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1 Nature of Solution

In this study, we also investigated the late-time behavior of our models, focusing on the existence and
uniqueness of steady states and convergence properties as t — oco. Specifically, we address the question:
Does each choice of parameters yield a unique steady state, and do all solutions converge to this steady
state in the long term? Our findings are as follows:

1. For system (1) (Occupancy Model), the answer is affirmative. Given that this system is effectively
one-dimensional, the proof of convergence to a unique steady state is straightforward.

2. For systems (2) and (6) (KPR and KPR with stabilizing activation chain), convergence to a unique
steady state is also established, applying the theorem by Sontag, as referenced in prior communications.

3. For systems (3), (4), and (9) (KPR with limited signaling, sustained signaling, and both ), conver-
gence to a unique steady state is confirmed based on the application of the Deficiency Zero Theorem, as
demonstrated in the following sections.

4. For the system (5) (KPR with negative feedback ), however, the answer is negative, which aligns
with the earlier findings.

5. Lastly, for systems (7) and (8) (KPR with IFF, and limited signalling), the answer is affirmative.
The convergence to a unique steady state is proven below.

1.1 Kinetic Proofreading

Within this framework, a pMHC ligand (L) can bind reversibly to a TCR receptor (R), resulting in the
formation of a pMHC-TCR complex denoted as Cy. Once formed, this TCR-pMHC complex (Cy)
undergoes a series of biochemical changes to achieve a signaling-competent state represented as C. If
a pMHC detaches from a TCR at any intermediate stage, all modifications are instantly undone, causing
the TCR to return to its original, unmodified state. T cell activation is directly proportional to the quantity
of TCRs in the C'yy state.
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Mathematical Formulation
The above equations can be rewritten as:

N N

dCy

—= =nlLr - ; C)(Ry — ; Ci) — (¢ +v)C (1)

o gCia— (0 + )0 1<i<N -1 @)
dC

TtN = ¢Cn-1 —vCy 3)

Here Rt and L are the total concentrations of the receptor and the ligand.
From equations (1)-(3), it can be deduced that if 3; = Zf\i 0 Ci

ax

7; = /i(LT — 21)(RT — 21) — qul (4)
Lemma 1.1. Ler (Cy(t),Ci(t),...,Cn(t)) be a solution of (1)-(3) contained in the closure K of the
biologically relevant region. Then any w-limit point (Cg,C5, ..., C},) of this solution is contained in

the interior of K. In particular, any steady state is contained in the interior of K.

Proof. For the proof we use Lemma 2.1(main text). It follows from equation (4) that Zﬁio C is strictly
less than L7 and Rr. It then follows from (1) that Cj > 0. This in turn implies using (2) and (3) that
Ci>0for1 <i¢<N.

Stability of the solutions

In case of KPR, the binding reaction is of the form L + R = Cj. The bound receptor Cy undergoes
a series of phosphorylations to reach the signalling competent state C'y. Each C; can decay releasing
L, R and the phosphate groups. The network is weakly reversible. In our system, there are n = N + 2
complexes, and it contains only a single linkage class, which means [ = 1. To show that the deficiency
of the above weakly reversible network is zero it will be sufficient to show that the rank of the above
systemis s = N + 1.

There are N + 2 complexes {L + R, Cy, C1,Ca,....,Cn}.

The stoichiometric matrix is given by:

[ a1 a2 any1 b1 Do by ¢
1 1 1 0 0 0o -1
1 1 1 0 0 0o -1
—1 0 -1 0 0 1
0 -1 0 1 -1 0 0
L0 o 1 0 0 1 0 |



The first N 4 1 columns of this matrix are linearly independent. Hence for this model s > N + 1.
Hence § < (N +2) — (N +1) — 1 = 0. Since 0 is always non-negative this implies that § = 0.
1.2 Kinetic proofreading with limited signaling

This model extends the kinetic proofreading concept, suggesting that once a TCR reaches the signaling-
competent state C'y, the bound TCR shifts to a non-signalling state C'nyy1 at a rate €.
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Mathematical formulation

N+1 N+1

dCy
il = 3. ColRe = 3.0 - 6+ 0C ®
60— (@t 1<i<N -1 ©)
dC
dtN PCn—1 — (v+§)CnN Q)
dC
C]l\;+l = fCN - UCN+1 (8)

Here Rt and L are the total concentrations of receptor and the ligand.
Let X = ZN +1 C;. Then, from Equations (5)-(8), we have:
ax .
~ =Ly = Z)(Rr - 51) — o5 ©)
Lemma 1.2. Let (Cy(t), Ci(t),...,Cn+1(t)) be a solution of (5)-(8) contained in the closure K of the
biologically relevant region. Then an w-limit point (C, CY, ..., Cx_ 1) of this solution is contained in
the interior of K. In particular, any steady state is contained in the interior of K.

Proof. For the proof we use Lemma 2.1(main text). It follows from equation (9) that ZN e C} is strictly

less than L7 and Ry. It then follows from (5) that C; > 0. This in turn implies inductively, using (5)-(8)
that CF > 0for1 <i< N —1.
We have proved the deficiency of this weakly reversible network is zero as in section ??.

