

1 **Supplementary Material**

2 ***Initial BOATS model before including larval advection***

3 The ecological module of BOATS is forced by sea surface temperature (SST) and net primary
4 production (NPP). SST drives temperature-dependent growth and mortality of fish, while a
5 combination of SST and NPP regulates the carrying capacity of each grid cell¹. The time
6 evolution t (s) of each fish group k in the biomass size spectrum ($f_k(m, t)$) follows the
7 McKendrick-von Foerster partial differential equation:

8
$$\frac{\partial}{\partial t} f_k(m, t) = -\frac{\partial}{\partial m} \gamma_k(m, t) f_k(m, t) + \frac{\gamma_k(m, t) f_k(m, t)}{m} - \Lambda_k(m, t) f_k(m, t),$$

9 where $f_k(m, t)$ (gwB m⁻² g⁻¹) is the normalised fish biomass in grams of wet fish biomass (gwB)
10 per square metre of ocean surface per unit of the mass class m (g). The first term on the right-
11 hand side describes the somatic growth of biomass into larger size classes, with $\gamma_k(m, t)$ (g s⁻¹)
12 denoting the individual growth rate at size m and time t . The second term represents the
13 increase of biomass within each size class from individual growth. The third term is the natural
14 mortality rate $\Lambda_k(m, t)$ (s⁻¹). For all simulations, we used temporally interpolated, daily
15 climatologies of net primary production (NPP) and sea surface temperature from Carozza et
16 al.¹. They extracted mean water temperatures from the euphotic zone of the World Ocean
17 Atlas 2005², a database of climatological maps calculated with scientifically quality-controlled
18 historical temperature data. To obtain NPP climatologies whilst accounting for variability in
19 NPP models, Carozza et al.¹ averaged over three satellite-based NPP estimates³⁻⁵.

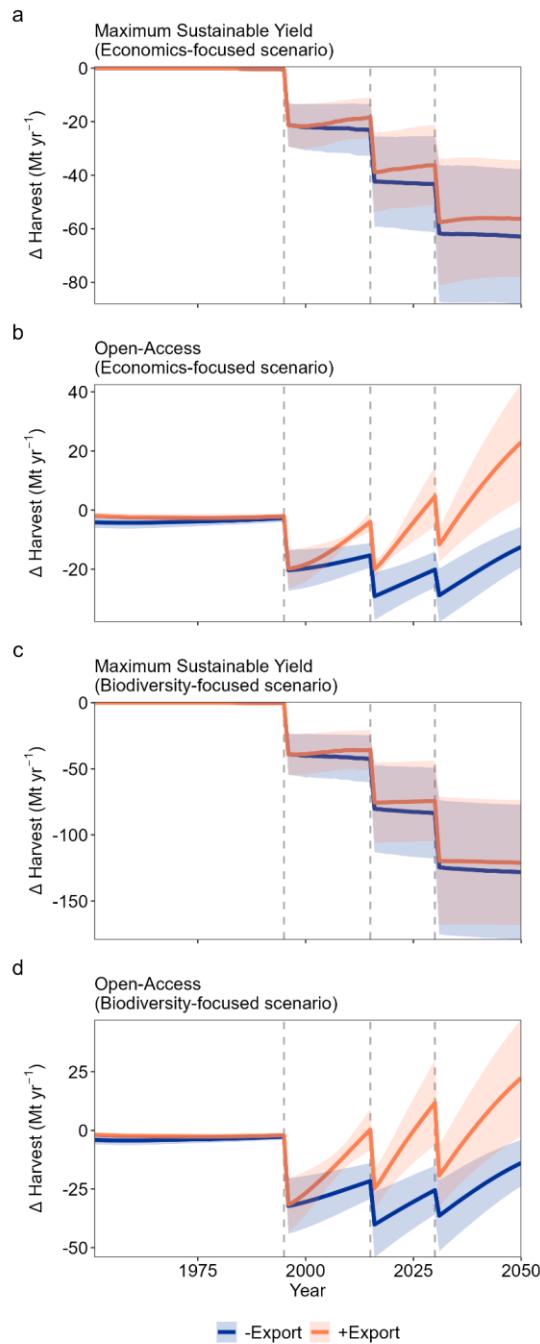
20 The ecological module is coupled to a fishing module based on the Gordon-Schaefer open-
21 access fisheries economics model⁶. The economic model relies on three economic forcings:
22 cost of fishing per unit effort, c ; the ex-vessel price of fish, p ; and the catchability parameter,
23 q , reflecting the technology level and ease with which fish can be caught⁷. In addition, two
24 regulation forcings allow modelling fisheries management that steers fishing towards an
25 agreed fishing target through various enforcement mechanisms⁸. By setting a target for fishing
26 effort $E_{targ,k}$ (W m⁻²) in selected cells and the enforcement strength S (≥ 0 ; dimensionless)

