Engineered cladding scatterers in optical fiber for 3D deformation encoding
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1. Selection of the offset of the eccentric scatterers.
The peak intensity of backscattered light from an eccentric scatterer is related to its offset from the fiber core. In a single-mode fiber, the optical field follows a Gaussian distribution, resulting in weaker back-reflected signals from scatterers located closer to the edge of the mode field. In contrast, when the fiber is bent, scatterers with larger offsets exhibit stronger variations in backscattered intensity—that is, higher bending sensitivity. This behavior arises mainly from two factors: (i) scatterers with greater offsets experience higher stress during bending, enhancing scattering due to deformation and the photoelastic effect; and (ii) the relative intensity change at the mode field edge is more pronounced under bending.
To investigate this, we fabricated scatterers with varying offsets and measured their bending sensitivity, as shown in Figure S1. Taking the core–cladding interface as the zero-offset position, scatterers were inscribed outward with 1 µm steps. The resulting sensitivity profile (Figure S1 b) follows an inverse Gaussian trend.
Given the inverse relationship between peak scattering intensity and bending sensitivity, an offset of 4 µm was chosen in this work to balance signal clarity with bending responsiveness. The corresponding backscattered signals from the fabricated scatterer array are shown in Figure 2 of the manuscript.
[image: fig1-06-06]
Figure S1: Relationship between scatterer offset and bending sensitivity. a Schematic illustration of eccentric scatterers inscribed at varying radial offsets from the core–cladding interface. b Measured bending sensitivity as a function of scatterer offset, showing an inverse Gaussian trend.
2. Theory of deformation reconstruction
In our design, the detailed steps of shape reconstruction are as follows:
Step 1: Record the reflected peak intensity of the MOESs array in the straight state, which is set as the reference, and subtract the peak intensity during the bending deformation from the reference value to obtain the energy change ΔIi.
Step 2: The curvature components in the two directions can be obtained from the intensity changes in the two directions. According to the results in Figure 2, the intensity changes and curvature components are linearly related, and the coefficient of this linear relationship is the maximum curvature sensitivity s of each scatterer, which is taken as 0.05 dB/m-1 in experiment.

.


Step 3: Separate the curvature components along the X-axis and Y-axis: assign the curvatures at odd-numbered positions to the , and those at even-numbered positions to the .
Step 4: The total curvature and the bending angle with respect to one of the axes can be simply calculated from the curvature components of the orthogonal type distribution. Here we choose the reference axis as the X-axis, and the angle between the X-axis and the actual reference plane can be obtained by a simple calibration. The formulas for curvature calculation and angle calculation are:

,

,
Among them, i takes the value range of 1-36, representing the scatterers; j takes the value range of 1-35, representing the sensing point.
Step 5: Interpolate the spline function on and to get and differentiate on to get the torsion function:

.
Step 6: Bring into the Frenet framework.

,
[bookmark: _GoBack]where T(j) is the tangent vector, N(j) is the normal vector and B(j) is the sub-normal vector, and the tangent vector function T(j) is obtained by numerical solution. The coordinates of each point in space will then be obtained by integrating over the arc length:

.
Step 7: Fit a spline function to the calculated discrete points to get a smooth curve in space.
3. Definition of relative error and end error
In order to evaluate the accuracy of the curve reconstruction results, we used two judging criteria: relative error and end error.
The relative error, also known as the root-mean-square error, is mainly used to evaluate the overall reconstruction accuracy of the reconstructed curves compared with the standard curves, with smaller values indicating higher reconstruction accuracy. The calculation formula is:

relative error,


where denotes the coordinates of the reconstructed points and denotes the coordinates of the reference curve.
The second one is the end error, which is mainly used to evaluate the absolute error between the reconstructed curve and the end point of the reference curve, and the calculation scheme is:

end error,


where denotes the error at the end of the reconstructed curve and denotes the error at the end of the reference curve.
4. Changes of the scattering signal in different environments
Figure S2a shows the variation in backscattering profiles as the temperature increases from 20ºC to 60ºC. Thanks to stable femtosecond laser-induced modifications, the MOESs array fiber demonstrated exceptional thermal stability. We systematically examined the relationship between temperature and scattering signal amplitude under bending conditions. The observed amplitude variation was 0.0033 dB/ºC (Figure S2b).
[image: fig4-S02]
Figure S2: Evolution of backscattering under bending. a Variation in the backscattered signal profile with increasing fiber curvature. b Corresponding changes in peak scattering intensity as a function of curvature.

Figure S3a shows the evolution of the backscattered signal profile as axial strain increases from 0 to 600 µε. A statistical analysis of the peak intensities, presented in Figure S3b, reveals an overall stable trend. The gradual increase in measurement fluctuation—reaching up to ~0.2 dB—is likely due to slippage between the fiber and the fixture under higher strain, which may introduce slight measurement instability.
[image: fig4-S03]
Figure S3: Backscattered signal evolution under axial strain. a Changes in the backscattered signal profile as axial strain increases. b Variation in peak scattering intensity across different strain levels.
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