

1

Supplementary Information for

2

Adaptive continuous-shape-changing solar-powered microfliers

3

Haoyang Sun¹, Chenxi Yang¹, Zhenlong Wang¹, Yifan Wang¹, Xinrui Zhang¹,

4

Yunhao Ren¹, Wenhua Li¹, Honglong Chang¹, Kan Li², YongAn Huang², Binghe Ma¹,

5

Weizheng Yuan¹, Tao Ye^{1*}

6

¹Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Key Laboratory of Micro- and Nano-Electro-Mechanical Systems of Shaanxi Province, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China

9

²State Key Laboratory of Digital Manufacturing Equipment and Technology, Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China

12

*Corresponding author: yetao@nwpu.edu.cn

13

The PDF file includes:

14

Supplementary Notes 1 to 5

15

Supplementary Figs. 1 to 11

16

Other Supplementary Material for this manuscript includes the following:

17

Supplementary Movies 1 to 5

18 **Supplementary Note**

19 **1. The continuous-shape-changing mechanism analyses**

20 According to the excellent characteristics of SMAs (lightweight, trigger sensitivity, and
21 rapid continuous actuation force), the SMAs were used as S-shape and 2S-shape actuators
22 for heterogeneous integration within microfliers to perform adaptive continuous-shape-
23 changing. The continuous-shape-changing and recovery of SMAs are driven by the unique
24 reversible phase transition between martensite and austenite phases, where external forces
25 or temperature variations induce shape deformations, which are then restored to its original
26 form through phase transformation. This one-way SMA returns to its preset shape upon
27 heating, but does not automatically revert to its deformed state upon cooling, thereby
28 significantly simplifying the programming complexity. According to Joule's law, when an
29 electric current flows through an SMA, heat is generated, as described by the following
30 equation:

31
$$Q = I^2 R t$$

32 Where Q is the generated heat, I is the current flows through the SMA, R is the
33 electrical resistance of the SMA, and t is the duration of current. The temperature change
34 (ΔT) of the SMA can be determined from the generated heat and the material thermal
35 properties, as expressed by the following equation:

36
$$\Delta T = \frac{Q}{mc}$$

37 Where m is the mass of the SMA and c is the specific heat capacity of the material.

38 Substituting the expression for Q into the temperature change equation yields:

39
$$\Delta T = \frac{I^2 R t}{mc}$$

40 This formula expresses the relationship between ΔT and I , R , t , m , and c . The
41 temperature change directly influences the phase transition of the SMA and drives the

42 shape change. As the temperature increases, the SMA changes from the martensite phase
43 to the austenite phase and induces shape-changing of microflier. Conversely, as the
44 temperature decreases, the SMA changes back from the austenite phase to the martensite
45 phase and recoveries to the original shape.

46 The shape-changing angle of SMA can be fine-tuned through precise adjustment of
47 the current intensity and duration, therefore, it is possible to control the shape-changing
48 behavior of the SMAA-based microflier by adjusting these parameters, achieving desired
49 angles for functional applications in various environments. Based on the above analyses,
50 we can conclude that under ideal conditions (without heat dissipation), once the SMAA
51 parameters are selected, we can control the degree of shape-changing (θ) by adjusting t
52 and I . If we further consider actual heat dissipation conditions and establish a transient
53 thermal equilibrium equation, which will lead to more precise control of the SMAA.
54 However, in practical applications, the wind field was more complex, and the heat
55 dissipation conditions were variable. Thus, we performed idealized analyses and employed
56 empirical measurement methods to provide the relationship between the duration of current
57 applied and the shape-changing angle with a fixed current intensity (Fig. 2f).