1.3 Kinetic proofreading with sustained signalling:

This model extends the KPR scheme by integrating experimental findings that indicate signalling-competent

TCRs can maintain signaling for a defined time frame, even once pMHC unbinding occurs. In this frame-

work, T-cell receptors (TCRs) in the signalling-capable state C'y persist in signaling for a designated

period (1) following the detachment of pMHC, subsequently returning to their baseline state at a rate \.
Mathematical Formulation



N N

d% = r(Lr — ;Oi(t))(RT - ; Ci(t) — R*(t)) — (v + ¢)Co () (10)
O G~ 0+ 0GB 1Zi<N -1 an
9N _ 4Cni(8) — v (¢ L Nc-t R*(¢ 12
7_¢ N-1(t) — v N()—i—m(T—; ()R (1) (12)
dﬁ* =vOn(t) — LT—ZC — QR*(t) (13)

Here Rt and Lt are the total concentrations of receptors and the ligand.
IfX = ZNH C; then it follows from equations (10)-(13) that:

N N
= k(Lr =Y Cy) RT—ZC R*) —’UZC +r(Ly =Y Ci)R* (14)
1=0 =0 1=0 =0

=0
and
dzl * *
WZH(LT—El)(RT—El—R )—i-KJR (LT—El)—v21 (15)
Lemma 1.3. Let (R*(t),Co(t),Ci(t),...,Cn(t)) be a solution of (10)-(13) contained in the closure
K of the biologically relevant region. Then any w-limit point (R**,Cj,CY, ..., Cx) of this solution is

contained in the interior of K. In particular, any steady state is contained in the interior of K.

Proof. For the proof we use Lemma 2.1(main text). It follows from (15) that Zi]\io C} is strictly less
than Lp. Suppose now that Zév C; + R*™ = Rp. Then it follows from (10) that Cj = 0. This
implies, using (11) that C = O forall 1 < ¢ < N — 1. The sum of (12) and (13) then implies that
R* = 0. Substituting this back in (12) shows that C';; = 0. Putting these facts together we see that
Zf\i o Ci + R* = 0, contradicting our assumption. Thus in fact ¥; + R* < Ryp. Once this has been
established it follows from (10) that Cj > 0. Then (11) implies that C > 0 for 1 < ¢ < N — 1. From
(12) we can conclude that C'y; > 0 and from (13) that R** > 0.

Stability of the Solutions of system:

In the case of kinetic proofreading (KPR) with sustained signaling, the binding reaction follows
L + R = (Y, where the bound receptor complex Cj undergoes a sequence of phosphorylation steps to
reach the signaling-competent state C'y. Unlike in limited signaling, here the TCRs continue to signal
even after pMHC dissociates. The rate at which these unbound yet signaling-competent TCRs revert to
their unmodified state is governed by a factor €. In this model, T cell activation depends on both C
and R*. Each intermediate state C; can decay, releasing L, R, R*, and phosphate groups, making the
network weakly reversible.

Our system consists of n = N + 3 complexes with a single linkage class (I = 1). To establish that
the deficiency of this weakly reversible network is zero, it suffices to show that its rank is s = N + 2.

The network comprises N + 3 complexes: {L + R, Cy,C1,Cy,...,Cn, L+ R*}.



ar  a any an4+1 b1 b by a1 ca c3 ]
1 1 1 1 0 0 o -1 -1 0
1 1 1 0 0 0 0O -1 0 1
—1 0 0 -1 0 0 1 0 0
0 -1 0 0 1 -1 0 0 0 0
0 0o ... -1 0 0 o ... =1 0 0 0
0 0o ... O —1 0 o ... 1 0 1 0

| 0 0o ... O 1 0 0O ... O 0 -1 -1 |

The first NV 4 2 columns of this matrix are linearly independent. Hence for this model s > N + 2.
Hence 6 < (N +3) — (N +2) — 1 = 0. Since ¢ is always non-negative this implies that 6 = 0.

1.4 Kinetic Proofreading with Stabilizing Activation Chain

The model indicates that KPR complexes enhance the stability of foreign peptides while reducing their
affinity for self-peptides. This selective strengthening and weakening of the C; complexes, as well
as differences in activation timing, are represented through changes in the respective rate constants
v(i); (1 =0,1,...,N) and ¢(i); (i = 0,1, ..., N — 1) as the proofreading process advances.

v(N)

v(2)

v(1)

| |
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Mathematical formulation

dc N N

=¥ = n(Lr - ; Ci)(Ry — ;0 Ci) = (9(0) +v(0))Co (16)

dC; . ‘ . ,

=0l =10 = (8(0) +0(D))C; 1<i< N1 (an
% = (N — 1)CN_1 — U(N)CN (18)

In this model for simplicity v(0) is denoted as v(= 1/7) which is dissociation time, and ¢(0) denotes
the propagation rate for the first step Cy — C'j. Now for next steps these rates are given by

v(i) = M1);7“ > 1 o(i) = orisr > 1

(1 +7i)
Let>; = Zz‘]\io C;. From Equations (16)-(18), we get:

N

= k(L — %1) (Rr — 51) = 51 > (i) (19)
=0

4z
dt



Lemma 1.4. Let (Cy(t),Ci(),...,Cn(t)) be a solution of (16)-(18) contained in the closure K of the
biologically relevant region. Then any w-limit point (Cg,C5, ..., C}) of this solution is contained in
the interior of K. In particular, any steady state is contained in the interior of K.

