## Supplementary Materials for

## INSIG1 parallel substitution drives lipid/sterol metabolic plasticity mediating desert adaptation in ungulates

Xinmei Li<sup>1†</sup>, Ziyi He <sup>1†</sup>, Anguo Liu<sup>1</sup>, Fanxin Meng<sup>1</sup>, Xiao Zhang<sup>1</sup>, Nana Li <sup>1</sup>, Huan Liu<sup>1</sup>, Yuyi Lu<sup>1</sup>, Zhipei Wu<sup>1</sup>, Xixi Yan<sup>1</sup>, Nange Ma<sup>1</sup>, Zhenyu Wei<sup>1</sup>, Wei Wang<sup>1</sup>, Xixi He<sup>1</sup>, Kunyu Ma<sup>1</sup>, Yu Jiang<sup>1</sup>, Chao Tong<sup>3\*</sup>, Bo Xia<sup>1\*</sup>, Yu Wang<sup>1,2\*</sup>

\*Corresponding author. E-mail: <u>wang\_yu@nwsuaf.edu.cn; imed23@nwafu.edu.cn;</u> tongchao1990@gmail.com

## This PDF file includes:

Figs. S1 to S12# Tables S1 to S3 and S17#

Other Supplementary Materials for this manuscript include the following:

Tables S4 to S15#

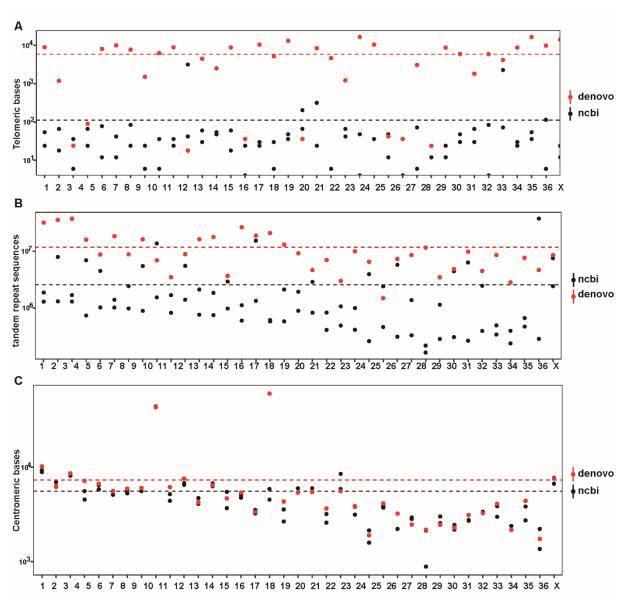



Fig. S1 The completeness of telomere and tandem repeat sequence.

- (A) Statistical distribution of centromeric bases on each chromosome of *de novo* assembly (red dot) and ncbi reference genome of dromedary and wild Bactrian camel (black dots). The number of bases in telomeric repeats within 10 Kb of chromosome ends. Dashed lines indicate the autosome-wide mean for the respective color of points.
- (B) Tandem repeat sequences on each chromosome were identified by Tandem repeats finder (TRF).

(C) The mean number of bases on each chromosome identified as "Satellite" by

RepeatMasker for the *de novo* (red) assembly and ncbi reference genome of dromedary

and wild Bactrian camel (black). Dashed lines indicate the autosome-wide mean.

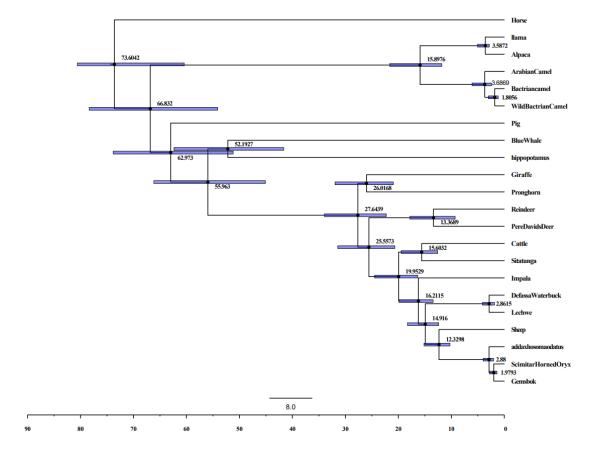



Fig. S2 Estimated divergence times among 22 ungulates.

The blue rectangles at the nodes represent 95% confidence intervals of the corresponding estimated divergence times.

