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S1. Input Dataset Analysis 

A dataset of 412 MMG alloy compositions, with applied loads (in Newtons), and corresponding Vickers 

hardness values was curated using the available literature. Figure SF1(a) illustrates the frequency 

distribution of constituent elements across the dataset. Elements such as Zr, Cu, and Ni exhibit notably 

high occurrences, underscoring their common usage as primary constituents in MMGs. Zr-based MMGs 

are widely investigated due to their superior glass forming ability (GFA) and mechanical properties, while 

Cu and Ni are frequently added to tailor properties such as ductility, strength, and corrosion resistance. 

Conversely, rare-earth elements (e.g., Dy, Y, and Er) and refractory elements (e.g., Mo, Nb, Ta) are 

present at intermediate to lower frequencies, indicating their selective incorporation aimed at specific 

functional enhancements such as increased thermal stability, improved GFA, or targeted modification of 

mechanical behaviour. Figure SF1(b) details the hardness (HV) distribution, which prominently displays 

a multimodal pattern. The presence of distinct peaks around ~500 HV and ~1200 HV suggests the 

coexistence of multiple classes of MMGs within the dataset, each potentially governed by distinct 

compositional or structural factors. The bimodal distribution reflects variability not only in constituent 

elements but also in intrinsic structural features, such as short-range order, free volume content, and cluster 

packing efficiency, which fundamentally govern mechanical properties in MMGs. Figure SF1(c) presents 

a scatter plot depicting the relationship between hardness and applied load (N). The observed spread in 

hardness at similar loading conditions highlights inherent measurement variability, potentially attributable 

to factors such as indentation size effects (ISE), localized structural heterogeneities, and compositional 

variations across samples. Such scatter also underscores the importance of accounting for experimental 

parameters during model training, as load-dependent hardness behavior may inform the latent space 

representations extracted via VIB. Precisely modeling these load-dependent variations is essential, 

allowing the neural network to generalize across different loading conditions robustly, and enhancing the 

reliability and applicability of hardness predictions in experimental validations. 
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Figure SF1 - Exploratory data analysis of the multicomponent metallic glasses dataset. (a) Frequency distribution 

of elements present in the dataset. (b) Hardness (HV) distribution across the dataset, showing a multimodal pattern 

indicative of diverse alloy compositions and properties. (c) Scatter plot of hardness versus load, demonstrating the 

variation in hardness measurements with applied load. 
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S2. Supplementary Explanation on Variational Information Bottleneck and Attention 

Mechanisms 

The Information Bottleneck principle, originally proposed by Tishby et al., formalizes the idea that a good 

representation of input data should capture only the information essential for predicting an output, while 

discarding irrelevant details.1 In our setting, the input variable 𝑋 represents the alloy composition and 

load, and the output variable Y is the predicted Vickers hardness. The goal is to learn a latent variable Z 

that compresses 𝑋 as much as possible while preserving information relevant to 𝑌.2 This is achieved by 

minimizing the functional: 

ℒ𝐼𝐵 = 𝐼(𝑍; 𝑋) − 𝛽𝐼(𝑍; 𝑌) 

where 𝐼(⋅;⋅) denotes mutual information and 𝛽 is a trade-off parameter controlling the strength of the 

bottleneck.1 Since the exact computation of mutual information is intractable in deep neural networks, the 

Variational Information Bottleneck (VIB) approximates this objective using variational inference.3 In the 

VIB approach, the encoder network maps each input 𝑥 to a Gaussian distribution in latent space, defined 

by its mean 𝜇(𝑥) and standard deviation 𝜎(𝑥). A latent vector 𝑧 is sampled using the reparameterization 

trick: 

𝑧 = 𝜇(𝑥) + 𝜎(𝑥) ⋅ 𝜖,  𝜖 ∼ 𝑁(0, 𝐼) 

This stochastic representation is then passed to the decoder network, which predicts the output property. 

