SUPPLEMENTAL MATERIAL to the paper



Supplementary Figure 1| The Wong-Wang Model. Each brain area is represented as a local network composed by
excitatory (E) and inhibitory (I) neural populations coupled by pathways of NMDA and GABA synapses. The excitatory
synaptic coupling (Jnmpa) goes from the excitatory to the inhibitory population and is NMDA mediated, as well as the
local recurrent excitation (w+), while the feedback inhibitory coupling (Ji) is GABAergic. The structural connectivity
matrix weights inter-areal connections and is scaled by the global coupling G. Brain dynamics are described by a set of
coupled non-linear stochastic differential equations, in which where 1i®) denotes the firing rate of the excitatory and
inhibitory populations, Si®" identifies the average excitatory or inhibitory synaptic gating variables at local area, i, and
L&D is the input current to the excitatory and inhibitory populations at local area, i.
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Supplementary Figure 2| Parameter space exploration. Parameter space exploration is conducted in two steps: first,
G and Ji are optimized with the other two parameters (Jxmpa and w+) at their standard value; then Jnmpa and w+ are
optimized with G and Ji fixed at their optimized value. Heat maps represent the value of the cost function obtained with
different parameters combinations. Optimal parameters are the ones leading to the lowest cost function between simulated
and experimental data.
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Supplementary Figure 3| Feature importance distribution according to F1 score (x axis) given by the random forest (RF)
ranking in 100 iterations on graph theory measures after splitting the data into 70% for training and 30% for testing. The
first five non correlated (spearman test) features were selected as inputs to the subsequent clustering analysis. The
emerging features belong to the LN, AN and SMN networks and are shown as underlined.
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Supplementary Figure 4| Visual representation of subjects’ distribution in the clusters (different colors) found using the
meaningful topological features of LN, AN and SMN identified with random forest. Different shapes reflect different
clinical groups (HC, MCI, AD). The mean Silhouette values of each cluster are: Ctl —0.215, Ct2 — 0.126, Ct3 — 0.236.
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Supplementary Figure 5| Feature importance distribution according to F1 score (x axis) given by random forest (RF)
ranking in 100 iterations on TVB parameters after splitting the data into 70% for training and 30% for testing. The first
five non correlated (spearman test) features were selected as inputs to the subsequent clustering analysis. The emerging
features belong to both cognitive and motor networks and are shown as underlined.
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Supplementary Figure 6| Visual representation of subjects’ distribution in the clusters (different colors) found using the
meaningful TVB features of brain networks identified with random forest. Different shapes reflect different clinical
groups (HC, MCI, AD). The mean Silhouette values of each cluster are: Cd1 - 0.098, Cd2 - 0.266, Cd3 - 0.213.
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Supplementary Figure 7| Explanatory SC and FC matrices
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Supplementary Table 1: Demographics, clinical and neuropsychological data.

Measures HC MCI AD
Males/females 9/9 8/14 4/16
Age (years) 69 (5) 75 (6) 71(7)
Verbal episodic memory - 1.3(1.5) 0.3(0.7)
Visuoconstructional abilities - 2.5(1.3) 1.5(1.7)
Spatial episodic memory - 1.8(1.5) 0.6(1.2)
Verbal short term memory - 2.8(1.2) 3(1.3)
Semantic fluency - 2.3(1.4) 1.4(1.3)
Lexical retrieval - 2.7(1.2) 2.7(1.4)
Attentional shifting - 1.4(1.6) 1.2(1.4)
Verbal working memory - 3(0.9) 2.1(1.4)
Supplementary Table 2: Wong-Wang model parameters.
PARAMETERS VALUE DESCRIPTION
ag, bg, dg, Tg, WE 310nC 102)2:1:21 0.16s, Excitatory gating variables
a, by, d;, T, W, 615nC 11'01;7;'02_’70'087 S: Inhibitory gating variables
Y 0.641/1000 Kinetic parameter
0.01 nA Noise amplitude
ly 0382 nA Overall eff_ective external
input
C. Obtained from diffusion Structural connectivity (SC)
v tractography matrix
G Obtained from parameters Global coupling scaling
optimization factor
J Obtained from parameters Feedback inhibitory synaptic
: optimization coupling
JnmpA Obtained f.ror.n pgrameters Excitatory synaptic coupling
optimization
Obtained from parameters .
W, Local excitatory recurrence

