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Supplementary Figure 1| The Wong-Wang Model. Each brain area is represented as a local network composed by 
excitatory (E) and inhibitory (I) neural populations coupled by pathways of NMDA and GABA synapses. The excitatory 
synaptic coupling (JNMDA) goes from the excitatory to the inhibitory population and is NMDA mediated, as well as the 
local recurrent excitation (w+), while the feedback inhibitory coupling (Ji) is GABAergic. The structural connectivity 
matrix weights inter-areal connections and is scaled by the global coupling G. Brain dynamics are described by a set of 
coupled non-linear stochastic differential equations, in which where ri(E,I) denotes the firing rate of the excitatory and 
inhibitory populations, Si(E,I) identifies the average excitatory or inhibitory synaptic gating variables at local area, i, and 
Ii(E,I) is the input current to the excitatory and inhibitory populations at local area, i. 
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Supplementary Figure 2| Parameter space exploration. Parameter space exploration is conducted in two steps: first, 
G and Ji are optimized with the other two parameters (JNMDA and w+) at their standard value; then JNMDA and w+ are 
optimized with G and Ji fixed at their optimized value. Heat maps represent the value of the cost function obtained with 
different parameters combinations. Optimal parameters are the ones leading to the lowest cost function between simulated 
and experimental data.  
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Supplementary Figure 3| Feature importance distribution according to F1 score (x axis) given by the random forest (RF) 
ranking in 100 iterations on graph theory measures after splitting the data into 70% for training and 30% for testing. The 
first five non correlated (spearman test) features were selected as inputs to the subsequent clustering analysis. The 
emerging features belong to the LN, AN and SMN networks and are shown as underlined. 
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Supplementary Figure 4| Visual representation of subjects’ distribution in the clusters (different colors) found using the 
meaningful topological features of LN, AN and SMN identified with random forest. Different shapes reflect different 
clinical groups (HC, MCI, AD). The mean Silhouette values of each cluster are: Ct1 – 0.215, Ct2 – 0.126, Ct3 – 0.236. 
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Supplementary Figure 5| Feature importance distribution according to F1 score (x axis) given by random forest (RF) 
ranking in 100 iterations on TVB parameters after splitting the data into 70% for training and 30% for testing. The first 
five non correlated (spearman test) features were selected as inputs to the subsequent clustering analysis. The emerging 
features belong to both cognitive and motor networks and are shown as underlined.  
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Supplementary Figure 6| Visual representation of subjects’ distribution in the clusters (different colors) found using the 
meaningful TVB features of brain networks identified with random forest. Different shapes reflect different clinical 
groups (HC, MCI, AD). The mean Silhouette values of each cluster are: Cd1 - 0.098, Cd2 - 0.266, Cd3 - 0.213. 
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Supplementary Figure 7| Explanatory SC and FC matrices 
 

 
 
 

 



 
Supplementary Table 1: Demographics, clinical and neuropsychological data.  
 

 
 

 
 
 
Supplementary Table 2: Wong-Wang model parameters. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Measures HC MCI AD
Males/females 9/9 8/14 4/16

Age (years) 69 (5) 75 (6) 71 (7)

Verbal episodic memory  - 1.3 (1.5) 0.3 (0.7)

Visuoconstructional abilities  - 2.5 (1.3) 1.5 (1.7)

Spatial episodic memory  - 1.8 (1.5) 0.6 (1.2)

Verbal short term memory  - 2.8 (1.2) 3 (1.3)

Semantic fluency  - 2.3 (1.4) 1.4 (1.3)

Lexical retrieval  - 2.7 (1.2) 2.7 (1.4)

Attentional shifting  - 1.4 (1.6) 1.2 (1.4)

Verbal working memory  - 3 (0.9) 2.1 (1.4)

