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Scheme S1 Detailed synthetic scheme of PID-BTO4. (ⅰ) Sodium hydride (NaH), tetrahydrofuran (THF), reflux, 24 hours. (ⅱ) N-Bromosuccinimide (NBS), N,N-Dimethylformamide (DMF), RT, 30 min. (ⅲ) Pd2(dba)3, p(o-tol)3, toluene, 110 ℃, 24 hours.

Materials. Compound 1 was prepared using previously described methods [S1]. Triethylene glycol 2-bromoethyl methyl ether (compound 2) and 5,5'-bis(trimethylstannyl)-2,2'-bithiophene were purchased from Tokyo chemical industry (TCI) and used without further purification.

Compound 3. Compound 3 was prepared using previously described methods [S1, S2]. The crude product was purified by silica gel column chromatography using ethyl acetate and THF at a 13:1 ratio as the eluent, yielding Compound 3 as a light greenish oil with an 85% yield. 1H-NMR (500 MHz, DMSO-d6, ppm): 7.88 (dd, 4H), 7.24 (dd, 2H), 4.69 (t, 4H), 3.83 (t, 4H), 3.44-3.24 (m, 24H), 3.20 (s, 6H); 13C-NMR (500 MHz, DMSO-d6, ppm): 141.6, 126.1, 121.3, 120.0, 115.1, 113.7, 113.3, 71.6, 70.5, 70.2, 70.15, 70.1, 70.05, 69.9, 58.4, 45.4, 40.6, 40.4, 40.1, 39.9, 39.7, 39.5, 39.3; HRLC-MS (ESI+) m/z: calculated for C32H44Br2N2O8 [M+H]+: 745.1244, found: 745.1523.

Compound 4. Compound 4 was prepared using previously described methods [S1, S2]. The crude product was purified by column chromatography. The light greenish oil was precipitated from n-hexane at -18℃ to afford Compound 4 as a white powder (yield: 72%). 1H-NMR (500 MHz, DMSO-d6, ppm): 7.88 (dd, 4H), 7.24 (dd, 2H), 4.69 (t, 4H), 3.83 (t, 4H), 3.44-3.24 (m, 24H), 3.20 (s, 6H); 13C-NMR (500 MHz, DMSO-d6, ppm): 141.6, 126.1, 121.3, 120.0, 115.1, 113.7, 113.3, 71.6, 70.5, 70.2, 70.15, 70.1, 70.05, 69.9, 58.4, 45.4, 40.6, 40.4, 40.1, 39.9, 39.7, 39.5, 39.3; HRLC-MS (ESI+) m/z: calculated for C32H44Br2N2O8 [M+H]+: 745.1244, found: 745.1523.

PID-BTO4. PID-BTO4 was obtained through Stille-type cross-coupling polymerization. In a 50 mL dry Schlenk flask, Compound 4 (1.0025 g, 1.35 mmol) and 5,5'-bis(trimethylstannyl)-2,2'-bithiophene (0.6623 g, 1.35 mmol) were dissolved in toluene (20 mL) and DMF (5 mL) under an argon atmosphere. After adding tris(dibenzylideneacetone)dipalladium (0) (2.5 mol%) and tris(o-tolyl)phosphine (8 mol%) to the Schlenk flask. the reaction mixture was vigorously stirred at 110 ℃ for 24 h. To terminate the polymerization, 2-tributylstannyl thiophene (1 drop) and 2-bromothiophene (1 drop) were added at internal of 6 h. The polymer solution was poured into hexane, and the crude PID-BTO4 was collected by filtration. It was then purified by Soxhlet extraction in the order of hexane, acetone and methanol. Finally, the insoluble parts were dissolved in chloroform and reprecipitated into hexane to obtain PID-BTO4.

PID-BT. PID-BT was synthesized similarly to PID-BTO4, following the same procedure but using only toluene as the solvent without DMF.

EMI shielding measurement. The EMI shielding measurements of SWCNT/CP films were conducted using a vector network analyzer (VNA, N5222B, Keysight, USA), a millimeter-wave controller (N5292A, Keysight, USA), a frequency extender (N5293AX03, Keysight, USA), and a rectangular waveguide test fixture for the corresponding frequency bands. The power coefficients and EMI SE values were calculated from the S-parameters (S11, S12, S22, and S21) in the broadband frequency ranges of the X- (8.2-12.4 GHz), Ka- (26.5-40 GHz), V- (50-75 GHz), and W-bands (75-110 GHz) as follows:



where R, T, and A are the power coefficient of reflection, transmission, and absorption, respectively. The power coefficient is suitable for investigating the actual fraction of reflection and absorption of specimens because it involves the quantity of reflection at the initial interface. In contrast, the total shielding effectiveness (SET) is appropriate for comparing the overall blocked incident wave. The SER and SEA are understood as the percentage of reflection and absorption, respectively. The SER is the proportion of the reflection to the incident wave. The SEA is the proportion of the absorption to the wave that has passed through in the first interface; reflected wave are not accounted for. The EMI SE is calculated by the T and R values as follows:



In the X-band, the dielectric permittivity (ε) and magnetic permeability (μ) values were calculated from the S-parameters using the Nicholson-Ross-Weir (NRW) method due to the high frequency [S3]. The correlation between the reflection coefficient (Г) and the S-parameter is as follows:


The ε and μ are established that


where c, ω, and d represent the speed of light, wave frequency, and sample thickness, respectively. The transmission coefficient (z) represent as:

Finally, ε and μ can be determined
  and 
The SWCNT/CP films possessed S11 close to 1 due to high conductivity and reflection; therefore, the calculated values of ε and μ were unreliable. To increase the reliability of permittivity and permeability measurements, an SWCNT/PBTTT thin film on a polyamide substrate was mounted and compared in the pristine, F4TCNQ-, and AuCl3-doped states. The electrical conductivity of the F4TCNQ- and AuCl3-doped CNT/PBTTT thin film was similarly adjusted to 500 S/cm by controlling the concentration of dopant solution (F4TCNQ at 0.005 wt.% and AuCl3 at 0.0025 wt.%) with a soaking time of 10 min, to compare ε values at the similar conductivity levels.



