the case of kinetic proofreading model, it can be shown that when LT → ∞ CT → RT

where CT is given by:

CT =
LT +RT +KD −

√
(LT +RT +KD)2 − 4LTRT

2

Emax = lim
LT→∞

(
v(κL+Ω+ v)

(anκL+Ωv + ξκL+ ξΩ)

)
anCT

= lim
LT→∞

(
v(κ(LT − CT ) + Ω + v)

(anκ(LT − CT ) + Ωv + ξκ(LT − CT ) + ξΩ)

)
anCT

= anRT lim
LT→∞

(
v(κ(1− CT /LT ) + Ω/LT + v/LT )

(anκ(1− CT /LT ) + Ωv/LT + ξκ(1− CT /LT ) + ξΩ/LT )

)
=

v

an + ξ
anRT

Calculating the EC50 At half the maximal response
T cell activation

Emax

2
=

v
an+ξa

nRT

2

which implies

v
an+ξa

nRT

2
=

(
v(κ(LT − CT ) + Ω + v)

(anκ(LT − CT ) + Ωv + ξκ(LT − CT ) + ξΩ)

)
anCT

Rearranging and solving for LT we get:

LT =
RT (a

nκCT − Ωv + ξκCT − ξΩ) + 2(an + ξ)(Ω + v − κCT )

RTanκ+ ξκRT − 2(an + ξ)κCT
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