Supplementary Material for

Substitute or Supplement? The Role of Multimodal Digital Biomarkers in Mobile Cognitive Impairment Assessment Tools

Whani Kim^{1†}, Jin Sung Kim^{2†}, So Yoon Park¹, Hyun Jeong Ko¹, Byung Hun Yun^{1,3}, Yu Young Kim^{1,3}, Dong Han Kim¹, Ui Jun Kwon¹, Sang Kwon Lim¹, Bo Ri Kim⁴, Jee Hang Lee^{2,5*}, Geon Ha Kim^{6,*}, Jin Woo Kim^{1,3}

*Co-Correspondence:

Geon Ha Kim (geonha@ewha.ac.kr)

Jee Hang Lee (jeehang@smu.ac.kr)

List of contents

- I. Evaluation Metrics
- II. SHAP value

Supplementary Figures

Figure S1. Result

Figure S2. Confusion Matrices (2x2x2) for Various DBM Combinations

Supplementary Table

Table S1. Applications for Early Screening of Cognitive Impairment (CI): Types of Digital Biomarkers and Sensor Technologies

Table S2. Tasks in Digital Assessment of Cognitive Impairment

Table S3. Comparison of performance metrics (AUC, Accuracy, Sensitivity, Specificity) across ten candidate ML classifiers.

Table S4. Results of Ablation Study – Changes in Classification Performance When Recursively Eliminating Specific DBMs

Table S5. Results of Ablation Study – Changes in Classification Performance When Recursively Eliminating Specific DBMs

Table S6. Three-Way ANOVA Results on AUC scores Variation by Task Combination

Table S7. Optimized Feature Sets Selected for Each Task Combination

I. Evaluation Metrics

Two independent performance metrics, (i) Receiver Operating Characteristic Area Under Curve, or ROC-AUC (Equation 5), and (ii) Accuracy (Equation 6), were used in the study. The ROC curve is a graph that graphically shows the relationship between the ratio of the True Positive Rate, TPR (Equation 2), and the ratio of the False Positive Rate, FPR (Equation 3) to the incorrectly identified case for HC. The ROC-AUC value is a value for the area below the ROC Curve, and the closer to 1, the better the model. We also used TPR, which is well known for its sensitivity, as well as True Negative Rate, TNR (Equation 4) which is well known for its specificity, as a performance metric. Additionally, to prevent data leakage, we filled the missing values in both the training and test data based on the mean values from the training data. We also considered applying SMOTE and Adasyn techniques, which are popular oversampling techniques as oversampling techniques, as the data is balanced (Chawla et al., 2022; He et al., 2008). However, it was not well applied in our data and was not adopted (Supplementary Table 1). This was likely due to the high dimensionality of our data, which made these techniques less effective (Jacqueline et al., 2021; Wensheng et al., 2022; Tharinda et al., 2023).

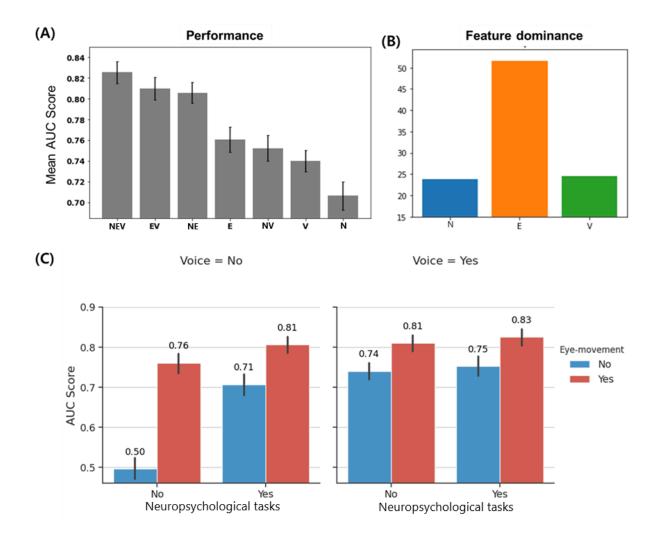
$$TPR = \frac{TP}{TP + FN} \tag{2}$$

$$FPR = \frac{FP}{FP + TN} \tag{3}$$

$$TNR = \frac{TN}{FP + TN} \tag{4}$$

$$ROC-AUC = \int_{x=0}^{1} TPR(FPR^{-1}(x)) dx$$
 (5)

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \tag{6}$$


where TP, FN, TN, and FP stand for true positives, false negatives, true negatives, and false positives, respectively.