Table S1 Comparison of EMI shielding performance, mechanical properties, folding reliability of representative EMI shielding materials
	Materials1
	Thickness
[μm]
	EMI SE
[dB]
	Young’s modulus
[GPa]
	Tensile strength
[MPa]
	Folding reliability
[Cycles @ radius]
	EMI SE
retention rate [%]
	Ref.

	CNT/NR
	2600
	43.5
	0.004
	10.6
	5000
@ 2R
	94
	[S4]

	PU-AgNW/CFF
	360
	106
	0.037
	9.6
	5000
@ 2R
	97
	[S5]

	Ag-CNT
	7.8
	66
	8.9
	76.1
	2000
	94
	[S6]

	AgNW/Cellulose
	44.5
	101
	3.35
	60.7
	1500
	94
	[S7]

	GNS-Fe3O4/PVDF
	300
	52
	0.296
	16.6
	1000
	91.9
	[S8]

	Ag/NWF/FeCO
@rGO/WPU
	400
	77.1
	0.187
	7.8
	1000
	99.6
	[S9]

	MXene/ANF
	14
	24.1
	13.6
	301
	10000
	96.3
	[S10]

	PIF/MXene
	132
	41.4
	0.6
	12
	500
	97
	[S11]

	FeCoNi/TPU/PPy
	200
	26.3
	3.0
	16
	10000
	92.3
	[S12]

	Cellulose/MXene/GO
	30
	54
	14
	324
	5000
	-
	[S13]

	MXene sediment/PVA
	118
	30.8
	1.3
	19
	5000
	-
	[S14]

	SWCNT/PID-BT
(pristine)
	23
	47
	12.1
	82.6
	300000
@ 3R
	98.8
	This
work

	SWCNT/PID-BT
(F4TCNQ-doped)
	22
	63.1
	12.7
	83.6
	300000
@ 3R
	99.6
	

	SWCNT/PID-BT
(AuCl3-doped)
	23.8
	75.1
	11.3
	76.1
	300000
@ 3R
	101.3
	


1Only samples for which the folding evaluation was verified were selected to compare other properties.
2Only cases where evaluation conditions can be specified are indicated.
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Fig. S1 (a) 1H- and (b) 13C-NMR spectra of Compound 3.
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Fig. S2 (a) 1H- and (b) 13C-NMR spectra of compound 4
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Fig. S3 High resolution LC-MS analysis of (a) Compound 3 and (b) Compound 4.
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Fig. S4 UV–Vis absorption spectra of each CP before and after doping. (a) PFO, b) PID-BTO4, (c) P3HT, (d) PID-BT, and (e) PBTTT.

[image: ]
Fig. S5 Electrical conductivity of doped CPs using (a) F4TCNQ and (b) AuCl3 as dopant. (c) Energy level diagram of the applied CPs (HOMO) and F4TCNQ (LUMO).
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Fig. S6 photoelectron spectra of (a) PID-BT and (b) PID-BTO4.
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Fig. S7 Comparison of UV–Vis absorption spectra PID-BT (solution and film), PID-BT@SWCNT, and SWCNT/PID-BT containing different amounts of SWCNT.
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Fig. S8 EMI SE performances of SWCNT/PID-BT composites for (a) pristine and (b) AuCl3-doped free-standing films.
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Fig. S9 SEM images of the SWCNT/CP composite films containing 50 wt.% SWCNT. (a) SWCNT/PFO, (b) SWCNT/PID-BTO4, (c) SWCNT/P3HT, and (d) SWCNT/PBTTT.
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Fig. S10 EMI SE performances of SWCNT/CP composites containing 50 wt.% SWCNT for (a) pristine and (b) F4TCNQ-doped, and (c) AuCl3-doped free-standing films.
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Fig. S11 Comparison of (a) the tensile stress-strain curve of the SWCNT/PID-BT composite containing 50 wt.% SWCNT and (b) mechanical properties before and after doping.
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Fig. S12 The change in EMI SE before and after folding-unfolding cycles at a folding radius of 3R for (a) pristine, (b) F4TCNQ-doped, and (c) AuCl3-doped SWCNT/PID-BT, and at a folding radius of 1R for (d) pristine, (e) F4TCNQ-doped, and (f) AuCl3-doped SWCNT/PID-BT containing 50 wt.% SWCNT.
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Fig. S13 Apparent change of the SWCNT/PID-BT composite film containing 50 wt.% SWCNT after 300,000 folding-unfolding cycles.
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Fig. S12 SEM images of CNT/CP films with (a) PFO, (b) PID-BTO4, (c) P3HT, (d) PID-BT, and (e) PBTTT. 
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