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S1. Input Dataset Analysis

A dataset of 412 MMG alloy compositions, with applied loads (in Newtons), and corresponding Vickers
hardness values was curated using the available literature. Figure SF1(a) illustrates the frequency
distribution of constituent elements across the dataset. Elements such as Zr, Cu, and Ni exhibit notably
high occurrences, underscoring their common usage as primary constituents in MMGs. Zr-based MMGs
are widely investigated due to their superior glass forming ability (GFA) and mechanical properties, while
Cu and Ni are frequently added to tailor properties such as ductility, strength, and corrosion resistance.
Conversely, rare-earth elements (e.g., Dy, Y, and Er) and refractory elements (e.g., Mo, Nb, Ta) are
present at intermediate to lower frequencies, indicating their selective incorporation aimed at specific
functional enhancements such as increased thermal stability, improved GFA, or targeted modification of
mechanical behaviour. Figure SF1(b) details the hardness (HV) distribution, which prominently displays
a multimodal pattern. The presence of distinct peaks around ~500 HV and ~1200 HV suggests the
coexistence of multiple classes of MMGs within the dataset, each potentially governed by distinct
compositional or structural factors. The bimodal distribution reflects variability not only in constituent
elements but also in intrinsic structural features, such as short-range order, free volume content, and cluster
packing efficiency, which fundamentally govern mechanical properties in MMGs. Figure SF1(c) presents
a scatter plot depicting the relationship between hardness and applied load (N). The observed spread in
hardness at similar loading conditions highlights inherent measurement variability, potentially attributable
to factors such as indentation size effects (ISE), localized structural heterogeneities, and compositional
variations across samples. Such scatter also underscores the importance of accounting for experimental
parameters during model training, as load-dependent hardness behavior may inform the latent space
representations extracted via VIB. Precisely modeling these load-dependent variations is essential,
allowing the neural network to generalize across different loading conditions robustly, and enhancing the

reliability and applicability of hardness predictions in experimental validations.
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Figure SF1 - Exploratory data analysis of the multicomponent metallic glasses dataset. (a) Frequency distribution
of elements present in the dataset. (b) Hardness (HV) distribution across the dataset, showing a multimodal pattern
indicative of diverse alloy compositions and properties. (c) Scatter plot of hardness versus load, demonstrating the
variation in hardness measurements with applied load.



S2. Supplementary Explanation on Variational Information Bottleneck and Attention

Mechanisms

The Information Bottleneck principle, originally proposed by Tishby et al., formalizes the idea that a good
representation of input data should capture only the information essential for predicting an output, while
discarding irrelevant details.® In our setting, the input variable X represents the alloy composition and
load, and the output variable Y is the predicted Vickers hardness. The goal is to learn a latent variable Z
that compresses X as much as possible while preserving information relevant to Y. This is achieved by
minimizing the functional:
Lig =1(Z;X) = BI(Z;Y)
where I(;-) denotes mutual information and g is a trade-off parameter controlling the strength of the
bottleneck.! Since the exact computation of mutual information is intractable in deep neural networks, the
Variational Information Bottleneck (V1B) approximates this objective using variational inference.® In the
VIB approach, the encoder network maps each input x to a Gaussian distribution in latent space, defined
by its mean u(x) and standard deviation a(x). A latent vector z is sampled using the reparameterization
trick:
z=ulx)+aox) e, e ~N(0,1)
This stochastic representation is then passed to the decoder network, which predicts the output property.
The VIB loss function is defined as:
Lyip = Eq(z1[—logp(y12))] + BDk1(q(z|%)||p(2)),
The first term ensures predictive accuracy by minimizing the negative log-likelihood (typically mean
squared error) of the predicted property.® The second term is the Kullback—Leibler divergence between
the learned posterior q(z|x) and a simple prior p(z), usually taken as a standard normal distribution. This
KL regularization penalizes overly complex latent encodings and encourages compression.* The result is
a model that learns to represent the compositional space in terms of a small number of abstract latent
variables, each of which carries physically useful information relevant to the target property. Importantly,
as shown in the main text (Figure 5), we find that only a few latent dimensions contribute significantly to
predicted hardness, indicating that the network has learned a disentangled, interpretable latent structure.

To further enhance interpretability, we incorporate an attention mechanism that allows the model to
selectively focus on the most important elements in the alloy composition. The attention mechanism in

neural networks was originally developed in the context of sequence modeling® but has found broad
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applicability across domains, including materials science, due to its ability to selectively focus on
important features.® In the VIBANN framework, attention is applied directly to the input composition
vector to learn which elements in a multicomponent alloy contribute most significantly to the target
property, such as hardness.