The VIB loss function is defined as: 

ℒ𝑉𝐼𝐵 = 𝔼𝑞(𝑧|𝑥)[−log 𝑝(𝑦|𝑧))] + 𝛽𝐷𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧)),  

The first term ensures predictive accuracy by minimizing the negative log-likelihood (typically mean 

squared error) of the predicted property.3 The second term is the Kullback–Leibler divergence between 

the learned posterior 𝑞(𝑧|𝑥) and a simple prior 𝑝(𝑧), usually taken as a standard normal distribution. This 

KL regularization penalizes overly complex latent encodings and encourages compression.4 The result is 

a model that learns to represent the compositional space in terms of a small number of abstract latent 

variables, each of which carries physically useful information relevant to the target property. Importantly, 

as shown in the main text (Figure 5), we find that only a few latent dimensions contribute significantly to 

predicted hardness, indicating that the network has learned a disentangled, interpretable latent structure. 

 

To further enhance interpretability, we incorporate an attention mechanism that allows the model to 

selectively focus on the most important elements in the alloy composition. The attention mechanism in 

neural networks was originally developed in the context of sequence modeling5 but has found broad 
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applicability across domains, including materials science, due to its ability to selectively focus on 

important features.6 In the VIBANN framework, attention is applied directly to the input composition 

vector to learn which elements in a multicomponent alloy contribute most significantly to the target 

property, such as hardness. 

In this context, the input vector 𝑥 ∈ ℝ𝑑 represents the atomic fractions of 𝑑 different elements in the alloy. 

The attention mechanism computes a set of weights 𝑎 = [𝑎1, 𝑎2, … , 𝑎𝑑], where each weight 𝑎𝑖 ∈ [0,1] 

reflects the importance of the element 𝑖 for the prediction task. These weights are computed using a 

learnable function, often a shallow neural layer followed by a softmax operation to normalize the values5: 

𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑎 ⋅ 𝑥 + 𝑏𝑎) 

Here, 𝑊𝑎 ∈ ℝ𝑑×𝑑 and 𝑏𝑎 ∈ ℝ𝑑 are trainable parameters, and the softmax function is defined as: 

𝑎𝑖 =  
exp (ℎ𝑖)

∑ exp (ℎ𝑗
𝑑
𝑗=1 )

, where ℎ = 𝑊𝑎 ⋅ 𝑥 + 𝑏𝑎 

The result is a probability distribution over the input features, where the elements with higher attention 

scores are emphasized more strongly. These weights are then applied to the input via element-wise 

multiplication, producing an attended input vector: 

𝑥𝑎𝑡𝑡 = 𝑎 ⊙ 𝑥 

where ⊙ denotes the Hadamard (element-wise) product. The attended input 𝑥𝑎𝑡𝑡 is passed downstream 

into the encoder of the VIB framework. By assigning high weights to composition components that are 

important for hardness prediction, and low or near-zero weights to irrelevant or redundant elements, the 

model effectively filters its input in a task-specific manner. 

Mathematically, the attention mechanism can be seen as a feature-wise relevance map conditioned on the 

input itself. Unlike static feature selection techniques, attention is fully differentiable and adaptable: it 

automatically tunes its focus as the model sees new data, while simultaneously providing interpretable 

weightings that can be visualized and analyzed.7 Importantly, the attention scores are learned jointly with 

the rest of the model through backpropagation, meaning they adapt dynamically to the training data. This 

leads to several advantages. First, the attention mechanism enables global interpretability: the average 

attention weight for each element across all training samples reveals which elements the model considers 

most consistently important. Second, attention supports context-dependent interpretation: for a given alloy 

composition, attention scores may shift depending on which element combinations are present, thereby 

capturing interaction effects that are difficult to model using fixed feature importance scores. 
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By combining VIB and attention, our VIBANN model learns a compressed, physically structured latent 

representation of composition–property relationships, while simultaneously highlighting which elements 

contribute most to the target property. This dual interpretability not only facilitates scientific 

understanding but also enables guided inverse design by allowing researchers to trace how small changes 

in input composition or latent representation affect the predicted outcome. 
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Figure SF2 - KL divergence loss evolution across epochs, demonstrating effective optimization of the latent space 

regularization. The significant drop within the first 100 epochs signifies the efficient balancing of reconstruction 

accuracy and latent space compression in the VIB framework. 
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Figure SF3 - Validation reconstruction loss as a function of epochs for both composition (red) and load (blue) 

inputs during training of the VIBANN model. The sharp initial decrease followed by stabilization indicates rapid 

learning and convergence of the reconstruction model. 
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S3. Comparative Performance of the VIBANN model with benchmark regressors 