II. SHAP value

The SHAP value for a feature *j* in a specific prediction is formulated as shown in Equation 1:

$$\phi_{j} = \sum_{S \subseteq F \setminus \{j\}} \frac{|S|!(|F| - |S| - 1)!}{|F|!} \left[f_{S}(X_{S \cup \{j\}}) - f_{S}(X_{S}) \right]$$
 (1)

where ϕ_j is the SHAP value for feature j, S is a subset of all the features F excluding feature j, |S| and |F| are the cardinality subsets of sets S and F, f_s is the prediction function constrained to features in set S, and $X_{S\cup\{j\}}$ and X_s are feature sets with and without including feature j, respectively. The SHAP value represents the average marginal contribution of feature j across all possible feature combinations in the prediction model, which directly indicates the relative importance of this feature.

Figure S1. Result. **(A)** Mean AUC score for models that were trained with multiple combinations of DBMs. The X-axis shows the machine learning model with various DBM combinations, while the Y-axis indicates the Mean AUC score of each model. **(B)** Feature dominance of individual DBMs. The X-axis displays the individual DBMs, and the Y-axis shows the feature dominance that ranges from 0 to 100. **(C)** Results from the factorial design experiment among three DBMs. The X-axis indicates the presence of a neuropsychological task, and the Y-axis shows the mean AUC score. N refers to a neuropsychological task, E refers to eye movement, and V refers to voice assessment.

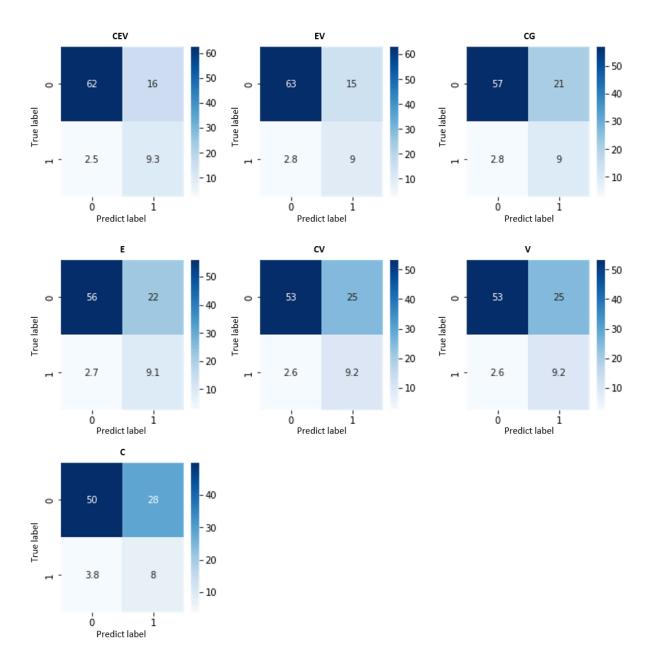


Figure S2. Confusion Matrices (2x2x2) for Various DBM Combinations

Table S1. Applications for Early Screening of Cognitive Impairment (CI): Types of Digital Biomarkers and Sensor Technologies

Digital Tool	Sensor	DBMs	Reference		
Digital	Camera	Eye-movements			
neuro signature	Touchscreen	Motor(Speed/Accuracy)	— Meier et al., 2021		
(DNS)	Accel/gyro	Gait	Meier et al., 2020		
	Device use	Augmented Reality(AR)	_		
Linkt	Microphone	Speech/Voice	Staffaroni et al.,		
Health	Accel/gyro	Gait			
Rey auditory	Microphone	Speech/Voice			
verbal learning test (RAVLT)	Touchscreen	Motor(Speed/Accuracy)	Banks et al., 2024		
Cogstate brief battery (CBB)	Touchscreen	Motor(Speed/Accuracy)	White et al., 2023		
TalkBank CHAT	Microphone	Speech/Voice	Fraser et al., 2016		
Wearable device	Microphone	Speech/Voice	Cay et al., 2024		

	Camera	Eye-movements	
Virtual			— I <i>t</i> '
kiosk	Hand controller	Hand-movements	— Kim et al., 2023

 Table S2. Tasks in Digital Assessment of Cognitive Impairment

Cognitive	Stroop test (Executive function; Scarpina et al., 2017)						
Task	Symbol association (Associative recall ; Troyer et al., 2008) Self-ordered pointing task (Visual working memory ; Geva et al., 2016)						
	Arithmetic (Working memory; Kasai et al., 2020)						
Voice	Sentence memorize and speak (Logical memory ; Wechsler Memory Scale; Sullivan et al., 2018)						
	Picture Description (Language ; Rentoumi et al., 2014; Ahmed et al., 2013; Nicholas et al., 1985; Tomoeda et al., 1996)						
Eye	Smooth pursuit (basic oculomotor)						
tracking	Saccade (Attention and inhibitory control; Crawford et al., 2005)						
	Anti-Saccade (Inhibitory dysfunction, working memory)						

Table S3. Comparison of performance metrics (AUC, Accuracy, Sensitivity, Specificity) across ten candidate ML classifiers.