Proof. For the proof we use Lemma 2.1(main text). It follows from (19) that Zi\io C; is strictly less
than L7 and Rr. It then follows from (16) that Cj > 0. This in turn implies using (17) and (18) that
C;y>0forl1 <i<N.

Stability of the solutions

In the case of KPR with a stabilizing activation chain, the binding reaction follows L+ R = Cj, where
the bound receptor complex Cj undergoes a sequence of phosphorylation steps to reach the signaling-
competent state Cr. T cell activation is determined by Cp. Each intermediate state C; can decay,
leading to the release of L, R, and phosphate groups, making the network weakly reversible.

Our system consists of n = N 4 2 complexes with a single linkage class (! = 1). To establish that
the deficiency of this weakly reversible network is zero, it suffices to show that its rank is s = N + 1.

The network comprises N + 2 complexes: {L + R, Cy,C1,Cs,...,Cn}.

The stoichiometric matrix is given by:

[ a1 as ... any1 b1 by ... by 1 ]
1 1 1 0 0 0o -1
1 1 1 0 0 0 -1

-1 0 0 -1 0 0 1
0o -1 0 1 -1 0 0

0 0 ... -1 0 0 .. 1 0 |

The first NV 4 1 columns of this matrix are linearly independent. Hence for this model s > N + 1.
Hence 6 < (N +2) — (N + 1) — 1 = 0. Since ¢ is always non-negative this implies that 6 = 0.

1.5 Kinetic Proofreading with Limited and Sustained Signaling

This model is a combination of two models KPR with limited and KPR with sustained signaling.
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Mathematical formulation

dCO N+1 N+1
W = H(LT — ; Ci)(RT — ; C; — R*) — ((25 + ’U)C() (20)
O 60— (@t 1<i<N -1 @1



N+1

dc .
— = 00n-1 — (v + E)Cn + (L 2_; Ci)R (22)
dC
CZH =£Cy —vCOpny1 (23)
dR* N+1
- =0 — k(Lyp — Z% C))R* — QR (24)

Define Y1 = Ef\i ng C;. From equations ( 20)-(23) it follows that:

dx N+1

1 *

dt:m(LT—El)(RT—El—R)—vz;Ci—QR* (25)
=

Lemma 1.5. Let (Cy(t),Ci(t),...,Cn41(t), R*(t)) be a solution of (20)-(23) contained in the closure

K of the biologically relevant region. Then any w-limit point (C§,CY, ..., Cy_ |, R*™) of this solution

is contained in the interior of K. In particular, any steady state is contained in the interior of K.

Proof. For the proof we use Lemma 2.1(main text). It follows from (25) that Zﬁgl C; is strictly less

than L7. Suppose now that Zf\i 0Ci + R = Rp. Then it follows from (20) that Cj = 0. This
implies, using (21) that C7 = 0 forall 1 < ¢ < N — 1. The sum of (22), (23) and (24) implies that
R** = 0. Substituting this back into (23) gives C'y11 = 0 and substituting this into (12) gives Cy = 0.
Putting these facts together we see that ZZ]\L ng C! 4+ R*™ = 0, contradicting our assumption. Thus in
fact Z?jgl C; + R* < Rp. Once this has been established it follows from (20) that Cj > 0. Then
(21) implies that C7 > 0 for 1 <4 < N — 1. From (22) we can conclude that C'y, > 0, from (23) that
Cy41 > 0 and from (24) that R** > 0.

Stability of the solutions

In case of KPR with limited and sustained signalling the binding reaction is of the form L+ R = Cj.
The bound receptor Cy undergoes a series of phosphorylations to reach signalling competent state C'y.
In this model, T cell activation is determined by both C'y and R*. Each C; can decay releasing L ,R,
R*, and the phosphate groups. The network is weakly reversible. In our system we have n = N + 4
complexes; there is only one linkage class i.e., [ = 1. To show that the deficiency of the above weakly
reversible network is zero. It will be sufficient to show that the rank of the above system is s = N + 3.

There are N + 4 complexes {L + R, Cy, C1,Co,....,Cn41, L + R*}.

The stoichiometric matrix is given by:

[ a1 ax ... anj2 b1 b byy1 ¢ c2 c3
1 1 0 0 0 -1 -1 0
1 1 1 0 0 0 -1 -1 1
0 0 0 0 0 0 0 -1
-1 0 0 -1 0 0 1 0 0
0 -1 0 1 -1 0 0 0 0
0 0o ... 0 0 o ... -1 0 1 0
o 0 ... -1 0 0 .. 1 0 0 0

The first N 4 3 columns of this matrix are linearly independent. Hence for this model s > N + 3.
Hence § < (N +4) — (N +3) — 1 = 0. Since 0 is always non-negative this implies that § = 0.