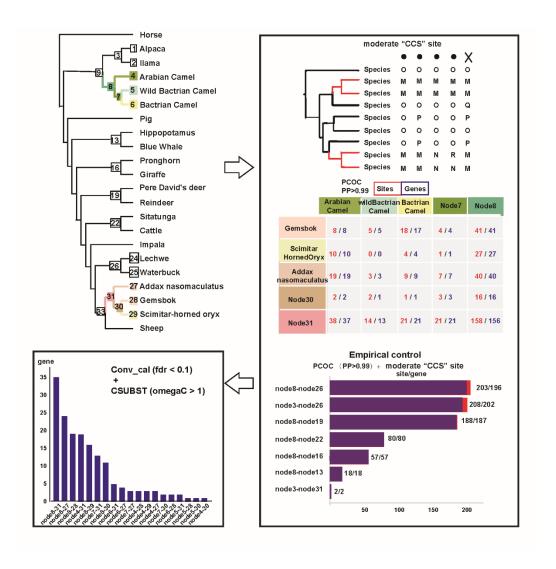



Fig. S3 Strategies for screening nonrandom candidate convergent gene sets.

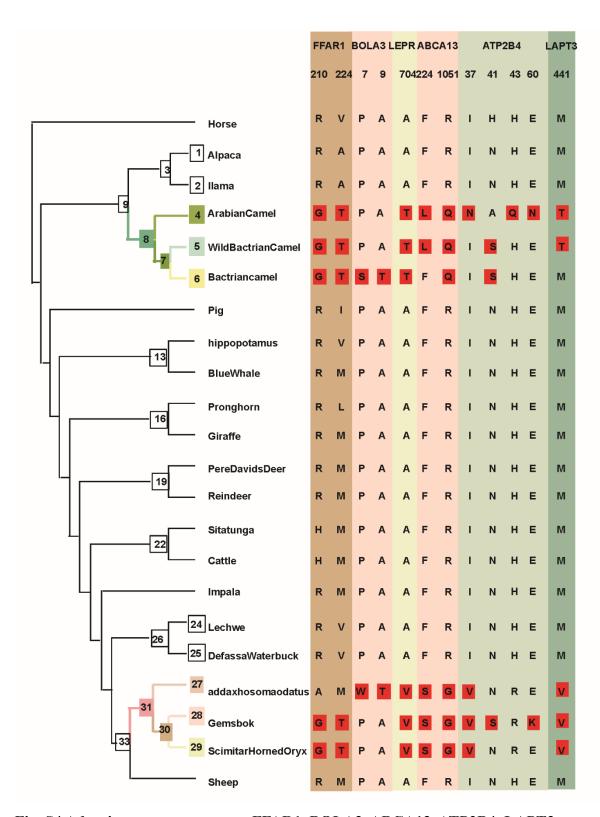



Fig. S4 Adaptive convergent genes FFAR1, BOLA3, ABCA13, ATP2B4, LAPT3.

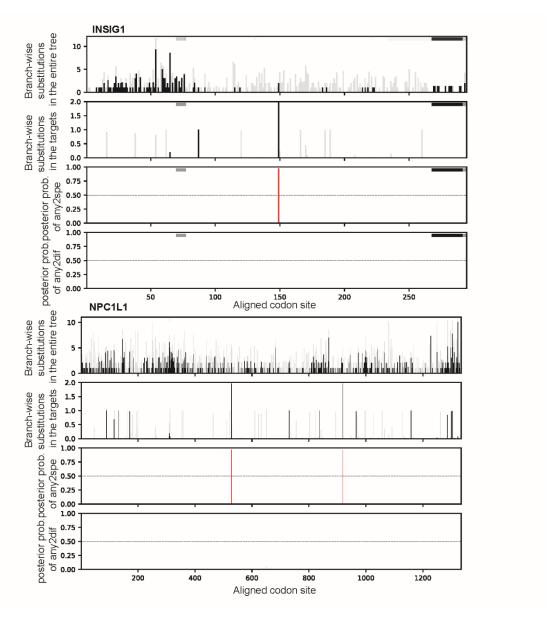



Fig. S5 The probability of substitution for each codon site of INSIG1 and NPC1L1 calculated by CSUBST. Black and gray represents nonsynonymous and synonymous substitutions, respectively. And red/blue is non-synonymous combinatorial substitutions.