27 for reaching this target, the regulation component allows including MPAs in BOATS. The
28 economic-regulation module models the fishing effort E_k (W m^{-2}) on a size group k over time
29 as:

$$30 \quad \frac{d}{dt} E_k(t) = \kappa_e \frac{revenue_k - cost_k}{E_k} e^{-S} + (1 - e^{-S}) \kappa_S (E_{targ,k} - E_k)$$

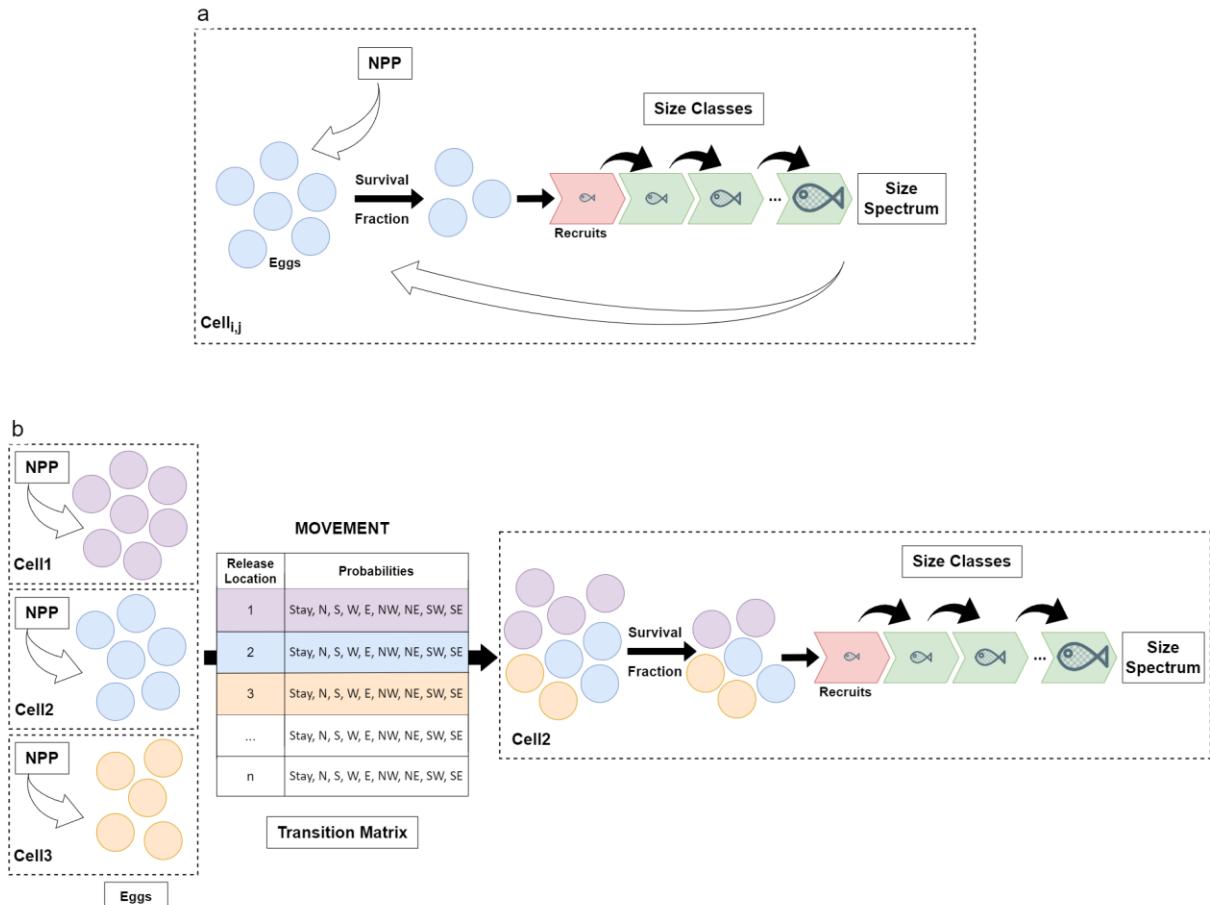
31 with κ_e ($\text{W m}^{-2} \text{ \$}^{-1}$) denoting the fleet dynamics parameter, κ_S ($\text{m}^2 \text{ s}^{-1}$) the regulation response
32 parameter, and