58 **2. SMAA-EAM actuating system**

59 The SMAA-EAM actuating system integrated a network of multi-modal sensors to real-
60 time detect external environmental parameters such as temperature and pressure variations.
61 It employed sensors to convert changes of external multi- environmental parameters into
62 electrical signals. Through pre-programmed algorithms and adaptive threshold logic, the
63 system analyzed signal patterns against predefined triggering criteria stored in the non-
64 volatile memory and enabled dynamic decision-making for actuating. Upon meeting
65 specific environmental thresholds, the phase transformations of SMAAs could be precisely
66 controlled through Joule's law, generating precise longitudinal shape-changing of
67 microflier in response to different environmental conditions. The EAM did not consume
68 energy from the microflier power and it was powered by the drone power supply, which

69 also provided electricity to the SMAA for adaptive continuous-shape-changing. The
70 electric energy was transmitted between the EAM and SMAA through 36 AWG wires, and
71 the microflier was not affected when dispersal into the air and then released by gravity. We
72 used modular integration technology to generate rapid iterative prototypes to achieve the
73 necessary functions. EAM could also be further miniaturized to improve portability and
74 integration.

75 A key advantage of the proposed microfliers was the integration of SMAA. With
76 customizable dimensions and memory effects, SMAA provided flexibility and
77 controllability to surpass the binary-state magnetic actuators in current origami microfliers.
78 Notably, controlled power modulation enabled continuous-shape-changing of SMA via
79 phase transformation kinetics. Furthermore, SMAA provided an additional significant
80 advantage: its bio-inspired curved attachment ensured the microflier maintained an optimal
81 angle for both wind dispersions and post-landing states (orientations). This design ensured
82 that the solar cells in the microflier could maximize the sunlight capture and prevented
83 disruptions in energy collection due to suboptimal landing orientations. As a result, issues
84 related to insufficient power supply caused by variations in sunlight exposure of on-site
85 solar cells within the microfliers are effectively mitigated.

86

87 **3. Electronic component selection for flexible solar-powered wireless circuits**

88 The flexible solar-powered wireless circuits consisted of two parts: the solar power
89 management circuit module and the multi-parameter sensing and communication circuit
90 module. Specifically, the solar power management circuit module was composed of a
91 micro diode, two LDOs (2.5 V, 1.9 V), CAP (2.5 V, 11 mF), resistors (1 k Ω), and capacitors
92 (100 μ F). We considered the maximum voltage that the core electronic components of the
93 circuit could handle, and then solar energy management was implemented using diodes
94 and LDOs. The supercapacitor was used to store charge, which could mitigate fluctuations
95 in solar energy and ensure the stable operation of the entire circuits. Resistors were used to

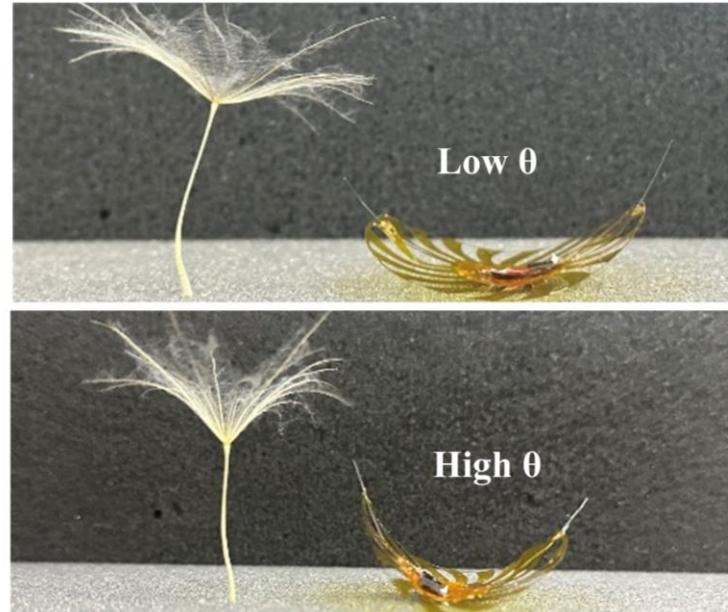
96 divide the voltage and control the voltage of the supercapacitor, ensuring that the
97 supercapacitor reached sufficient voltage before triggering the LDO to supply power to the
98 subsequent multi-parameter sensing module. In summary, sufficient electrical energy was
99 provided by the solar power management circuit module and ensured the normal operation
100 of microflier electronical components under ambient conditions.