PARAMETERS VALUE DESCRIPTION

aE, bE, dE, τE, WE
310 nC-1, 125 Hz, 0.16 s, 

100 ms, 1
Excitatory gating variables

aI, bI, dI, τI, WI 
615 nC-1, 177 Hz, 0.087 s, 

10 ms, 0.7 
Inhibitory gating variables

γ 0.641/1000 Kinetic parameter
σ 0.01 nA Noise amplitude

I0 0.382 nA Overall effective external 
input

Cij
Obtained from diffusion 

tractography
Structural connectivity (SC) 

matrix

G Obtained from parameters 
optimization

Global coupling scaling 
factor

Ji
Obtained from parameters 

optimization
Feedback inhibitory synaptic 

coupling

JNMDA
Obtained from parameters 

optimization Excitatory synaptic coupling

w+
Obtained from parameters 

optimization Local excitatory recurrence



Supplementary Methods 

MRI acquisition 
The MRI acquisitions were performed using a 3T Siemens Skyra scanner with a 32-channel head coil and included 
diffusion weighted imaging (DWI) and resting-state fMRI (rs-fMRI) scans1. For DWI data, an axial double-shell single-
shot Spin Echo (SE) - Echo-Planar Imaging (EPI) was performed (voxel size = 2.5 x 2.5 x 2.5 mm3, TR/TE = 8400/93 
ms, two shells with 30 isotropically distributed diffusion-weighted directions, diffusion weightings of 1000 and 2000 
s/mm2, 7 non-diffusion weighted images (b = 0 s/mm2, b0 images)). Three non-diffusion weighted images were acquired 
with a reversed phase-encoding for distortion correction. For rs-fMRI data, an axial Gradient Echo (GE) EPI sequence 
(voxel size = 3 x 3 x 3 mm3, TR/TE = 2400/30 ms, 200 volumes) was used. For anatomical reference, the protocol 
included a high-resolution 3D sagittal T1-weighted (3DT1) scan (TR/TE = 2300/2.96 ms, TI = 900 ms, flip angle = 9°, 
in-plane resolution = 1 x 1 mm, slice thickness = 1 mm). 
 

Preprocessing of DWI and rs-fMRI data 
Preprocessing of diffusion and fMRI data was performed according to2,3. DWI data were denoised and corrected 

for motion and eddy currents distortion4 (FMRIB Software Library, FSL). White matter, gray matter (GM), subcortical 
GM and CSF were segmented from the co-registered 3DT1 volume5 (MRtrix3) and a 30 million streamlines whole-brain 
anatomically constrained tractography6 was performed, estimating fiber orientation with multi-shell multi-tissue 
constrained spherical deconvolution (CSD) and using probabilistic streamline tractography7. fMRI preprocessing was 
carried out combining SPM12 (Welcome Department of Cognitive Neurology), FSL and MRtrix3 commands in a custom 
MATLAB script (v2019b, The MathWorks, Natick, Mass). Marchenko-Pastur principal component analysis (MP-PCA) 
denoising8 was performed, followed by slice-timing correction, realignment, co-registration to the 3DT1 volume, 
polynomial detrending, nuisance regression of 24 motion parameters9 and CSF temporal signal10, and temporal band-pass 
filtering (0.008-0.09 Hz). 

 

Structural and functional connectivity 
To consider both cerebral cortical and subcortical regions and cerebellar regions, an ad-hoc gray matter 

parcellation atlas was created combining 93 cerebral (AAL) and 33 cerebellar (SUIT) labels11,12. For each subject, 
structural (SC) and functional connectivity (FC) were reconstructed applying the parcellation atlas to whole-brain 
tractography, and rs-fMRI.  The parcellation atlas applied to whole-brain tractography generated two types of matrices: 
a distance matrix containing the lengths of the tracts connecting each pair of nodes, and a weight matrix in which the 
normalized number of streamlines represents the connection strength. From rs-fMRI data, the time-course of the BOLD 
signal was obtained for each node. To identify the gray matter nodes belonging to the six main functional brain networks, 
a mapping between our atlas and the ones by Buckner (cerebellar) and Yeo (cerebral)13,14 was performed. Indeed, these 
two functional atlases identify six networks known to support specific functions: i) integrative functions: default mode 
network (DMN), frontoparietal network (FPN), limbic network (LN), attention network (AN); ii) motor and sensory 
functions: visual network (VN), somatomotor network (SMN). The subset of nodes defining each network and their 
connections were extracted from whole-brain SC obtaining specific network SC matrices, used as input to TVB (as 
detailed below). Static and dynamic experimental FC (expFC and expFCD,) for each of the six brain networks were 
reconstructed to capture both synchronous BOLD signal fluctuations BOLD and their spatiotemporal-dynamics in resting-
state15. Static functional connectivity was calculated with the Pearson Correlation Coefficient (PCC) between node pairs 
and the PCC matrix was thresholded at 0.0126 after a Fisher’s z transformation16. The FCD matrix was obtained by a FC 
computed over a sliding window of 40 seconds with incremental shifts of 1 TR17 followed by the estimation of FCD as a 
time-versus-time matrix, incorporating the correlation between the FC at different time points, and quantifying the time-
evolving dynamics.  