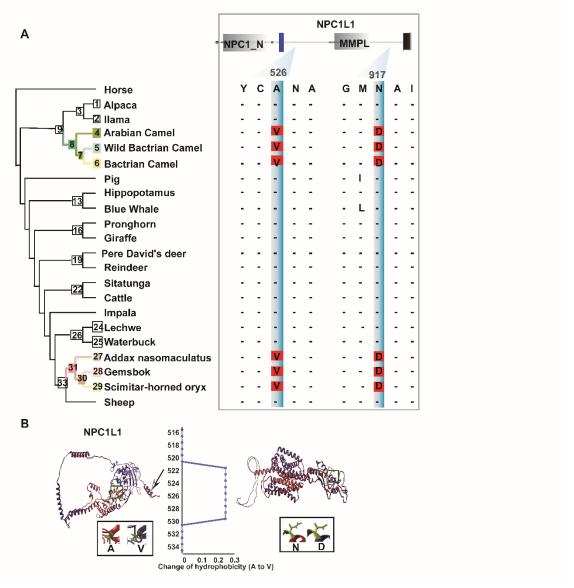



Fig. S6 adaptive convergent mutation in NPC1L1

- (A) Parallel substitutions at conserved sites of NPC1L1 protein in *Camelus* and Hippotraginae lineages.
- (B) Mutation site in the 3D protein structures of NPC1L1 was indicated in green. The red chains represent the normal protein structure, and the blue chains represent protein structure after parallel mutations. The arrows indicate the locations where structural changes occurred before and after the mutation. The hydrophobicity prediction of NPC1L1. Amino acid substitution of A526V in NPC1L1 increase the amino acids hydrophobicity from 522 to 530.

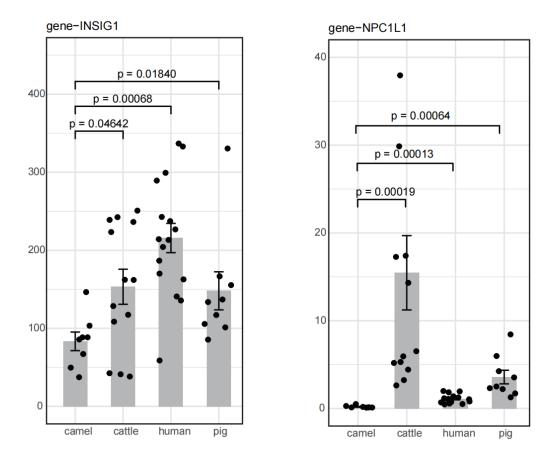



Fig. S7 Expression level of *NPC1L1* (left) and *INSIG1* (right) in camel, cattle, human, and pig.

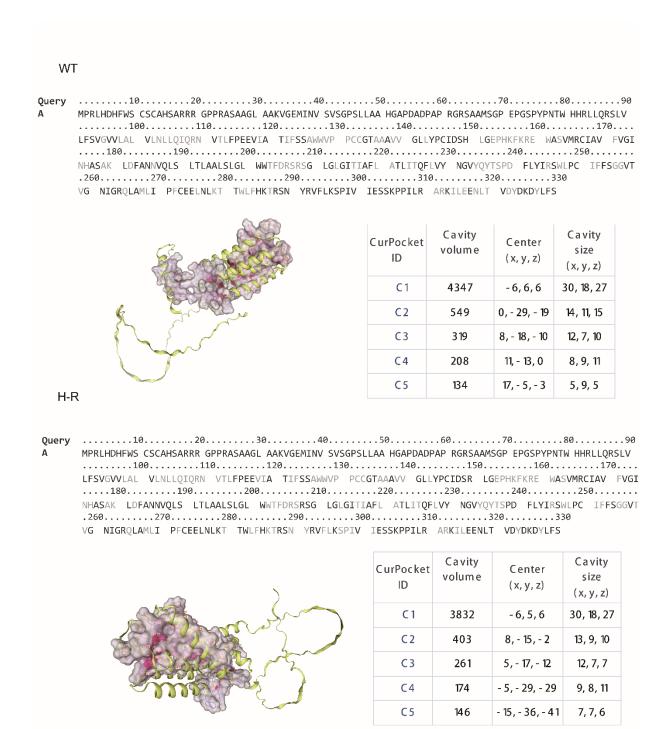



Fig. S8 The curpocket and cavity for INSIG1(H132R) and wildtype INSIG1 identified by CB-Dock2.