101 The multi-parameter sensing and communication circuit module was centered around
102 a Bluetooth microcontroller (NRF52832) and high-precision temperature and pressure
103 sensors (BMP384). The circuit module used a low-power Bluetooth chip and integrated
104 peripheral components, including filter capacitors, inductors, and an external crystal
105 oscillator. It connected to sensors via communication interfaces such as GPIO, I²C, and
106 SPI, enabling logic control and data collection. The design also included a surface-mount
107 ceramic antenna with impedance matching components to meet the requirements for
108 compact size and low weight. The integrated BMP384 sensor featured compact packaging
109 to reduce system weight and offered electrostatic discharge resistance and high robustness,
110 ensuring stable monitoring of environmental factors. Both sensors supported multiple
111 communication interfaces for simple integration with the Bluetooth microcontroller. In
112 summary, the multi-parameter sensing circuit module connected to the Bluetooth
113 microcontroller, powered by the solar power management circuit module, could enable
114 real-time sensing and long-distance data transmission of various environmental parameters
115 (e.g., temperature and pressure).

116

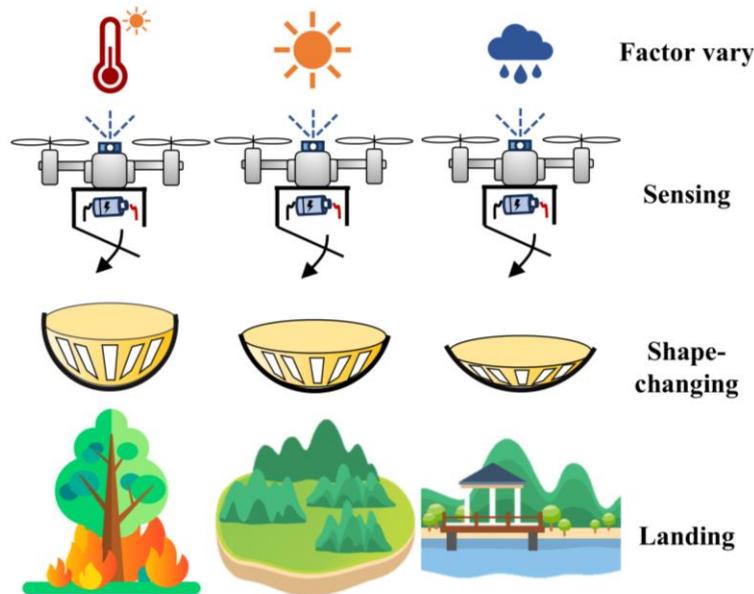
117 **4. Electrical performance experiments**

118 The solar simulator provided more stable and accurate light source for the measurements
119 of microflier electrical performance as compared to fluctuating outdoor light. We tested the
120 start-up phase of microflier after the light was turned on. Specifically, the microflier was
121 placed at the center of the light simulator beam and the light intensity received by the
122 microflier during this process was calibrated using a light power meter. Two digital source


123 meters (2450 Sourcemeter, Keithley) were used to simultaneously measure the voltages of
124 solar cell, CAP, MCU through three channels. Voltage variations of the microflier (with the
125 solar cell facing upward) were plotted from dark to a light intensity of $\sim 803 \text{ W}\cdot\text{m}^{-2}$ (Fig.
126 4c). Additionally, we tested start-up time of the MCU under different 5 light intensities
127 ($\sim 200 \text{ W}\cdot\text{m}^{-2}$, $300 \text{ W}\cdot\text{m}^{-2}$, $400 \text{ W}\cdot\text{m}^{-2}$, $600 \text{ W}\cdot\text{m}^{-2}$, and $800 \text{ W}\cdot\text{m}^{-2}$). Specifically, we
128 performed the same measurement described above using a source meter connected between
129 the solar cells and the circuit input during the start-up phase and defined that the start-up
130 time was the moment MCU received signals. Light intensities were recorded by a light
131 power meter and time required to start the MCU were recorded by a source meter. For each
132 group of light intensity, three independent experiments were conducted and the data were
133 averaged. The corresponding results are plotted in Fig. 4d.