1.6 Kinetic proofreading with limited signaling and incoherent feed forward loop
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This model is an extension of KPR with an incoherent feed forward loop, it has been assumed that
signalling is limited and after reaching the signalling competent state the bound TCR transits to a non-
signalling transit state.

dCy N+1 N+1
= = n(Lr - ; Ci)(Rr — ; Ci) = (¢ +v)Co() (26)
O 60— @+ )G 1<i<N -1 @0
dd%N = ¢Cn_1 — (v +€)Cn (28)

TN cOn — o0 (29)

‘% =a(m—Y)—bY +oCyn(m—Y) (30)
%:c(Z—X)—dXMY(Z—X)—uCNX €2))

We aim to demonstrate that the system, an extension of the kinetic proofreading (KPR) model, is
globally asymptotically stable. The system consists of two sets of variables: Z;, consisting of the Cj,
which satisfies a closed system of equations

dz,
— = fZ
and Zs, consisting of X and Y, governed by
dZs
— = g9(Z1, Z3).
o =97, 22)

It has already been proven that the system for Z; has a unique steady state, and that all solutions for
7, converge to this steady state as ¢ — oo. In other words, as ¢ — oo each C;(t) converges to some
CF > 0. Consider any w-limit point of a solution (Cj, X,Y") of (26)-(31) and the solution starting at that
point for t = 0. It lies entirely in the w-limit set of that solution and so C; has the constant value C;* for
all . This means that this solution satisfies the equations obtained from (30) and (31) by replacing Cn

by C% . Equation (30) is an equation for Y alone and so it it easy to see that the solution converges to

b4+AC, . . . S
Y* = mic*zv as t — oo. Now we can again pass to a solution starting at an w-limit point to see that
N
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for the resulting solution X solves the equation obtained from (31) by replacing Cy by C}, and Y by
Y*. Thus the solution converges to X* = % as t — oo. Since these statements hold for all
HCN

w-limit points it follows that any solution of (26)-(31) converges to (C, Y™, X*) as ¢ — oo. For this
system the unique positive steady state is globally asymptotically stable.

1.7 Kinetic proofreading with incoherent feed forward loop

%
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For this model there is a unique steady state in each stoichiometric compatibility class which is globally
asymptotically stable. The proof of this is based on the fact that we have already proved global asymptotic
stability for the kinetic proofreading model and otherwise the proof is just as in the previous example.



1.8 Analytical observations on results:

Occupancy model :

Response as a Monotonic Function of Dissociation Time:

In the context of the occupancy model, we analyze the response by examining T cell activation as a
function of receptor-ligand complex concentration, C', which is derived from the equilibrium concentra-
tions of ligand and receptor. It satisfies the equation:

_ LT+RT+KD—\/(LT+RT+KD)2—4LTRT

C 32
5 (32)
and is this model C'is a measure of the T cell activation.
C is a solution to a quadratic equation of the form:
C?—aC+b=0 (33)

where

a=Lr+Rr+Kp>0, b=LrRr >0

Only the negative square root gives a relevant solution, since C < Ly and C' < R and therefore
C <a.
The above equation can be reformulated as follows:
—va?—4b
C= % (34)

Analysis of the solution
Differentiating the expression for C' with respect to K p gives

dC  9C  da
dKD_Ba dKD

C is a decreasing function of a since

oC 1 a
A _
da 2< a2—4b)<0

and combining this with

da
=1>0
ik,
we have:
dC
Flen K <0

Relationship with Dissociation Time
The dissociation constant K p is related to the dissociation rate constant kg and the association rate
constant kop:

Kot
Kp =
Kon
Additionally, the dissociation time T is inversely proportional to the dissociation rate constant:
1
T=—
Kott

As the dissociation time 7 increases, the dissociation rate constant kg decreases, resulting in a
decrease in K'p. Given that C' is a decreasing function of K p, it follows that C' becomes an increasing
function of the dissociation time 7.
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This relationship demonstrates that as ligand-receptor binding stabilizes, resulting in a longer dis-
sociation time, T cell activation increases, highlighting the importance of bond longevity in cellular
activation responses.

Response as monotonic function of ligand concentration

To determine how C' depends on L7, we differentiate C' with respect to Lr:

AC _9C da_ OC  db.
dLy Oda dLp 0b dLp

We have -9% = 1 and % = Rr. Differentiating C' with respect to b gives:

dLt
oc 1 2
o 2 a? —4b
Sign of %
dc' .

Analyzing the derivative 7=
dC 1 R
=3 (1 oo ) + T >0
dLy 2 a? — 4b a? —4b

Thus, the equilibrium concentration of the pMHC-TCR complex (C) is an increasing function of
the ligand concentration (L7). As the ligand concentration increases, the number of available binding
sites increases, which directly enhances the formation of the complex (C'). Therefore, in the occupancy
model, the response function is positively dependent on the ligand concentration.

Response of KPR model as increasing function of dissociation time

In the kinetic proofreading model the response function is given by:

Response = a¥ Crp

where

and

_ Lr+Rr+Kp—+/(Lr+Rr+Kp)? — ALy Ry
B 2

Similar to the argument in occupancy model it is clear that for this model Cr satisfies the same
equation as C does in the occupancy model. Thus it is a decreasing function of k.g, which follows that
it is an is an increasing function of the dissociation time (7).

Response of KPR model as increasing function of ligand concentration

That the response with respect to ligand concentration is monotone in the kinetic proofreading model
can be attributed again to the fact that in this case Cr is increasing (similar to the argument in the case
of the occupancy model ) and « is constant. Thus R is increasing.