$$33 \quad revenue_k = p_k q_k E_k B_k,$$

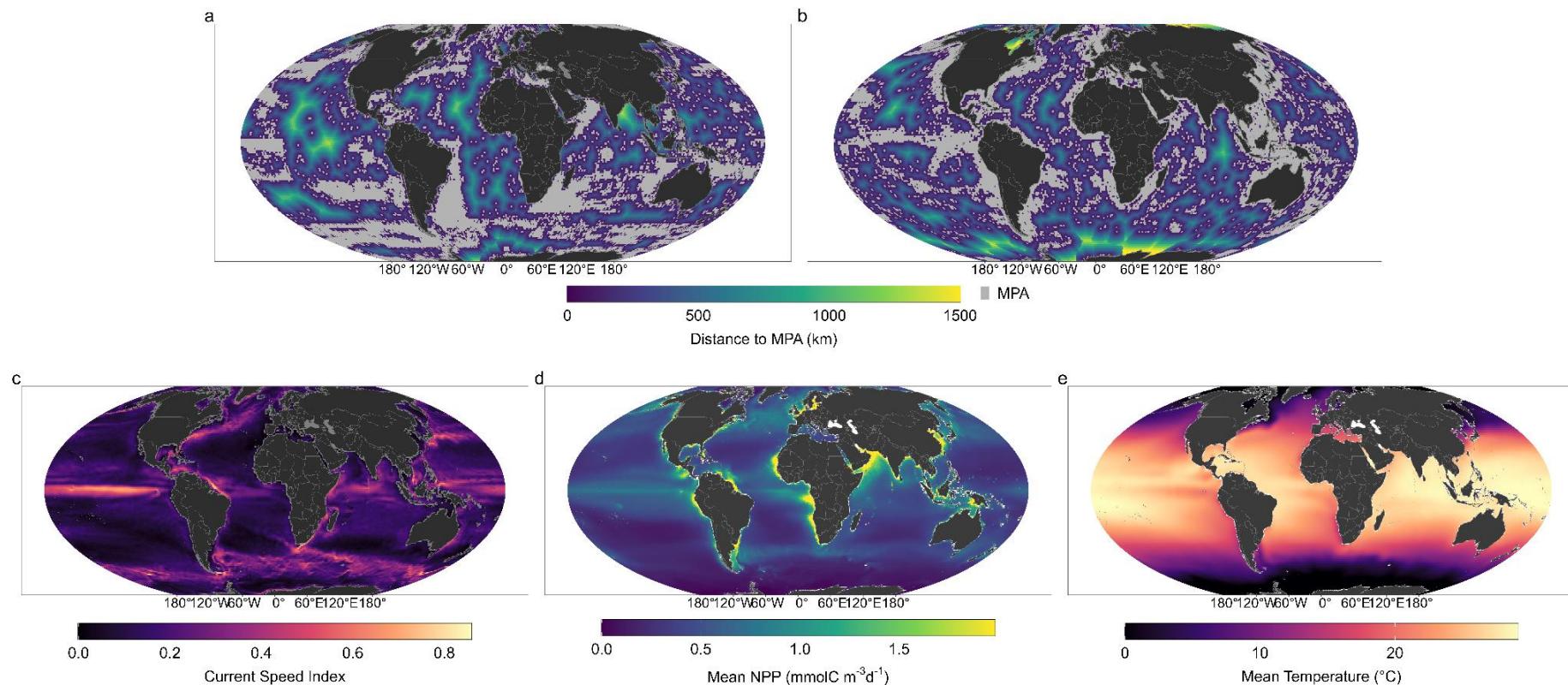

$$34 \quad cost_k = c_k E_k$$

35 where p_k ($\text{\$ gwB}^{-1}$) is the ex-vessel price of fish, q_k the catchability parameter ($\text{m}^2 \text{ W}^{-1} \text{ s}^{-1}$), B_k
36 (gwB) the selectable biomass of size group k , and c_k ($\text{\$ W}^{-1} \text{ s}^{-1}$) the cost of fishing per unit
37 effort.