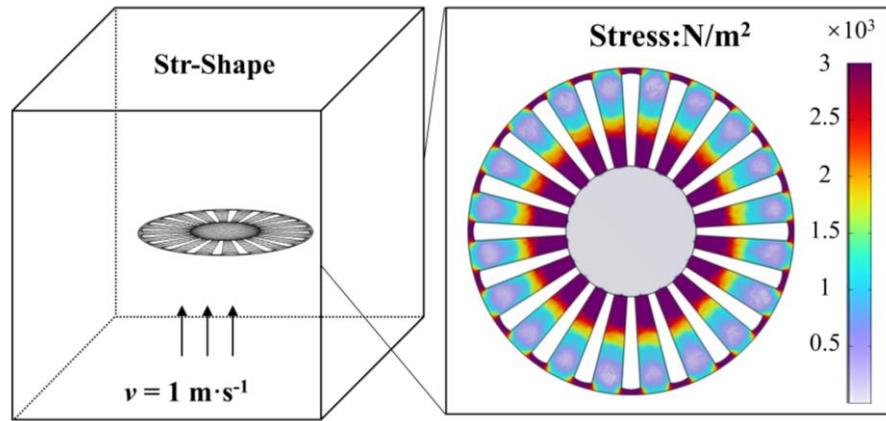
134

135 **5. Outdoor environmental monitoring tests**

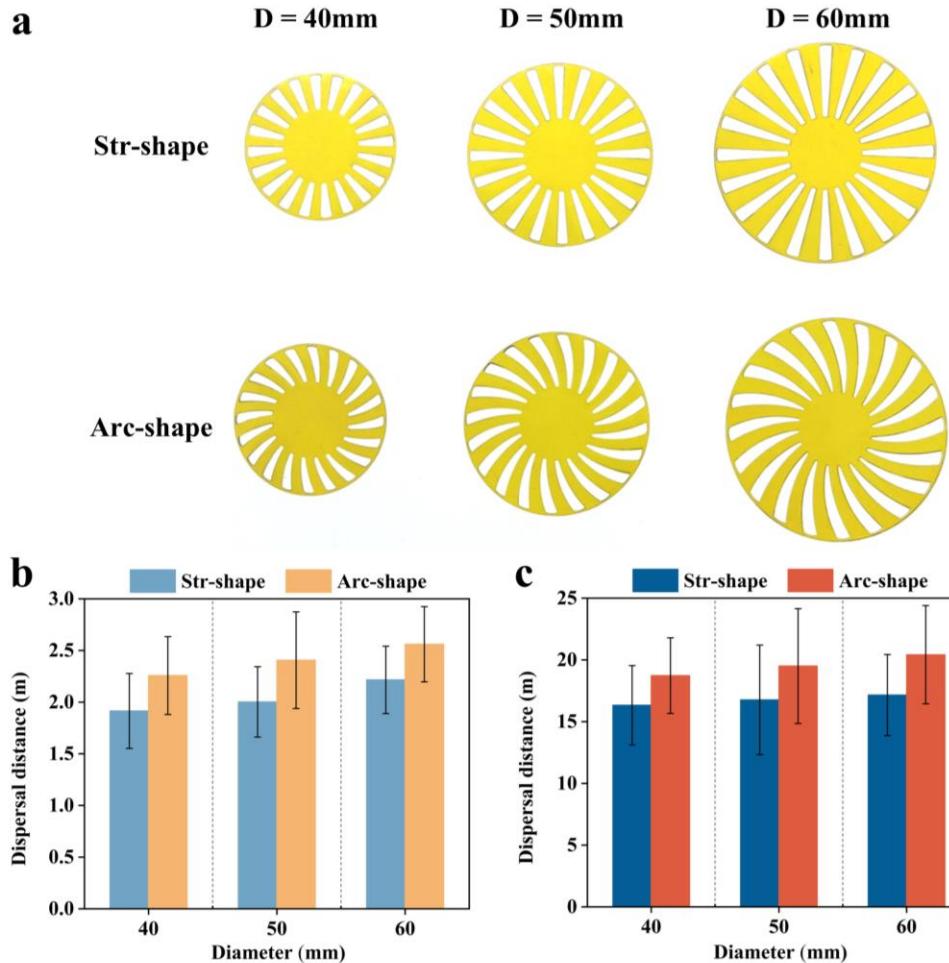

136 To evaluate the adaptive continuous-shape-changing capability of the microflier in ambient
137 conditions, temperature was chosen as the environmental factor, and dispersion monitoring
138 experiments were conducted in areas with different temperature conditions. The adaptive
139 response of microflier was programmed as follow: when the environmental temperature T
140 $\leq 10 \text{ }^{\circ}\text{C}$, it maintained a predefined large angle, while at $T \geq 10 \text{ }^{\circ}\text{C}$, the SMAA activated to
141 drive the microflier to flatten its angle. Two areas were selected for the experiment: a sunny
142 area (warm area), where the temperature remained above $10 \text{ }^{\circ}\text{C}$, and a cooler area (cold
143 area), where the temperature stayed below $10 \text{ }^{\circ}\text{C}$. Upon deployment of the microflier by
144 the drone in the warm area, the microflier successfully deformed to a flat angle due to the
145 braking mechanism. In contrast, when deployed in the cold area, no deformation occurred,
146 and the microflier maintained its original large angle. After landing, the Bluetooth
147 microcontroller activated and the microflier sensed signal was connected to a ground
148 station via wireless communication, the monitoring data packets (2 min per packet) were
149 received from approximately 20 meters away.

150 Additionally, to minimize the additional weight, we tested a version of the microflier
151 that integrated flexible solar-powered wireless circuit and successfully conducted outdoor
152 experiments (Fig. 5d). The results indicated that the designed microflier could monitor
153 multiple environmental parameters. Four typical deployment scenarios (forest, brushwood,
154 hill, and road) were chosen (Supplementary Fig. 10) for the continuous monitoring
155 measurements of three important environmental parameters (temperature and pressure).
156 Finally, a lawn was selected for long-term monitoring to fully demonstrate the monitoring
157 potential of the microfliers. A week-long environmental monitoring experiment was
158 conducted with the ground station to wirelessly transmit data in the same manner as before.
159 On the third and fourth days of the experiment, cloudy weather occurred with a recorded
160 light intensity of only 16.4 W m^{-2} . This caused a brief interruption in Bluetooth
161 communication; however, once sunlight resumed, the ground station successfully
162 reconnected to Bluetooth and resumed monitoring data receiving, the data were compiled
163 into weekly charts (Figs. 5e and 5f). The results demonstrated the microflier's ability to
164 adapt to different environmental conditions, monitor multiple parameters, and maintain
165 reliable performance over long period even under dynamic conditions.
166