Figure SF4 presents a comprehensive benchmarking analysis of our Variational Information Bottleneck–

Attention Neural Network (VIBANN) framework against a suite of widely adopted ML regression 

algorithms for predicting the hardness (HV) of MMGs. The models considered include Lasso regression 

(Figure SF4(a)), Ridge regression (Figure SF4(b)), Random Forest (RF) (Figure SF4(c)), k-Nearest 

Neighbors (KNN) (Figure SF4(d)), and Gradient Boosting (GB) (Figure SF4(e)). The performance is 

quantitatively summarized in Figure SF4(f) using the coefficient of determination (R²) and mean absolute 

error (MAE) as metrics. Among the classical linear models, both Lasso and Ridge regressions demonstrate 

limited predictive capacity with R² scores of 0.853 and 0.854, respectively, and relatively high MAE 

values (~84 HV). These models assume linear additive relationships among features and therefore fail to 

capture the inherent nonlinearity and high-order interactions present in the multivariate composition-load-

hardness landscape of MMGs. Such simplifications are inadequate in the context of disordered systems 

like MMGs, where localized atomic environments, electronic structure, and loading conditions contribute 

nonlinearly to mechanical properties. The ensemble-based Random Forest (R² = 0.913, MAE = 63.7 HV) 

and Gradient Boosting models (R² = 0.934, MAE = 52.9 HV) provide notable improvements by leveraging 

nonlinearity and feature interactions through hierarchical tree structures. Gradient Boosting outperforms 

RF, possibly due to its sequential error-correcting nature, which is more effective at minimizing bias. The 

KNN model achieves a strong R² of 0.921 and MAE of 60.3 HV, indicating good local consistency but 

poor global generalization. Its performance is highly sensitive to data density and suffers in sparsely 

populated regions of the feature space—an important limitation when extrapolation beyond known alloy 

compositions is required. Crucially, the VIBANN model surpasses all benchmarks, delivering the highest 

R² and lowest MAE values, while offering additional advantages that extend beyond conventional 

performance metrics. Moreover, while some models exhibit comparable predictive accuracy, they fail to 

offer insight into the epistemic uncertainty of the predictions—a critical aspect when proposing novel, 

untested compositions for synthesis. The VIBANN model, by contrast, enables principled uncertainty 

quantification through its variational inference framework and Monte Carlo dropout during inference. 

This capability is particularly vital in materials discovery applications, where false positives can lead to 

significant experimental costs. It aligns with the fundamental objectives of modern materials 

informatics—not merely to predict properties, but to understand and guide the design of materials with 

targeted functionalities through interpretable and data-efficient representations. 
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Figure SF4 - Performance comparison of various machine learning models in predicting the hardness (HV) of 

multicomponent metallic glasses. Predicted vs. actual hardness plots for (a) Lasso regression, (b) Ridge regression, 

(c) Random Forest (RF), (d) k-Nearest Neighbors (KNN), and (e) Gradient Boosting (GB); (f) Summary plot 

comparing accuracy (𝑅2) and mean absolute error (MAE) for all models, with the VIBANN model achieving the 

best performance among the models. 
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Figure SF5 - Elbow plot showing the within-cluster sum of squares (WCSS) as a function of the number of clusters 

for K-means clustering. The optimum number of clusters (𝑘𝑜𝑝𝑡𝑖𝑚𝑢𝑚 = 3) is identified at the "elbow" point, where 

the rate of decrease in WCSS slows, indicating the most appropriate number of clusters. 
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Figure SF6 - t-SNE visualization of the latent space for multicomponent metallic glasses, with hardness (HV) 

values represented as a color gradient. Distinct regions in the latent space correspond to clusters of alloys with 

similar hardness values, with higher hardness values highlighted in red and lower values in blue. 
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Figure SF7 - Boxplot illustrating the distribution of measured hardness (HV) values for the three distinct clusters. 