Cr

11



2 Mathematical Formulation and analysis

2.1 Occupancy Model

In this model a pMHC ligand (L) can reversibly bind a T cell receptor (R) to form a pMHC-TCR complex
©).

dC

where
kon = k and kofgf = v
and at equilibrium % = 0 and hence
LR =KpC (36)

where Kp = ¢

Also the total amount of ligand L7 and total amount of receptor TCR R are conserved quantities
Lr=L+C Rpr=L+C (37)

By inserting these in equation in (36) we get

_ LT+RT+KD—\/(LT+RT+KD)2—4LTRT
B 2

C

T cell activation = C'

Calculating the FE ..
The Epax can then be found by finding C' in the limit of L7 tending to infinity. In this limit, we have

. KD . RT
LTlgloo LT LTILnoo LT

Fpax = lim C

Lp—o00
~ him Lr+Rr+Kp—+/(Lt + Ry + Kp)? —4Lr Ry
o LT%OO 2
, 2Lr Ry
= lim
Lr—=oo Ly + Ry + Kp + /(Lt + Ry + Kp)? — 4L Ry
) 2Rt
- Lth R K R Kp\2 4R
o
T By Koy Jow Bn g Koy gl
Hence
Emax = RT
Calculation for £ (5

At half the maximal response, we have L = ECx.
Also, T cell activation =

Emax/2 = RT/2
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which implies

C = Ry/2

Using equation (36) we have

(Lr — C)(Rr — C) = KpC
hence
(Lt — Rp/2)(Rr — Rr/2) = KpRyp/2
Rearranging we get

Lr=Kp+ Rp/2

Hence

EC50:KD—|—RT/2

2.2 Kinetic Proofreading

In this model, a pMHC ligand (L) can reversibly associate with a TCR receptor (R) to form a pMHC-TCR
complex, denoted as Cjy. Once formed, this complex undergoes a series of biochemical modifications,
progressively transitioning towards a signaling-competent state, labeled as C'y. If the pMHC dissociates
from the TCR at any intermediate stage, all modifications are rapidly undone, causing the TCR to revert
to its original, unmodified state. The level of T cell activation is directly linked to the quantity of TCRs
in the fully modified C'y state.

N
dL
= —RLR—UZ;Ci (38)
N
dR
o= ,@LvaZ;Ci (39)
% =kLR — (¢ + v)Cy (40)
dC; .
7 =¢Ci1— (¢ +v)C;; 1<i<N-1 (41)
dcC
— = 0Cn-1 — O 42)

We have the total amount of ligand L7 and total amount of receptor TCR R as conserved quantities:
Lr=L+Cr Rr=L+Cr

where Cr = Ef\; 0 Ci

Using values of L7 and Rr in equation (38) we get

_ LT+RT+KD—\/(LT+RT+KD)2—4LTRT
B 2

v

Cr where Kp =
K

13



Let

Hence, at equilibrium

I
2
_|_
2

Hence

T cell activation = Cp

= aNCT

Calculation for F,, .«

Frax = lim Cp

Lr—o0
~ lim Lr+ R+ Kp — \/(LT+RT+KD)2—4LTRT
- LT—>OO 2
lim 2Lt Rr
T Lyoo L+ Rr+Kp++/(Lt + Ry + Kp)? — 4Lr Ry
) 2Rt
= lim
LTHOO]__}_}‘E KD+\/1+L ) 4RT
— Ry

So Emax = CLNRT

Calculation for £ (5
At half the maximal response, T cell activation =

Emax/2 = aN Ry /2
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which implies

CLNCT = CLNRT/2

Cr = Ry/2

Since, Lt = L+ Cr Ry = L + C7 Using this equation in equation (38)

N
KJ(LT — CT)(RT — CT) — ’UZCz =0
=0
(LT — CT)(RT — CT) = KDCT
Lr=Kp+ Rr/2

2.3 Kinetic proofreading with limited signaling

It is an extension of the kinetic proofreading model that proposes that when a TCR has reached signalling
competent state C, the bound TCR transits to a non signalling state Cy4; with rate &.

dL N+1
- = —kLR —v Z C; (43)
N+1
dR
= —KLR—v Z C; (44)
dc,
— = FLR — (¢ +0)Cy (45)
O o0y~ (0+ )0 1<i<N -1 (46)
dC
dtN = ¢Cn_1— (v+€)Cy (47)
dC
C]Z\;+1 = fCN — UCN_H (48)

Here Cr = ZZ]\L ng C;, and T cell activation is given by C.

N—-1
Cr = ZC +CNn + Cni1

ZC() + Cn + %CN

(1—a")

MZ

1=0

A
—_

(1 a) (l—a)CT+ § Cn

1 (vt
CT:N<UU§>CN.