In this context, the input vector x € R? represents the atomic fractions of d different elements in the alloy.
The attention mechanism computes a set of weights a = [a4, a,, ..., a4], where each weight a; € [0,1]
reflects the importance of the element i for the prediction task. These weights are computed using a
learnable function, often a shallow neural layer followed by a softmax operation to normalize the values®:

a = softmax(W, - x + b,)
Here, W, € R%*4 and b, € R are trainable parameters, and the softmax function is defined as:

exp(hy)

w,Whereh=Wa'X+ba

a; =

The result is a probability distribution over the input features, where the elements with higher attention
scores are emphasized more strongly. These weights are then applied to the input via element-wise
multiplication, producing an attended input vector:

Xaee =a O x
where (© denotes the Hadamard (element-wise) product. The attended input x,;; is passed downstream
into the encoder of the VIB framework. By assigning high weights to composition components that are
important for hardness prediction, and low or near-zero weights to irrelevant or redundant elements, the
model effectively filters its input in a task-specific manner.
Mathematically, the attention mechanism can be seen as a feature-wise relevance map conditioned on the
input itself. Unlike static feature selection techniques, attention is fully differentiable and adaptable: it
automatically tunes its focus as the model sees new data, while simultaneously providing interpretable
weightings that can be visualized and analyzed.” Importantly, the attention scores are learned jointly with
the rest of the model through backpropagation, meaning they adapt dynamically to the training data. This
leads to several advantages. First, the attention mechanism enables global interpretability: the average
attention weight for each element across all training samples reveals which elements the model considers
most consistently important. Second, attention supports context-dependent interpretation: for a given alloy
composition, attention scores may shift depending on which element combinations are present, thereby

capturing interaction effects that are difficult to model using fixed feature importance scores.



By combining VIB and attention, our VIBANN model learns a compressed, physically structured latent
representation of composition—property relationships, while simultaneously highlighting which elements
contribute most to the target property. This dual interpretability not only facilitates scientific
understanding but also enables guided inverse design by allowing researchers to trace how small changes

in input composition or latent representation affect the predicted outcome.
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Figure SF2 - KL divergence loss evolution across epochs, demonstrating effective optimization of the latent space
regularization. The significant drop within the first 100 epochs signifies the efficient balancing of reconstruction
accuracy and latent space compression in the VIB framework.
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Figure SF3 - Validation reconstruction loss as a function of epochs for both composition (red) and load (blue)
inputs during training of the VIBANN model. The sharp initial decrease followed by stabilization indicates rapid
learning and convergence of the reconstruction model.



S3. Comparative Performance of the VIBANN model with benchmark regressors

Figure SF4 presents a comprehensive benchmarking analysis of our Variational Information Bottleneck—
Attention Neural Network (VIBANN) framework against a suite of widely adopted ML regression
algorithms for predicting the hardness (HV) of MMGs. The models considered include Lasso regression
(Figure SF4(a)), Ridge regression (Figure SF4(b)), Random Forest (RF) (Figure SF4(c)), k-Nearest
Neighbors (KNN) (Figure SF4(d)), and Gradient Boosting (GB) (Figure SF4(e)). The performance is
quantitatively summarized in Figure SF4(f) using the coefficient of determination (R?) and mean absolute
error (MAE) as metrics. Among the classical linear models, both Lasso and Ridge regressions demonstrate
limited predictive capacity with R2 scores of 0.853 and 0.854, respectively, and relatively high MAE
values (~84 HV). These models assume linear additive relationships among features and therefore fail to
capture the inherent nonlinearity and high-order interactions present in the multivariate composition-load-
hardness landscape of MMGs. Such simplifications are inadequate in the context of disordered systems
like MMGs, where localized atomic environments, electronic structure, and loading conditions contribute
nonlinearly to mechanical properties. The ensemble-based Random Forest (R2 = 0.913, MAE = 63.7 HV)
and Gradient Boosting models (R?=0.934, MAE = 52.9 HV) provide notable improvements by leveraging
nonlinearity and feature interactions through hierarchical tree structures. Gradient Boosting outperforms
RF, possibly due to its sequential error-correcting nature, which is more effective at minimizing bias. The
KNN model achieves a strong R2 of 0.921 and MAE of 60.3 HV, indicating good local consistency but
poor global generalization. Its performance is highly sensitive to data density and suffers in sparsely
populated regions of the feature space—an important limitation when extrapolation beyond known alloy
compositions is required. Crucially, the VIBANN model surpasses all benchmarks, delivering the highest
R2 and lowest MAE values, while offering additional advantages that extend beyond conventional
performance metrics. Moreover, while some models exhibit comparable predictive accuracy, they fail to
offer insight into the epistemic uncertainty of the predictions—a critical aspect when proposing novel,
untested compositions for synthesis. The VIBANN model, by contrast, enables principled uncertainty
quantification through its variational inference framework and Monte Carlo dropout during inference.
This capability is particularly vital in materials discovery applications, where false positives can lead to
significant experimental costs. It aligns with the fundamental objectives of modern materials
informatics—not merely to predict properties, but to understand and guide the design of materials with