The horizontal line within each box denotes the median hardness, while the upper and lower edges of the box 

represent the 75th (Q3) and 25th (Q1) percentiles, respectively. The whiskers extend to 1.5 times the interquartile 

range (IQR) beyond Q1 and Q3, and any points lying outside these whiskers are plotted as outliers. 
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Figure SF8 - Optimization loss as a function of epochs during the training process for inverse alloy design using 

gradient based optimization. 

 

 

 

 

 

 

 

 

 



15 

 

 

Figure SF9 - t-SNE projection of the VIBANN latent space showing the original dataset alloys, randomly sampled 

latent points, and inverse-designed optimized alloys (stars). The color map indicates the predicted Vickers hardness 

(HV), with a gradient from low (blue) to ultra-high (red) hardness values. 
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Figure SF10 - Load versus indentation depth curves for multicomponent metallic glasses tested at various loads. 
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Figure SF11 - Hardness variation as a function of latent perturbations, obtained by traversing a representative latent 

vector from the center of the latent space. Most latent dimensions demonstrate predominantly linear hardness 

responses, suggesting a smoothly organized latent representation. Minor nonlinearities, notably in dimensions 5, 

12, 13 and 15, indicate regions of property saturation or softening, consistent with the localized complexity.
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Table ST1 – Search space for all relevant hyperparameters and the best-performing hyperparameters for the various ML models (the best 

hyperparameters are chosen based using Bayesian optimization and 5-fold cross-validation). 

Model Hyperparameter Hyperparameters Grid Best Hyperparameters 

K-Nearest 

Neighbours 

(KNN) 

Number of Neighbours 2, 30 4 

Weight uniform, distance distance 

Metric euclidean, manhattan manhattan 

Random Forest 

(RF) 

Number of estimators 10-500 124 

Criterion gini, entropy Entropy 

Maximum depth 2-30 19 

Minimum sample split 1-20 2 

Minimum sample leaf 1-20 3 

Lasso Regression 

(LR) 

Alpha 0.00001-1.0 0.01 

Selection cyclic, random cyclic 

Ridge Regression 

(RR) 

Alpha 0.00001-1.0 0.01 

Solver auto, svd, cholesky, lsqr, sparse_cg svd 

Gradient Boosting 

(GB) 

Number of estimators 10-200 128 

Learning rate 0.00001-1.0 0.001 

Maximum depth 1-20 13 

Minimum sample split 2-20 6 
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Table ST2 – Bulk chemical compositions of the final optimized MMGs measured by energy dispersive 

spectroscopy. 

B34Co14Cr6Re38W8 
B (at.%) Co (at.%) Cr (at.%) Re (at.%) W (at.%) 

33.4 15.1 6.5 37.2 7.8 

B32Co10Fe14Re32V4W8 
B (at.%) Co (at.%) Fe (at.%) Re (at.%) V (at.%) W (at.%) 

30.1 10.9 14.4 32.2 4.8 7.6 

B36Co12Ni8Re38W6 
B (at.%) Co (at.%) Ni (at.%) Re (at.%) W (at.%) 

34.7 12.4 7.8 37.4 7.7 

B38Co6Fe10Re40V6 
B (at.%) Co (at.%) Fe (at.%) Re (at.%) V (at.%) 

37.2 6.3 10.6 39.2 6.7 

B36Co8Fe12Re36W8 
B (at.%) Co (at.%) Fe (at.%) Re (at.%) W (at.%) 

35.4 7.7 12.8 36.3 7.8 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

References 

1 Tishby, N., Pereira, F. C. & Bialek, W. The information bottleneck method. arXiv preprint 

physics/0004057, (2000). 

2 Alemi, A. A., Fischer, I., Dillon, J. V. & Murphy, K. Deep variational information bottleneck. arXiv 

preprint arXiv:1612.00410, (2016). 

3 Kingma, D. P. & Welling, M.     (Banff, Canada, 2013). 

4 Achille, A. & Soatto, S. Information Dropout: Learning Optimal Representations Through Noisy 

Computation. IEEE Transactions on Pattern Analysis and Machine Intelligence 40, 2897-2905, 

(2018). 

5 Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning to align and 

translate. arXiv preprint arXiv:1409.0473, (2014). 

6 Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 

30, (2017). 

7 Jain, S. & Wallace, B. C. Attention is not explanation. arXiv preprint arXiv:1902.10186, (2019). 

 