Hence

15



and

CN—< Y >GNCT

v+€
Calculating the F .,
Similar to the case of kinetic proofreading model, it can be shown that when L7 — oo Cr — Rp
Hence
E = Y a“R
max — v+ é. T
Calculating the F£C5

At half the maximal response, T cell activation

Emaxi v G,N&
2 \v+¢

which implies

v N _ v NRT

<v+£>a Cr= <v+£>a 2
Hence R
Or="5

Since, Ly = L+ Cr Ry = R+ Cr Using this equation in (43)

N+1

H(LT — CT)(RT — CT) — v Z Cz =0
i=0

(Lt — Cr)(Rr — Cr) = KpCr

Ly =Kp+ RT/2

2.4 Kinetic proofreading with sustained signaling

It is another modification of the kinetic proofreading model, according to this model, T-cell receptors
(TCRs) in the signaling-competent state C'y, persist in signaling for a certain duration (T) after the
unbinding of pMHC. Subsequently, they return to the basal state (T) with a rate of A.

dL N
= —HLR+v ; C; — kLR (49)
N—-1
dR .
CM:—KLR+U2£C¢+QR (50)
dj; =vCy — kLR* — QR* (51
dd%o — KLR— (v + $)Co (52)
dc; .
7 =¢Ci1 — (0 +v)C;; 1<i<N -1 (53)
Clg’TN = ¢Cn_1 —vCpN + kLR* 54)

The conservation equations are:

Lr=L+Cr Rr=R+Cr+R*
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T cell activation = Cy + R*

From equation (51) at the steady state

.«  vCn
- kL+Q
Also substituting (55) into (50) at steady state we get

N-1
—@+¢Xb+v§:Q+QRﬂ:O
i=0
= vC
_ i QO N
(v—l—d))Co—i-viZ;aCo—l— Trq ="
1—a™ vCy
_ 0 -
(U+¢)Co+vl_a00+ L+ Q) 0
upon rearrangement and solving we get
Q1 —a)
= C
0 a™(kL + Q) N
Also,
N
Cr=> C
i=0
N-1
= C; +Cyn
=0
N-1
= a'Cy+ Cy
1=
1—a"
= 11— Co+ Cn
1—a™\ Q1 -—a)
< 1—a> a"(kL 4 Q) N ON
Solving this we get:
kL+Q
N e T
Hence from equation (55) and (56), T cell activation is given by
T cell activation
=Cy+R*
o kL +Q n vCy
N Q—&—a”mLa T+ L+Q
kL+v+QY\ ,
B ( Q+a"kL >a Cr

Calculating the F .«
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Similar to the case of kinetic proofreading model, it can be shown that when L — co C'r — Rp
where C7 is given by:

- LT-l-RT-l-KD—\/(LT+RT+KD)2—4LTRT

Cr 5

B — lim (*’»L+U+Q> " Cor

Lp—o00 Q + a"kL
. H(LT—CT)—I—U—I—Q
=1 e
LTILnoo ( Q+ a”/{(LT — CT) @t
1-— L L Q/L
— 'Ry lim (L= Cr/Lr)+v/lr+ Q) Ly
Lr—co Q/LT + a”/i(l — CT/LT)
Hence Eax = R
Calculating the F£C5
At half the maximal response
T cell activation
Emax RT

2 2
which implies

Rr K(LT—CT)—{—U—FQ n
ar Cr
2 Q+a"k(Lr — Cr)

Rearranging and solving for L1 we get:

. a”C’T(v +Q - IQRT/Q) — QRT/Q
L= < a"k(Rr/2 — Cp) )

2.5 Kinetic proofreading with negative feedback

Kinetic Proofreading with Negative Feedback extends the KPR scheme by introducing the notion that the
rates of complex formation in the activation chain can be modulated at intermediate stages and/or within
the final signaling state C'yy. This modulation is achieved through a single negative feedback mechanism
mediated by Src homology 2 domain phosphatase-1 (SHP-1).

dL N
- = —stR+vZZ;C’i (57)
N
dR
i _HLR—H];Q (58)
dC,
dTO = kLR + (b+~S5)C1 — (¢4 v)Co (59
dC; .
7 =¢Ci1+ (b+7S)Cit1 —(p+v+b+~45)C;; 1<i<N-1 (60)
dcC
d
?f :aCl(ST—S) —ﬁS (62)
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The conservation equations are:
Lr=L+Cr Rr=R+Cr

Here Cr = Zfi ng C;, and T cell activation is given by C.

T cell activation = C

Now C'y can be expressed in form of C'r as in eq (4.17) in [1],

Cn = 7 _l(r_r/}g}ﬂﬂ@ (63)
where
p = OFbFYS vt V(9 +b 475 +0)7 — d6(b +1S)
2(b+~S)
Therefore, the cell activation is given by
T cell activation = 1 _1 (rf /r/+ T)}L\, T rv Cr (64)
(65)

Calculation for .y
Similar to the case of kinetic proofreading model, it can be shown that when L — co C'r — Rp
where Cr is given by:

 Lr+Rr+Kp—+/(Lr+Rr+Kp)? — ALy Ry

Cr 5
: L—r_/ry N
max — 1 _ C
Bunax = im (1 - (r_/r+)N+1> e
1—r_/ry N
= R
<1 - <r_/r+>N+1> =
Calculation for £ C5

At half the maximal response

T cell activation
Enax 1—r_/ry rV Ry
2 \1—(r_/rp)N+1 2

( 1—r_/ry >r§cT:< 1—r_/ry >TNRT

L= (r_fr)NH T—(r/r)"7) 2

which implies

R
Cr="5
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Since, Lt = L+ Cr Ry = L + C7, using this equation in equation (57)

N
H(LT — CT)(RT — CT) — UZCZ‘ =0
1=0
(LT - CT)(RT - CT) = KDCT
Lr=Kp+ Rp/2

2.6 Kinetic proofreading with stabilizing activation chain

In this model a pMHC ligand (L) binds to a TCR receptor (R) to form a pMHC-TCR complex Cy, which
undergoes series of chemical modifications to reach signalling competent state Cy.

