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Supplementary Information:
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Fig. S1 (a—c) Representative dimples identified using ImageJ in the as-built, §-hour aged, and 48-hour
aged samples, captured under the same field of view as in Fig. 2 of the main text. (d) Dimple size
distribution across the three samples, showing that most dimples are smaller than 0.5 um. (e) Evolution
of dimple size and area fraction with aging time, demonstrating a clear increase in both metrics,
consistent with the observed transition toward ductile fracture behavior.
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Fig. 82 Schematic of sample preparation. Fractography analysis is conducted on the YZ and XZ plane.
The YZ plane is exposed to evaluate microstructural deformation and cavity damage, with the degree of
plastic deformation increasing progressively from the grip to the fracture point in the gauge.



Fig. §3 SEM-EDS on precipitates near cavity damages in as-built sample.



Fig. §4 SEM-EDS on precipitates near cavity damages in 8-hour aging sample.



Fig. 85 SEM-EDS on precipitates near cavity damages in 48-hour aging sample.
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Fig. $6 Contour plot of AlsZr in the Scheil simulation. As the Zr composition is reduced, the AlsZr-D0;;
phase decreases from 3.85 mol% to 1.83 mol%. The optimization was performed at single equilibrium
condition, where Al;Zr is nearly eliminated (Fig. 9). Future optimizations can be done to minimize Al3Zr
at Scheil conditions to better mimic as-built conditions and potentially further enhance ductility in the
as-built state.



Tables:

Table S1 Mechanical properties of the samples at different aging time.

As-built 8-hour aging 48-hour aging
Yield strength (MPa) 391.23 406.55 355.03
Ductility (%) 0.93 3.97 6.43
Ultimate tensile strength (MPa) 395.87 410.28 358.44
Young’s Modulus (GPa) 60.77 63.33 63.85

Table S2 Dimple area fraction and equivalent diameter in the three samples.

As-built 8-hour aging 48-hour aging
Area fraction (%) 12.7 17.6 29.8
Size (um) 0.38 0.44 0.49




Table S3 Pettifor'’s Cauchy pressure and Pugh's ratio of binary Al precipitates

Pettifor’s Cauchy pressure Pugh’s ratio

€11 (GPa) | Caa Goa) | E(GPa) |14\ G Gy | BEPW | 2 e
3)1253; 63 84 200.6 -0.105 85 103 0.825 [ [11,[2]
Al:Ni 75 78 160.02 | -0.0188 63 113 0.558 | [11,[2]
ALCu 58 61 131 -0.0229 50 111 0.450 | [1],[2]

Al Ces 50 62 117 -0.106 47 75 0.630 (3]
AlsSc 44 69 159 -0.157 67 86 0.779 | [11,[2]
ALEr 38 60 143 -0.154 60 77 0.779 | [11,[2]

AlzMg, 39 9 68 0.430 26 53 0.497 (4]
AlsMn 57 78 176 -0.119 71 111 0.640 | [1],[2]
AlgFe 68 69 155 -0.00645 61 106 0.575 | [11,[2]
ALY 36 58 140 -0.157 59 75 0.787 | [11,[2]
AlTis 82 59 155 0.148 61 114 0.535 [ [1],[2]
AL O3 159 118 371 0.111 146 232 0.629 | [1],[2]

Table S4 Mechanical properties of benchmark and ductility-increased alloy at as-built condition

Benchmark Ductility-increased
Yield strength (MPa) 391.23 283.48
Ductility (%) 0.93 15.49
Ultimate tensile strength (MPa) 395.87 295.09
Young’s Modulus (GPa) 60.77 50.66
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