	AUC	Accuracy	Sensitivity	Specificity
CatBoost	0.65	0.67	0.67	0.67
LightGBM	0.61	0.61	0.70	0.60
XGBoost	0.59	0.64	0.65	0.64
SVM_RBF	0.59	0.63	0.64	0.62
RandomForest	0.59	0.65	0.61	0.65
GradientBoosting	0.58	0.57	0.71	0.55
NaiveBayes	0.56	0.67	0.55	0.69
Bagging	0.55	0.67	0.48	0.70
LogisticRegression	0.52	0.65	0.53	0.67
SVM_Linear	0.48	0.67	0.48	0.69

We compared the performance of the ten candidate machine-learning algorithms that were described in the Method section using repeated stratified K-Fold cross-validation. As we explained in Methods section 2.4, the input consisted of all 725 features, and the output was the prediction on MCI. Table S3 shows the average AUC of each algorithm. *CatBoost* achieved the highest mean AUC across 30 simulation runs, which outperformed all other models (see Supplement Table 3 for more details). Based on this result, we selected *CatBoost* as the classifier for the final layer (which is denoted as "classifier" in Figure 2B).

Table S4: Results of Ablation Study – Changes in Classification Performance When Recursively Eliminating Specific DBMs

We fixed the total number of features at 28, and recursively eliminated the set of features in each DBM. The baseline for performance comparison was the model trained with the NEV combination (Neuropsychological tasks, Eye movements, Voice). For the elimination process, we removed seven features when eliminating the Voice DBM, seven features when eliminating the Neuropsychological tasks, and 14 features when eliminating the Eye movements DBM.

	Nui	mber of Fea		Performance								
Task	Neurop sycholo gical tasks	Eye- movem ent	Voi ce	Tot al	AUC	ΔAU C	Accura cy	ΔAccur acy	Sensiti vity	ΔSensi tivity	Specifi city	ΔSpecific ity
NEV (Bas e)	7	14	7	28	0.83	0%	0.81	0%	0.87	0%	0.72	0%
EV	-	14	7	21	0.81	-2%	0.82	+1%	0.71	-16%	0.85	+13%
NE	7	14	-	21	0.77	-6%	0.79	-2%	0.68	-19%	0.81	+9%
NV	7	-	7	14	0.73	-10%	0.78	-3%	0.69	-18%	0.79	+7%
٧	-	-	7	7	0.73	-10%	0.74	-7%	0.78	-9%	0.73	+1%
Е	-	14	-	14	0.71	-12%	0.7	-11%	0.75	-12%	0.7	-2%
N	7	-	-	7	0.63	-20%	0.67	-14%	0.65	-22%	0.68	-4%

Table S5: Results of Ablation Study – Changes in Classification Performance When Recursively Eliminating Specific DBMs

We in this case performed Recursive Feature Elimination with Cross-Validation (RFECV) when building machine learning (ML) models using various combinations of DBMs. We trained each ML model with a specific combination of DBMs where we conducted an optimal feature selection process. For example, to train the EV model, we first excluded all features of Neuropsychological tasks (N) while including all features of Eye movements (E) and Voice (V). We then performed optimal feature selection for this model with the E and V combination. This approach resulted in different numbers of selected features for each combination of DBMs.

	Nur		Performance									
Task	N	E	V	Tot al	AUC	ΔAU C	Accura cy	ΔAccur acy	Sensiti vity	ΔSensi tivity	Specifi city	ΔSpecific ity
NEV (Bas e)	7	14	7	28	0.83	0%	0.81	0%	0.87	0%	0.72	0%
EV	-	15	8	23	0.81	-2%	0.83	+2%	8.0	-7%	0.75	+3%
NE	6	18	-	24	0.81	-2%	0.77	-4%	0.86	-1%	0.68	-4%
Е	-	30	-	30	0.76	-7%	0.83	+2%	0.75	-12%	0.76	+4%
NV	12	-	35	47	0.75	-8%	0.8	-1%	0.74	-13%	0.73	+1%
V	-	-	40	40	0.74	-9%	0.82	+1%	0.73	-14%	0.75	+3%
N	13	-	-	13	0.71	-12%	0.75	-6%	0.78	-9%	0.66	-6%

Table S6. Three-Way ANOVA Results on AUC scores Variation by Task Combination

Source	sum_sq	df	F	PR(>F)
N	0.3019	1	72.31	2.E-15
E	0.9648	1	231.09	1.E-36
V	0.4829	1	115.67	4.E-22
N * E	0.0988	1	23.66	2.E-0.6
N * V	0.1953	1	46.78	7.E-11
E * V	0.1835	1	43.95	2.E-10
N * E * V	0.107	1	25.62	8.E-0.7
Residual		232		