This stabilization/destabilization of the C; complexes and variation in the time taken for activation,
are articulated by variations in the values of corresponding rate constants v(:); (¢ = 0,1,...,N) and
o(i); (1 = 0,1,..., N — 1) as the proofreading progresses.

N
% = —KLR=) ()G (66)

=0

N
% = —KLR— Z v(i)C; (67)

i=0

d
W LR~ (60) + v(0)C .
dcgi =¢(i—1)Ci—1 — (¢p(i) +v(i))C;; 1<i< N -1 (69)
d%v = ¢(N —1)Cn_1 —v(N)Cy (70)
v(i) = mmr >1 ¢(i) =erir>1

where v(0) = 1.5 and ¢(0) = 1.3. In this model for simplicity v(0) is denoted as v(= 1/7) which

is dissociation time, and ¢(0) denotes the propagation rate for first step Cy — C;. Now for next steps
these rates are given by

(1+41)

7(1+Ti)v;r>1 (i) = ¢r'r > 1

v(i) =

The conservation equations are:

N
Lr=L+Cpr Rpr=R+Cr CT:ZC’i
=0

Here we have from [2]

where
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i .
¢(i —1)
vi=a1 X ... xa; = || a; = ————
’ | e I E=T0
5 1¢(N—1) (N —1)
= —7’}/ —
1o v(N)
and where Cr is the number of bound receptors or ligands C'7 = Zf\i o C; which is given by
3 2Ly Ry L 1u0)+6(0)
T — 5 = -
Lr+Rr+e+ (Lt + Rr +€)2 —4ALr Ry 7 K
T cell activation = Cly
=0Cr
Calculating the F .,

Similar to the case of kinetic proofreading model, it can be shown that when Ly — oo C1 — Rp
Hence

Emax = 5RT
Calculating the £C5
At half the maximal response
T cell activation P

‘;‘a" =6Rr/2

which implies
0Cr =46Rr/2 Cr = Rp/2

Since
) SLrRs S PORT0)
LT+RT+€+\/(LT+RT+€)2—4LTRT7 0 K

Cr

Substituting C7 = Ry /2 in above equation and solving for Ly we get
Ly =2R7p + 4e
Hence potency

Potency = 2Rp + 4e

2.7 Kinetic proofreading with incoherent feed forward loop

Although the actual model [3] considered the KPR with limited signalling combined with incoherent
feed forward loop. We first considered the KPR with incoherent feed forward loop only for the plotting.

N
dL
dt——/iLR—v;Ci (71)
N
dR
—- = —HLR - uzgci (72)
d% = kLR — (¢ +v)Co (73)
dc; .
7 =¢Ci—1 — (¢ +v)Ci; 1<i<N-—1 (74)

21



dCn

TR ¢Cn—1 —vCN (75)
dy
T =a(m—Y)—-bY +0Cn(m—-Y) (76)
dX
= =l = X) = dX +6Y (I - X) = uCy X a7

where Cr = Zfi o Ci, and T cell activation is given by X.

Cy =a"Cr
B (1+0Cn/a)m ¥ - (1+0Y/c)l
1+b/a+0Cy/a ~ 1+4d/c+dY/c+uCn/d
Calculating the F .,
Similar to the case of kinetic proofreading model, it can be shown that when L — co C'r — Rp
Hence
14+ 6Y/c)l
Emax = lim (1+0¥/c)
Lr—oo \1+d/c+0Y/c+ pu2Cr/c
B (1+8Y/e)l
~ \1+d/c+8Y/c+ pa™Rr/c
Calculating the EC5

At half the maximal response

T cell activation
Emax o (1 + (5Y/C)l
2 \2(1+d/c+6Y/c+ uanRy/c)

which implies

( (1+6Y/c)l > B < (14+0Y/)l )
1+d/+0Y/c+ panCr/c)  \2(1+d/c+ Y /c+ pa"Ry/c)

20+d/c+0Y/c+ pa"Rr/c) =1+d/c+ 6Y/c+ pa"Cr

Rearranging and solving for Cr

1+d oY
Cr = 2Ry + <+/C+/C>

pa’

Since, LT = L+ Cr Ry = R+ Cr Using this equation in (71)

N+1

H(LT — CT)(RT — CT) — v Z Cz =0
=0

(Lt — Cr)(Rr — Cr) = KpCr

Using value of Cr in above equation and solving. we get:

_ 2R%+43RyU —U? —2KpRr —UKp

L
T Rr+ U
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where
U— <1 + d/c+5Y/c>

pa’

2.8 Kinetic proofreading with limited signaling and incoherent feed forward loop

This model is an extension of KPR with incoherent feed forward loop, it has been assumed that signalling
is limited and after after reaching the signalling competent state the bound TCR transits to non-signalling
transit state.