38


39 **Parameter Optimization and Uncertainty Estimation**

40 Model parameter values used in the five model ensemble members (Supp. Table 1) were
41 estimated previously by Galbraith et al.⁹ by employing a Monte Carlo approach spanning the
42 range of uncertainty in the ecological and economic parameters. This involved generating
43 10,000 random values from the probability distributions of statistically-estimated ranges of
44 values for all uncertain parameters. Estimated ranges were either taken directly from the
45 literature or assumed using a uniform probability distribution given informed parameter choices
46 taken from previous work without statistical estimates. Five parameter ensembles that span a
47 wide range of possible parameter values (while still complying with the model evaluation
48 criteria; see Carozza et al.⁷ for details) were used for simulations, generating the mean value
49 and uncertainty ranges shown in Figures 1-2 in the main text.



50 **Supplementary Figure 1. Annual time-series of fish harvest difference under a**
 51 **Maximum sustainable Yield (a, c) or an Open-Access (b, d) fishing strategy based on an**
 52 **economics-focused (a, b) or biodiversity-focused (c, d) 30X30 scenario. a-d.** Total fish
 53 harvest difference between the simulations with and without MPAs either with (orange) or
 54 without (blue) larval export. Shaded regions represent +/-SD. Dashed lines represent when
 55 an additional 10% of MPAs were implemented.

56
57

58
59 **Supplementary Figure 2. Schematic of BOATS steps from egg production to the size**
60 **spectrum before and after implementing egg/larval advection. a.** Before implementing
61 advection, all grid cells were independent. Egg production was influenced by NPP in a cell
62 and the number of reproductive adults. Eggs were subject to a survival fraction, determining
63 the fraction of eggs turning into recruits. **b.** After implementing advection, egg production still
64 depended on NPP and the number of reproductive adults in a cell (not depicted here).
65 However, eggs were also moved to neighbouring cells based on advection probabilities in the
66 transition matrix. Subsequent steps were the same as in the version of BOATS without
67 advection.

Supplementary Figure 3. Predictors created for the Generalised Linear Model. **a.** Distance to the closest MPA for the economics-focused MPAs scenario. **b.** Distance to the closest MPA for the biodiversity-focused MPAs scenario. **c.** Current speed index as the probability to move into an adjacent grid cell within 24 h. **d.** Yearly mean net primary production. **e.** Yearly mean temperature.

Supplementary Table 1. BOATS simulations run to assess whether larval export can offset lost fishing after MPA implementation.

Simulation	Advection	Fishing Strategy	MPA Scenario	Ensemble
1 (spin-up)	Not included	No harvest	None	5
2 (spin-up)	Included	No harvest	None	5
3 (m_0mpa_0oa)	Not included	Open access	None	5
4 (m_1mpa_0oa)	Included	Open access	None	5
5 (m_0mpa_1oa)	Not included	Open access	Economics-focused	5
6 (m_1mpa_1oa)	Included	Open access	Economics-focused	5
7 (m_0mpa_2oa)	Not included	Open access	Biodiversity-focused	5
8 (m_1mpa_2oa)	Included	Open access	Biodiversity-focused	5
9 (m_0mpa_0msy)	Not included	MSY	None	5
10 (m_1mpa_0msy)	Included	MSY	None	5
11 (m_0mpa_1msy)	Not included	MSY	Economics-focused	5
12 (m_1mpa_1msy)	Included	MSY	Economics-focused	5
13 (m_0mpa_2msy)	Not included	MSY	Biodiversity-focused	5
14 (m_1mpa_2msy)	Included	MSY	Biodiversity-focused	5

Supplementary Table 2. Summary of the Generalised Linear Model with Additional Harvest as the response.