 Table S7. Optimized Feature Sets Selected for Each Task Combination

	NEV	EV	NE	NV	V	E	N
	Reactio	PD1.P	Reactio	Reactio	PD1.P	SP1.D	Reactio
1	n_time	ause:to	n_time	n_time	ause:ra	uration	n_time
	A4	tal	A4	A4	te	1	A4
	Reactio	PD1.P	Reactio	Reactio	PD1.CI	SP1.Ini	Reactio
2	n_time	ause:ra	n_time	n_time	U:rate	tAccel:	n_time
	A5	te	A5	A5		min	A5
	Reactio	PD1.CI	Reactio	Reactio	PD1.K	SP2.Ini	Reactio
3	n_time	U:rate	n_time	n_time	eyword	tAccel1	n_time
	8A		cal2	A8	:rate		A8
	Reactio	PD1.K	Reactio	Correct	PD2.P	SP2.Ini	Reactio
4	n_time	eyword	n_time	_count.	ause:ra	tAccel:	n_time
	_cal2	:rate	_cal4	2	te	min	_cal2
	Reactio	PD2.P	Correct	Reactio	PD3.P	SP3.G	Reactio
5	n_time	ause:ra	_count.	n_time	ause:ra	ain1	n_time
	_cal4	te	3	cal2	te		cal4
-	Total_ti	PD3.P	Total ti	Reactio	WMS1.	SP3.Ve	Correct
6	me.7	ause:st	me.7	n_time	Phonati	locity1	_count.
		d		cal4	on:min		3
	PD1.P	PD3.P	SP1.D		WMS3.	Saccad	_ , , ,,
7	ause:to	ause:ra	uration	Total_ti	CIU:rat	e1.Velo	Total_ti
-	tal	te	1	me.7	е	city:me	me.7
						an	
	PD1.P	WMS1.	SP1.Ini	PD1.P		Saccad	
8	ause:ra	Pause:	tAccel:	ause:to	_	e1.Velo	_
	te	rate	min	tal		city:me	
	DD4 K			DD4 D		dian	
0	PD1.K	WMS1.	SP3.Ve	PD1.P		Saccad	
9	eyword	CIU:rat	locity1	ause:ra	-	e1.Velo	-
	:count	e		te		city:std	
40	PD1.K	WMS2.	SP3.Ini	PD1.K		Saccad	
10	eyword	CIU:rat	tAccel2	eyword	-	e4.Velo	-
	:rate	<u>e</u>	Sagard	:rate		city:min	
	PD2.P	SP1.Ini	Saccad e1.Velo	PD2.P		Saccad	
11	ause:ra	tAccel:	city:me	ause:ra	-	e5.Velo	-
	te	min	an	te		city2	
			Saccad				
	PD3.P	SP2.Ini	e1.Velo	PD3.P		Saccad	
12	ause:st	tAccel1	city:me	ause:ra	-	e5.Velo	-
	d	U (00011	dian	te		city:std	
						Saccad	
	PD3.P	SP3.Ve	Saccad	PDX.P		e5.Velo	
13	ause:ra	locity1	e1.Velo	honatio	-	city:ma	-
	te		city:std	n:std		X	
	\A# 40 1			14/2 40 4		AntiSa	
4.4	WMS1.	Saccad	Saccad	WMS1.		ccade5	
14	Phonati	e1.Velo	e1.Velo	Phonati	-	.Velocit	-
	on:min	city1	city:min	on:min		y:max	
						<i>y</i>	

15	SP1.D uration 1	Saccad e1.Velo city:me an	Saccad e4.Velo city:min	-	-	-	-
16	SP1.Ini tAccel: min	Saccad e1.Velo city:me dian	Saccad e5.Velo city2	-	-	-	-
17	SP3.G ain1	Saccad e1.Velo city:std	Saccad e5.Velo city:std	-	-	-	-
18	SP3.Ve locity1	Saccad e4.Velo city:min	Saccad e5.Velo city:ma x	-	-	-	-
19	Saccad e1.Velo city1	Saccad e5.Velo city2	AntiSa ccade1 .Durati on1	-	-	-	-
20	Saccad e1.Velo city:me an	Saccad e5.Velo city:std	AntiSa ccade2 .Velocit y:std	-	-	-	-
21	Saccad e1.Velo city:me dian	AntiSa ccade1 .Durati on1	AntiSa ccade5 .Velocit y:max	-	-	-	-
22	Saccad e1.Velo city:std	-	-	-	-	-	-
23	Saccad e1.Velo city:min	-	-	-	-	-	-
24	Saccad e4.Velo city:min	-	-	-	-	-	-
25	Saccad e5.Velo city2	-	-	-	-	-	-
26	Saccad e5.Velo city:std	-	-	-	-	-	-
27	Saccad e5.Velo city:ma x	-	-	-	-	-	-
28	AntiSa ccade1 .Durati on1	-	-	-	-	-	-