optimization



Supplementary Methods
MRI acquisition

The MRI acquisitions were performed using a 3T Siemens Skyra scanner with a 32-channel head coil and included
diffusion weighted imaging (DWI) and resting-state fMRI (rs-fMRI) scans'. For DWI data, an axial double-shell single-
shot Spin Echo (SE) - Echo-Planar Imaging (EPI) was performed (voxel size = 2.5 x 2.5 x 2.5 mm?, TR/TE = 8400/93
ms, two shells with 30 isotropically distributed diffusion-weighted directions, diffusion weightings of 1000 and 2000
s/mm?, 7 non-diffusion weighted images (b = 0 s/mm?, bo images)). Three non-diffusion weighted images were acquired
with a reversed phase-encoding for distortion correction. For rs-fMRI data, an axial Gradient Echo (GE) EPI sequence
(voxel size = 3 x 3 x 3 mm®, TR/TE = 2400/30 ms, 200 volumes) was used. For anatomical reference, the protocol
included a high-resolution 3D sagittal T1-weighted (3DT1) scan (TR/TE = 2300/2.96 ms, TI = 900 ms, flip angle = 9°,
in-plane resolution = 1 x 1 mm, slice thickness = 1 mm).

Preprocessing of DWI and rs-fMRI data

Preprocessing of diffusion and fMRI data was performed according to**. DWI data were denoised and corrected
for motion and eddy currents distortion* (FMRIB Software Library, FSL). White matter, gray matter (GM), subcortical
GM and CSF were segmented from the co-registered 3DT1 volume® (MRtrix3) and a 30 million streamlines whole-brain
anatomically constrained tractography® was performed, estimating fiber orientation with multi-shell multi-tissue
constrained spherical deconvolution (CSD) and using probabilistic streamline tractography’. fMRI preprocessing was
carried out combining SPM 12 (Welcome Department of Cognitive Neurology), FSL and MRtrix3 commands in a custom
MATLAB script (v2019b, The MathWorks, Natick, Mass). Marchenko-Pastur principal component analysis (MP-PCA)
denoising® was performed, followed by slice-timing correction, realignment, co-registration to the 3DT1 volume,
polynomial detrending, nuisance regression of 24 motion parameters® and CSF temporal signal'®, and temporal band-pass
filtering (0.008-0.09 Hz).

Structural and functional connectivity

To consider both cerebral cortical and subcortical regions and cerebellar regions, an ad-hoc gray matter
parcellation atlas was created combining 93 cerebral (AAL) and 33 cerebellar (SUIT) labels''2, For each subject,
structural (SC) and functional connectivity (FC) were reconstructed applying the parcellation atlas to whole-brain
tractography, and rs-fMRI. The parcellation atlas applied to whole-brain tractography generated two types of matrices:
a distance matrix containing the lengths of the tracts connecting each pair of nodes, and a weight matrix in which the
normalized number of streamlines represents the connection strength. From rs-fMRI data, the time-course of the BOLD
signal was obtained for each node. To identify the gray matter nodes belonging to the six main functional brain networks,
a mapping between our atlas and the ones by Buckner (cerebellar) and Yeo (cerebral)!*!* was performed. Indeed, these
two functional atlases identify six networks known to support specific functions: 1) integrative functions: default mode
network (DMN), frontoparietal network (FPN), limbic network (LN), attention network (AN); ii) motor and sensory
functions: visual network (VN), somatomotor network (SMN). The subset of nodes defining each network and their
connections were extracted from whole-brain SC obtaining specific network SC matrices, used as input to TVB (as
detailed below). Static and dynamic experimental FC (expFC and expFCD,) for each of the six brain networks were
reconstructed to capture both synchronous BOLD signal fluctuations BOLD and their spatiotemporal-dynamics in resting-
state!>. Static functional connectivity was calculated with the Pearson Correlation Coefficient (PCC) between node pairs
and the PCC matrix was thresholded at 0.0126 after a Fisher’s z transformation'®. The FCD matrix was obtained by a FC
computed over a sliding window of 40 seconds with incremental shifts of 1 TR!? followed by the estimation of FCD as a
time-versus-time matrix, incorporating the correlation between the FC at different time points, and quantifying the time-
evolving dynamics.