	Estimate	T Value	Statistic	P Value
(Intercept)	-1.883	0.047	-40.016	< 0.0001
ns(moveInd, DF)1	0.315	0.024	12.878	< 0.0001
ns(moveInd, DF)2	0.512	0.024	21.157	< 0.0001
ns(moveInd, DF)3	0.807	0.058	14.028	< 0.0001
ns(moveInd, DF)4	0.933	0.036	25.732	< 0.0001
regOpen-Access	1.017	0.056	18.303	< 0.0001
ns(distance, DF)1	-3.515	0.032	-108.388	< 0.0001
ns(distance, DF)2	-2.117	0.029	-73.022	< 0.0001
ns(distance, DF)3	-4.484	0.075	-59.804	< 0.0001
ns(distance, DF)4	-2.221	0.027	-83.369	< 0.0001
ns(npp_ed, DF)1	-0.108	0.032	-3.401	0.001
ns(npp_ed, DF)2	0.867	0.041	21.325	< 0.0001
ns(npp_ed, DF)3	1.664	0.075	22.212	< 0.0001
ns(npp_ed, DF)4	2.497	0.072	34.559	< 0.0001
ns(temp, DF)1	0.925	0.023	41.024	< 0.0001
ns(temp, DF)2	0.145	0.018	7.917	< 0.0001
ns(temp, DF)3	-0.323	0.042	-7.686	< 0.0001
ns(temp, DF)4	0.135	0.017	7.887	< 0.0001
mpabiodiversity	0.044	0.006	6.911	< 0.0001
regOpen-Access:ns(distance, DF)1	-1.239	0.045	-27.331	< 0.0001
regOpen-Access:ns(distance, DF)2	-0.845	0.041	-20.781	< 0.0001
regOpen-Access:ns(distance, DF)3	-1.021	0.105	-9.722	< 0.0001
regOpen-Access:ns(distance, DF)4	-0.994	0.037	-26.577	< 0.0001
regOpen-Access:ns(npp_ed, DF)1	0.029	0.033	0.869	0.385
regOpen-Access:ns(npp_ed, DF)2	1.201	0.054	22.043	< 0.0001
regOpen-Access:ns(npp_ed, DF)3	0.436	0.09	4.845	< 0.0001
regOpen-Access:ns(npp_ed, DF)4	0.209	0.1	2.081	0.037

References

1. Carozza, D. A., Bianchi, D. & Galbraith, E. D. The ecological module of BOATS-1.0: a bioenergetically constrained model of marine upper trophic levels suitable for studies of fisheries and ocean biogeochemistry. *Geosci. Model Dev.* **9**, 1545–1565 (2016).
2. Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P. & Garcia, H. E. World Ocean Atlas 2005, Volume 1: Temperature. in 182 (S. Levitus, Ed. NOAA Atlas NESDIS 61, U.S. Gov. Printing Office, Washington, D.C., 2006).
3. Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. *Limnol. Oceanogr.* **42**, 1–20 (1997).
4. Carr, M.-E. *et al.* A comparison of global estimates of marine primary production from ocean color. *Deep Sea Res. Part II Top. Stud. Oceanogr.* **53**, 741–770 (2006).
5. Marra, J., Trees, C. C. & O'Reilly, J. E. Phytoplankton pigment absorption: A strong predictor of primary productivity in the surface ocean. *Deep Sea Res. Part Oceanogr. Res. Pap.* **54**, 155–163 (2007).
6. Gordon, H. S. The Economic Theory of a Common-Property Resource: The Fishery. *J. Polit. Econ.* **62**, 124–142 (1954).
7. Carozza, D. A., Bianchi, D. & Galbraith, E. D. Formulation, General Features and Global Calibration of a Bioenergetically-Constrained Fishery Model. *PLOS ONE* **12**, e0169763 (2017).
8. Scherrer, K. & Galbraith, E. Regulation strength and technology creep play key roles in global long-term projections of wild capture fisheries. *ICES J. Mar. Sci.* **77**, 2518–2528 (2020).
9. Galbraith, E. D., Carozza, D. A. & Bianchi, D. A coupled human-Earth model perspective on long-term trends in the global marine fishery. *Nat. Commun.* **8**, 14884 (2017).