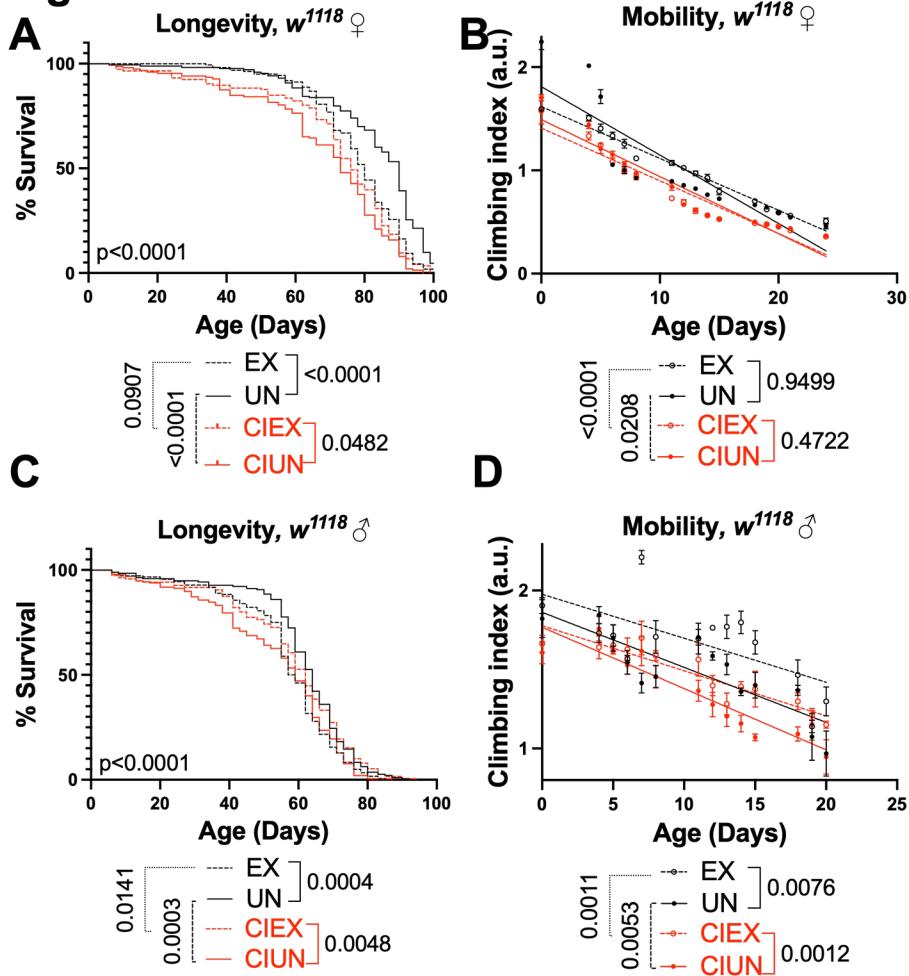


1 **Exercise prevents the negative impact of prolonged inactivity in *Drosophila***

2 Jodi Protasiewicz¹, Sarah Snider¹, Mousumee Khan^{2,3}, Li Tao², Robert J. Wessells², and Alyson
3 Sujkowski^{1,4*}

4 ¹Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201,
5 USA

6 ²Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA


7 ³Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University
8 School of Medicine, Detroit, MI 48201, USA

9 ⁴Department of Physical Therapy, Wayne State University Eugene Applebaum College of
10 Pharmacy and Health Sciences, Detroit, MI 48201, USA

11 ***Corresponding author** Alyson Sujkowski: Wayne State University School of Medicine,
12 Department of Pharmacology, Detroit, MI 48201, USA. Email: asujkows@med.wayne.edu