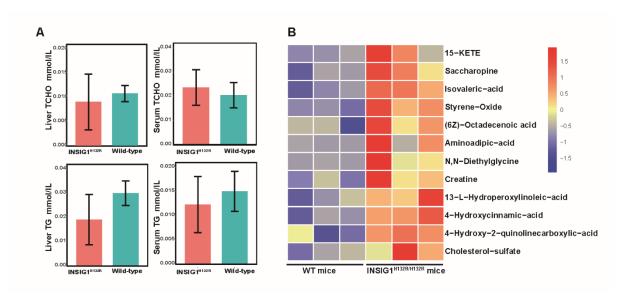



Fig. S9 The phenotypes of wild-type and INSIG1<sup>132R/132R</sup> gene-edited mice

- (A) The cholesterol (up) and triglyceride (down) concentrations in serum and liver of mutant (n=3) and wild-type mice (n=3).
- (B) Differential metabolites in the liver between mutant and wild mice.

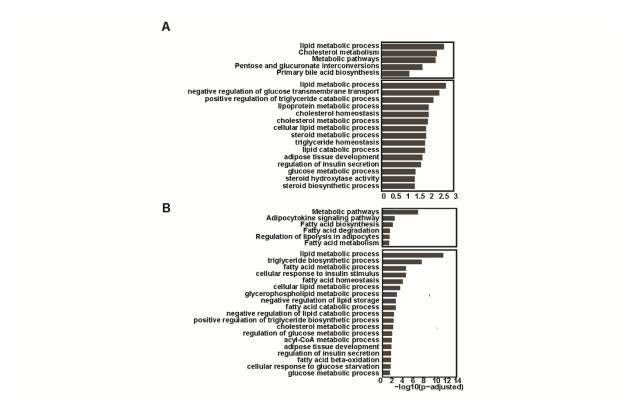



Fig.S10 The difference of transcriptome and metabolome between wild-type and geneedited mice

(A-B) Pathways were enriched by differentially expressed genes in liver (A) and visceral fat (B) of homozygous and wild-type mice.

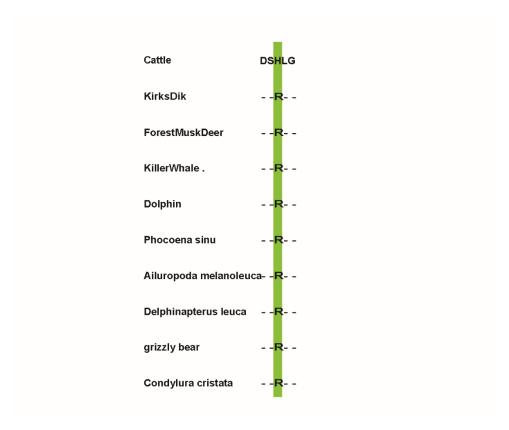



Fig. S11 the H-R mutation of INSIG1 in other more animals.

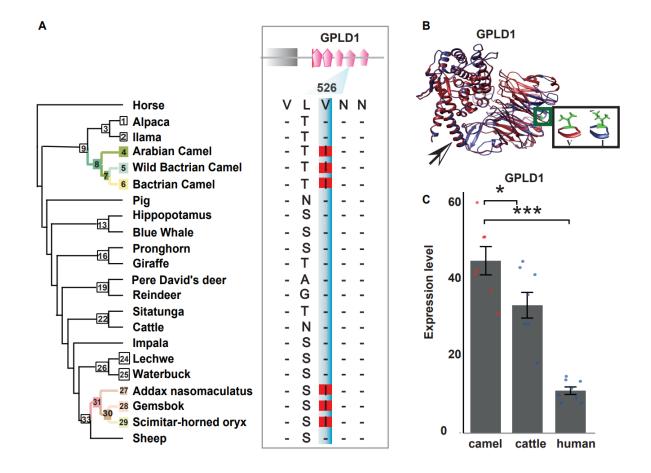



Fig. S12 (A) Parallel substitutions at conserved site of GPLD1 protein in Camelus and Hippotraginae lineages. (B) Mutation sites in the 3D protein structures of three protein are indicated in green. The red chains represent the normal protein structure, and the blue chains represent those after parallel mutations. The locations where structural changes occurred before and after the mutation are indicated by arrows. (C) Expression level of liver in camel, cattle and human. t-test, \*: P < 0.05; \*\*: P < 0.01; \*\*\*: P < 0.001.