Definition of topological measures

For each subject, the main GT metrics (Brain Connectivity Toolbox, Matlab) were obtained from static FC and
SC matrices of resting state brain networks. Following the general definitions'8, the parameters for describing the nodes
in the networks were the density and the core nodes. Networks density was computed as mean nodal degree, defined as
the fraction of actual connections with respect to possible connections. Nodes presenting the maximum numbers of
connections were defined as core nodes and considered as mostly involved in signal transmission. For the SC matrix
nodes strength and the shortest path were also computed, to quantify the distance and the strength of connections between
a node and its neighbors. For the FC matrix intraFC was estimated as the mean of the functional weights between nodes,
to quantify the strength of functional connections. Structural and functional networks integration and segregation were
evaluated, respectively, with global efficiency and clustering coefficient values. Global efficiency is inversely related to



topological distance between nodes and generally reflects the ability to efficiently combine information from different
connected regions. Clustering coefficient quantifies the inclination of the nodes in a graph to reorganize in clusters.
Combining the length of paths with the clustering coefficient measures, it was possible to define whether a network
exhibits small-world properties. Small-worldness reflects the tendency of a network to balance local segregation with
long-distance integration and small world networks are characterized by high clustering coefficient and short
characteristic path length. As a measure of nodes centrality the betweenness centrality was computed from path lengths.

Statistics and machine learning

Statistical tests were performed using IBM-SPSSv.21. First, GT measures and TVB parameters for each network
were tested for normality (Shapiro-Wilk, p<0.05). Then, a multivariate general linear model (GLM) followed by post-
hoc Bonferroni correction was applied to detect network topology and excitation/inhibition differences between groups
correcting for age and gender differences between the groups.

To reduce the parameter space, a machine learning pipeline was implemented in Orange 3.36.2. and applied to
both GT measures and TVB parameters. The parameters of interest (either GT or TVB) from all subjects were normalized
and given as input to a decision-tree-based Random Forest algorithm that performed a feature selection to extract the
parameters that best separated the three clinical groups AD, MCI, and HC, while avoiding overfitting. A Random Forest
algorithm with ten-trees performed the features ranking in 100 iterations after splitting the data into 70% for training and
30% for testing, and the F1 score was used to evaluate the relevance of the features. The top five uncorrelated (Spearman
test) features were used as input for the clustering analysis. The Silhouette test, performed with ten permutations, was
used to determine the optimal number of clusters, and the K-means method was used to assign subjects to clusters.
Differences in parameters between clusters were assessed using a multivariate general linear model. 4 posteriori analysis
of subjects’ distributions between clusters was conducted to check the correspondence between topology/dynamics and
AP and t biomarkers positivity/MMSE scores of MCI patients. Multiple regression analysis was performed to explore the
relationship between the neuropsychological assessment of each cognitive domain and the combination of GT and TVB
parameters. The regression was performed in a backward approach, using neuropsychological scores as dependent
variables, and considering as predictors in turns: (i) GT parameters alone, (ii) TVB parameters alone and (iii) both GT
and TVB measures. The regression algorithm automatically removed predictors until selecting the significant ones (F
test, p<0.05) explains the neuropsychological scores variance.
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