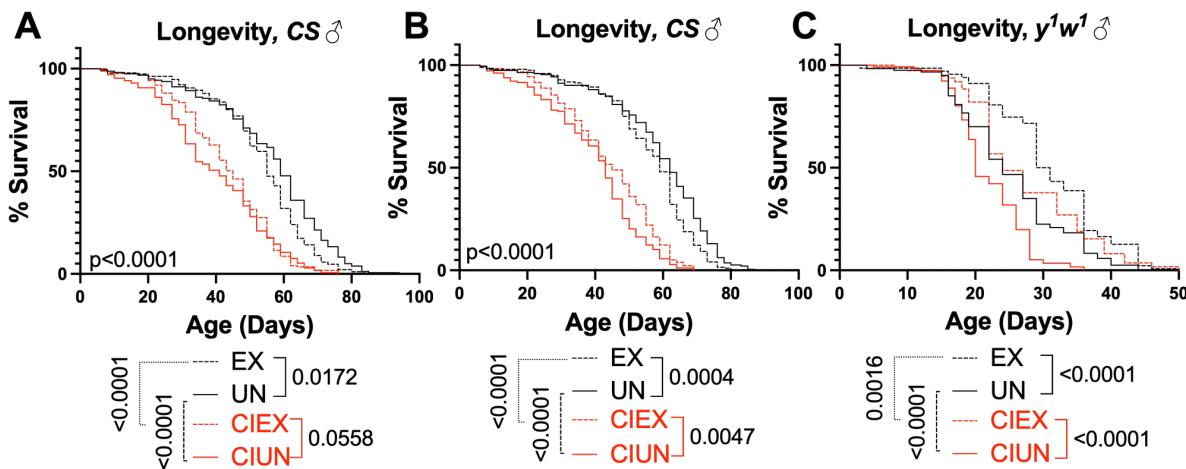

13

Figure S1

14 **Supplemental Figure S1: Additional confirmation of restraint and exercise effects in w^{1118} flies.** (A) Lifespan is improved in restrained female flies that complete 3 weeks of exercise when
 15 compared to unexercised, restrained siblings. (B) In this biological cohort, female flies that
 16 undergo CI have worse mobility than freely mobile flies whether exercised or not. A second
 17 cohort of exercised male flies that undergo mobility restriction have better lifespan (C) and
 18 mobility (D) than unexercised restrained siblings. $n > 200$ flies per experiment. Exercise, mobility
 19 and longevity experiments were repeated a minimum of 3 times and in 3 genetic backgrounds
 20 (w^{1118} , $y^1 w^1$, and Canton S). Trends were similar in all genotypes, with representative cohorts
 21 depicted here. w^{1118} , and $y^1 w^1$ males showed the most consistent phenotypes in response to
 22 both restraint and exercise and were therefore used to complete the remaining experiments.
 23 Longevity analyzed by log-rank, mobility analyzed by linear regression, looking for differences in
 24 slope and intercept.
 25

Supplemental Figure S2

26

27 **Supplemental Figure S2: Lifespan is improved in restrained exercised flies of multiple**
28 **genetic backgrounds.** Lifespan was assessed in duplicate biological replicates (A, B) of male
29 Canton S flies under restraint stress. Exercise improved longevity in restrained flies but in one
30 repetition (A) failed to achieve significance. (C) Exercise significantly improved lifespan in
31 confined y^1w^1 males.

32

33

34 **Supplemental Legends**

35 **Supplemental Figure S1: Additional confirmation of restraint and exercise effects in w^{1118} flies. (A)** Lifespan is improved in restrained female flies that complete 3 weeks of exercise when
36 compared to unexercised, restrained siblings. **(B)** In this biological cohort, female flies that
37 undergo CI have worse mobility than freely mobile flies whether exercised or not. A second
38 cohort of exercised male flies that undergo mobility restriction have better lifespan **(C)** and
39 mobility **(D)** than unexercised restrained siblings. n>200 flies per experiment. Exercise, mobility
40 and longevity experiments were repeated a minimum of 3 times and in 3 genetic backgrounds
41 (w^{1118} , y^1w^1 , and Canton S). Trends were similar in all genotypes, with representative cohorts
42 depicted here. w^{1118} , and y^1w^1 males showed the most consistent phenotypes in response to
43 both restraint and exercise and were therefore used to complete the remaining experiments.
44 Longevity analyzed by log-rank, mobility analyzed by linear regression, looking for differences in
45 slope and intercept.

46
47 **Supplemental Figure S2: Lifespan is improved in restrained exercised flies of multiple**
48 **genetic backgrounds.** Lifespan was assessed in duplicate biological replicates **(A, B)** of male
49 Canton S flies under restraint stress. Exercise improved longevity in restrained flies but in one
50 repetition **(A)** failed to achieve significance. **(C)** Exercise significantly improved lifespan in
51 confined y^1w^1 males.

52

53