targeted functionalities through interpretable and data-efficient representations.
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Figure SF4 - Performance comparison of various machine learning models in predicting the hardness (HV) of
multicomponent metallic glasses. Predicted vs. actual hardness plots for (a) Lasso regression, (b) Ridge regression,
(c) Random Forest (RF), (d) k-Nearest Neighbors (KNN), and (e) Gradient Boosting (GB); (f) Summary plot
comparing accuracy (R?) and mean absolute error (MAE) for all models, with the VIBANN model achieving the
best performance among the models.
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Figure SF5 - Elbow plot showing the within-cluster sum of squares (WCSS) as a function of the number of clusters
for K-means clustering. The optimum number of clusters (k,p¢imum = 3) is identified at the "elbow" point, where
the rate of decrease in WCSS slows, indicating the most appropriate number of clusters.
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Figure SF6 - t-SNE visualization of the latent space for multicomponent metallic glasses, with hardness (HV)
values represented as a color gradient. Distinct regions in the latent space correspond to clusters of alloys with
similar hardness values, with higher hardness values highlighted in red and lower values in blue.
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Figure SF7 - Boxplot illustrating the distribution of measured hardness (HV) values for the three distinct clusters.
The horizontal line within each box denotes the median hardness, while the upper and lower edges of the box
represent the 75th (Q3) and 25th (Q1) percentiles, respectively. The whiskers extend to 1.5 times the interquartile
range (IQR) beyond Q1 and Q3, and any points lying outside these whiskers are plotted as outliers.
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Figure SF8 - Optimization loss as a function of epochs during the training process for inverse alloy design using

gradient based optimization.
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Figure SF9 - t-SNE projection of the VIBANN latent space showing the original dataset alloys, randomly sampled
latent points, and inverse-designed optimized alloys (stars). The color map indicates the predicted Vickers hardness
(HV), with a gradient from low (blue) to ultra-high (red) hardness values.
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Figure SF10 - Load versus indentation depth curves for multicomponent metallic glasses tested at various loads.
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Figure SF11 - Hardness variation as a function of latent perturbations, obtained by traversing a representative latent
vector from the center of the latent space. Most latent dimensions demonstrate predominantly linear hardness
responses, suggesting a smoothly organized latent representation. Minor nonlinearities, notably in dimensions 5,
12, 13 and 15, indicate regions of property saturation or softening, consistent with the localized complexity.
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Table ST1 - Search space for all relevant hyperparameters and the best-performing hyperparameters for the various ML models (the best

hyperparameters are chosen based using Bayesian optimization and 5-fold cross-validation).

Model Hyperparameter Hyperparameters Grid Best Hyperparameters
K-Nearest Number of Neighbours 2,30 4
Neighbours Weight uniform, distance distance
(KNN) Metric euclidean, manhattan manhattan
Number of estimators 10-500 124
Criterion gini, entropy Entropy
Rand?qunF)Forest Maximum depth 2-30 19
Minimum sample split 1-20 2
Minimum sample leaf 1-20 3
Lasso Regression Alpha 0.00001-1.0 0.01
(LR) Selection cyclic, random cyclic
Ridge Regression Alpha 0.00001-1.0 0.01
(RR) Solver auto, svd, cholesky, Isqgr, sparse_cg svd
Number of estimators 10-200 128
Gradient Boosting Learning rate 0.00001-1.0 0.001
(GB) Maximum depth 1-20 13
Minimum sample split 2-20 6
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Table ST2 — Bulk chemical compositions of the final optimized MMGs measured by energy dispersive

spectroscopy.
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