dL N+1
= —HLR—v ZO C; (78)
N+1
dR
—r = —HLR—v Z; C; (79)
dC
dTO = kLR — (¢ + v)Co (80)
dC; .
7 =¢Ci1—(p+v)C;; 1<i<N-1 (81)
dC
= ¢Cy-1 — (v + 0y (82)
dC
— o =€0N — 10N (83)
dYy
E:a(m—Y)—bY—i—GC’N(m—Y) (84)
dX
E:c(l—X)—dX—i—éY(l—X)—uCNX (85)
where Cr = Zz’]io C;, and T cell activation is given by X.
Here
v n
v = (v - 5) e
v — (I1+0Cn/c)m B (14 6Y/c)l
14d/c+0Cn/c ~ 1+d/c+dY/c+ uCy/c
Calculating the F .«
Similar to the case of kinetic proofreading model, it can be shown that when L — co Cr — Ry
Hence
Buax = lim (1+0Y/c)l
Lr—oo \1+d/c+0Y/c+vuanCr/(v+§)c
B < (1+0Y/e)l )
 \1+d/c+8Y/c+vuarRy/(v+ &)
Calculating the F£C5

At half the maximal response
T cell activation

Ermax (1+0Y/c)l
2 (2(1 +d/c+d0Y/c+vua"Rr /(v + g)c)>

23



which implies

(1+0Y/c)l B ( (1+0Y/c)l >
1+d/c+8Y/c+ovuanCr/(v+&)c  \2(1+d/c+dY/c+vua™Rr/(v+ &)c)

20+d/c+ Y /c+vua Ry /(v+n)c) =14+d/c+0Y/c+ vua"Cr/(v+ §)c

Rearranging and solving for Cp

Op = 2Ry + ((c—l—d+5Y)(v+§)>

poa™

Since, L = L+ Cr Ry = R+ C7, using this equation in (78)

N

K(LT - CT)(RT - CT) - UZCZ' =0
1=0

(LT — CT)(RT - CT) = KDCT

Using value of C'r in above equation and solving. we get:
_ 2R% 4+ 3RyW — W2 —2KpRp — WKp
N Rr+W

W ((C+d+m(v+§)>

poo™

Ly

where

2.9 Kinetic proofreading with Limited and Sustained Signaling

It as a combination of two models KPR with limited signaling and KPR with sustained signaling.

dL N+1
— = —KLR - kLR* — v Z; C; (86)
dR N-1
i —kLR+v ZZ; Ci +vCny1 + QR" 87)
% = kLR — (¢ +v)Cy (88)
dC; .
7 =¢Ci1 — (0 +v)C;; 1<i<N -1 (39)
dC
N 401 — (v + )C + wLE 90)
dC
%ZSCN—UCN_H (91)
t
df; — wOy — KLR* — QR 92)

The conservation equations are:
Lr=L+Cr Rr=R+Cr+R*

where Cp = Zf\sgl C;
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T cell activation = Cy + R*

From (92) at the steady state

.«  vCn
- kL+Q
Now, using it and (88) at a steady state; for (87) at a steady state we have

N-1

UCN .
(¢+UC()+UZ§%C+UCN+1+Q —|—Q_0
—(¢+v)Co 4+ vCr — vCy + O Ny
0 T N kL+Q
v v v QCN
Cy=— Cpr————C _
O R O R (RO Py A
. QCnN ) _ 10}
Co=1-a)Cr—(1—a)Cn+(1 a)mL+Q’ where a = G+0)
As C is given by:
N+1
Cr=> C
i=0
N-1
::EZ(E—%CW~%CW+1
=0
N-1 ¢
= ZGZC()—FCN—F;CN
1-—
= Co—I-CN-i-goN
1- v
(1 QCnN &
_<1 )(1 a)Cr — (1 —a)Cn + (1 a>mL+Q>+CN+vCN
1 (a"kL + Qu+ERL +£Q)
am v(kL + Q)
Which implies C'y is given by:
B v(kL + Q) n
On = (a"wL + Qv+ nL + €Q) " Cr
T cell activation
=Cy+ R*
’UCN
SN IV
kL+Q+wv
kL +Q On
B v(kL + Q+ ) oC
~ (a"kL + Qu + €KL + £9) T
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Calculating the F,, .,
Similar to the case of kinetic proofreading model, it can be shown that when L — co Cr — Ry
where Cr is given by:

_ LT+RT+KD—\/(LT+RT—|—KD)2—4LTRT

Cr 5
L v(kL + Q+v) "
Bunax = lim ((a”mL Qv+ ErL + 59)) a"Cr
. v(k(Lr — Cr) +Q +0) )
=1 e
oo ((a”n(LT —Cr) + Qutén(Lr —Cr)+en) ) T
— "R lim < ’U(F.Z(l—CT/LT)—i-Q/LT—I—U/LT) >
T Lr—oo \ (a"k(1 — Cr/L1) + Qu/L1 + k(1 — Cr/L1) + €Q/L7)
v n
an+§a RT

Calculating the F/C5y At half the maximal response
T cell activation "
Emax _ an—+& anRT
2 2

which implies

aired"Rr _ < v(k(Lr — Cr) +Q +v) ) aC
5 (@w(Ly — Cr) + Qv+ én(Ly — Cp) +€) ) 1

Rearranging and solving for Lt we get:

Ry (a"kCp — Qu + EkCr — EQ) +2(a™ + &) (2 +v — kC7r)
Rra™k + ExkRp — 2((1” + f)/iCT

Ly =
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