 Table S1. De novo genome assessment.

| Scaffold | Wild Bactrian<br>camel | Arabian<br>camel | Bactrian camel | de novo     |
|----------|------------------------|------------------|----------------|-------------|
| N0       | 122,453,268            | 124,715,342      | 46,538,883     | 164,120,332 |
| N10      | 121,270,977            | 123,797,624      | 19,607,279     | 149,680,253 |
| N20      | 102,155,050            | 120,724,560      | 16,165,641     | 118,545,724 |
| N30      | 94,313,465             | 97,468,828       | 13,872,274     | 105,728,113 |
| N40      | 78,620,977             | 81,230,863       | 11,315,732     | 99,165,517  |
| N50      | 76,025,729             | 70,369,702       | 8,812,066      | 79,915,242  |
| N60      | 68,617,425             | 68,281,056       | 6,903,358      | 71,079,562  |
| N70      | 49,638,757             | 52,130,679       | 4,942,766      | 60,221,085  |
| N80      | 33,771,694             | 31,123,794       | 3,491,600      | 38,068,993  |
| N90      | 27,488,461             | 24,767,672       | 1,821,536      | 30,245,471  |
| N100     | 224                    | 245              | 200            | 14,149      |

**Table S2.** State of 18,430 ancestral placental mammal in Camelidae.

| genome                            | intact genes | genes with inactivating mutations | genes with<br>missing<br>sequence |
|-----------------------------------|--------------|-----------------------------------|-----------------------------------|
| De novo genome                    | 17632        | 689                               | 109                               |
| Camelus bactrianus                | 13498        | 2178                              | 2754                              |
| Camelus dromedarius               | 16472        | 1766                              | 192                               |
| Camelus ferus                     | 16296        | 1888                              | 246                               |
| Lama glama llama                  | 15611        | 1000                              | 1819                              |
| Lama glama chaku_ llama           | 16582        | 899                               | 949                               |
| Lama guanicoe cacsilensis guanaco | 17226        | 901                               | 303                               |
| Vicugna pacos alpaca              | 13133        | 1415                              | 3882                              |
| Vicugna pacos alpaca (vicPac2)    | 13181        | 1618                              | 3631                              |
| Vicugna pacos huacaya alpaca      | 15756        | 964                               | 1710                              |
| Vicugna vicugna mensalis vicugna  | 17246        | 838                               | 346                               |

**Table S3.** Genome statistics for 22 ungulates used in this manuscript.

| Common name          | Species name           | Genbank accession |
|----------------------|------------------------|-------------------|
| horse                | Equus caballus         | GCA_002863925.1   |
| alpaca               | Vicugna pacos          | GCA_000164845.5   |
| llama                | Lama glama             | GCA_013239585.1   |
| Arabian Camel        | Camelus dromedarius    | GCA_000803125.3   |
| wild Bactrian camel  | Camelus ferus          | GCA_009834535.1   |
| Bactrian Camel       | Camelus bactrianus     | GCA_000767855.    |
| pig                  | Sus scrofa             | GCA_000003025.6   |
| Hippopotamus         | Hippopotamus amphibius | GCA_030028045.1   |
| Blue Whale           | Balaenoptera musculus  | GCA_009873245.3   |
| Pronghorn            | Antilocapra americana  | GCA_007570785.1   |
| Giraffe              | Giraffa camelopardalis | GCA_017591445.1   |
| Pere David's deer    | Elaphurus davidianus   | GCA_021018665.1   |
| Reindeer             | Rangifer tarandus      | GCA_949782905.1   |
| Sitatunga            | Tragelaphus spekii     | GCA_006411015.1   |
| Cattle               | Bos taurus             | GCA_002263795.3   |
| Impala               | Aepyceros melampus     | GCA_006408695.1   |
| Lechwe               | Kobus leche            | GCA_014926565.1   |
| Waterbuck            | Kobus ellipsiprymnus   | GCA_006410655.1   |
| Addax nasomaculatus  | Addax nasomaculatus    | GCA_019593525.1   |
| Gemsbok              | Oryx gazella           | GCA_003945745.1   |
| Scimitar-horned oryx | Oryx dammah            | GCA_014754425.2   |
| Sheep                | Ovis aries             | GCA_016772045.1   |

**Table S17.** The sequence of primers used for qPCR.

| Gene  | Forward                    |  |
|-------|----------------------------|--|
| ABCA1 | F: ACCCACCCTATGAACAACATGA  |  |
|       | R: GAGTCGGGTAACGGAAACAGG   |  |
| ABCG5 | F: ACTGCTTCTCCTACGTCCTG    |  |
|       | R: CTGTAGTTGCCAATCAGTCGG   |  |
| ABCB1 | F: TTGCTGCTTACATTCAGGTTTCA |  |
|       | R: AGCCTATCTCCTGTCGCATTA   |  |

F, forward; R, reverse