 

Definition of topological measures  
For each subject, the main GT metrics (Brain Connectivity Toolbox, Matlab) were obtained from static FC and 

SC matrices of resting state brain networks. Following the general definitions18, the parameters for describing the nodes 
in the networks were the density and the core nodes. Networks density was computed as mean nodal degree, defined as 
the fraction of actual connections with respect to possible connections. Nodes presenting the maximum numbers of 
connections were defined as core nodes and considered as mostly involved in signal transmission. For the SC matrix 
nodes strength and the shortest path were also computed, to quantify the distance and the strength of connections between 
a node and its neighbors. For the FC matrix intraFC was estimated as the mean of the functional weights between nodes, 
to quantify the strength of functional connections. Structural and functional networks integration and segregation were 
evaluated, respectively, with global efficiency and clustering coefficient values. Global efficiency is inversely related to 



topological distance between nodes and generally reflects the ability to efficiently combine information from different 
connected regions. Clustering coefficient quantifies the inclination of the nodes in a graph to reorganize in clusters. 
Combining the length of paths with the clustering coefficient measures, it was possible to define whether a network 
exhibits small-world properties. Small-worldness reflects the tendency of a network to balance local segregation with 
long-distance integration and small world networks are characterized by high clustering coefficient and short 
characteristic path length. As a measure of nodes centrality the betweenness centrality was computed from path lengths.  

 

Statistics and machine learning 
Statistical tests were performed using IBM-SPSSv.21. First, GT measures and TVB parameters for each network 

were tested for normality (Shapiro-Wilk, p<0.05). Then, a multivariate general linear model (GLM) followed by post-
hoc Bonferroni correction was applied to detect network topology and excitation/inhibition differences between groups 
correcting for age and gender differences between the groups.  

To reduce the parameter space, a machine learning pipeline was implemented in Orange 3.36.2. and applied to 
both GT measures and TVB parameters. The parameters of interest (either GT or TVB) from all subjects were normalized 
and given as input to a decision-tree-based Random Forest algorithm that performed a feature selection to extract the 
parameters that best separated the three clinical groups AD, MCI, and HC, while avoiding overfitting. A Random Forest 
algorithm with ten-trees performed the features ranking in 100 iterations after splitting the data into 70% for training and 
30% for testing, and the F1 score was used to evaluate the relevance of the features. The top five uncorrelated (Spearman 
test) features were used as input for the clustering analysis. The Silhouette test, performed with ten permutations, was 
used to determine the optimal number of clusters, and the K-means method was used to assign subjects to clusters. 
Differences in parameters between clusters were assessed using a multivariate general linear model. A posteriori analysis 
of subjects’ distributions between clusters was conducted to check the correspondence between topology/dynamics and 
Aβ and τ biomarkers positivity/MMSE scores of MCI patients. Multiple regression analysis was performed to explore the 
relationship between the neuropsychological assessment of each cognitive domain and the combination of GT and TVB 
parameters. The regression was performed in a backward approach, using neuropsychological scores as dependent 
variables, and considering as predictors in turns: (i) GT parameters alone, (ii) TVB parameters alone and (iii) both GT 
and TVB measures. The regression algorithm automatically removed predictors until selecting the significant ones (F 
test, p<0.05) explains the neuropsychological scores variance. 
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