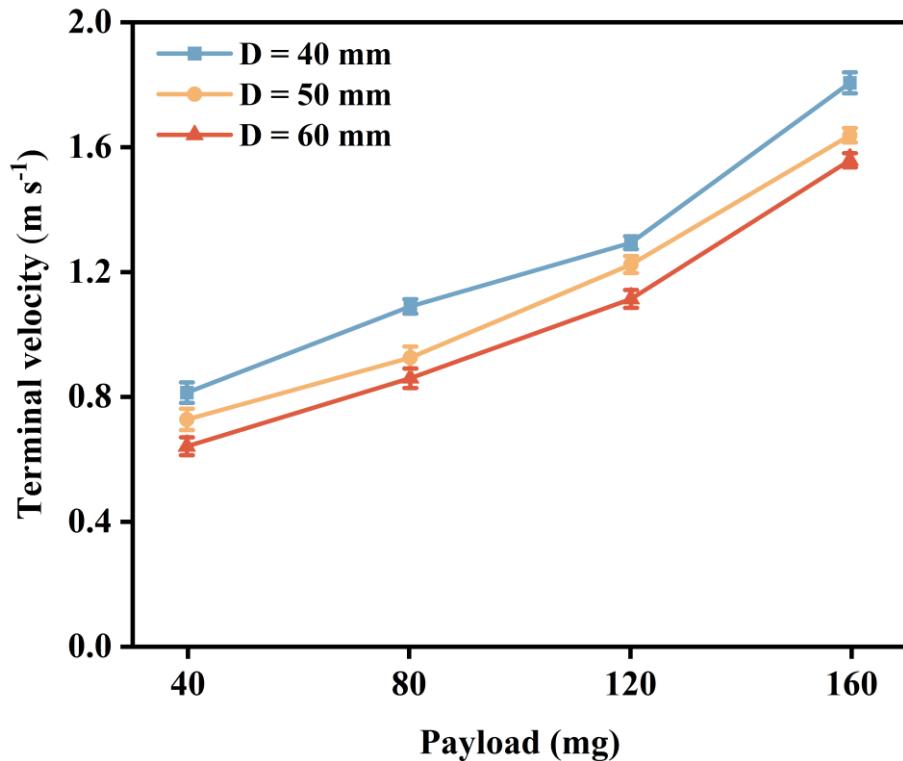
167


168 **Supplementary Fig. 1. Saddle microflier.** Images show that the microflier, like the
169 dandelion seed, can achieve shape-changing with low and high angles (θ).

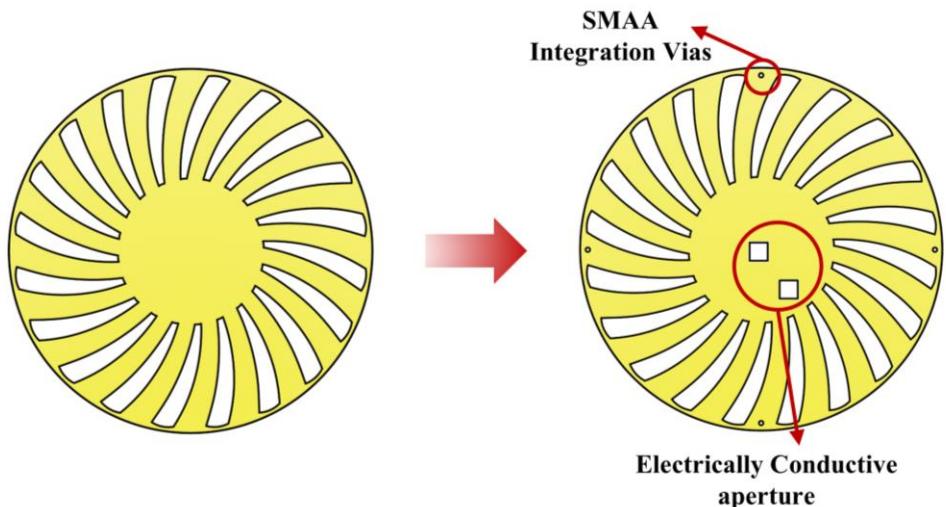
170


171 **Supplementary Fig. 2. Intelligent deployment processes of microfliers.** The EAMs on
 172 minidrones sense different environmental factors and drive SMAs to enable continuous-
 173 shape-changing of microfliers to adjust the flight performances and landing points for
 174 monitoring specific environmental conditions.

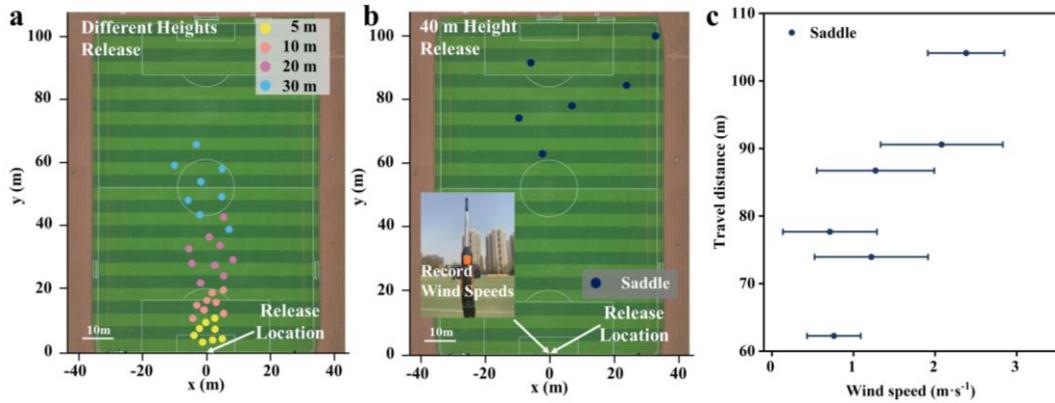
175


176 **Supplementary Fig. 3. Modeling and simulation of str-shape aerodynamic structure.**

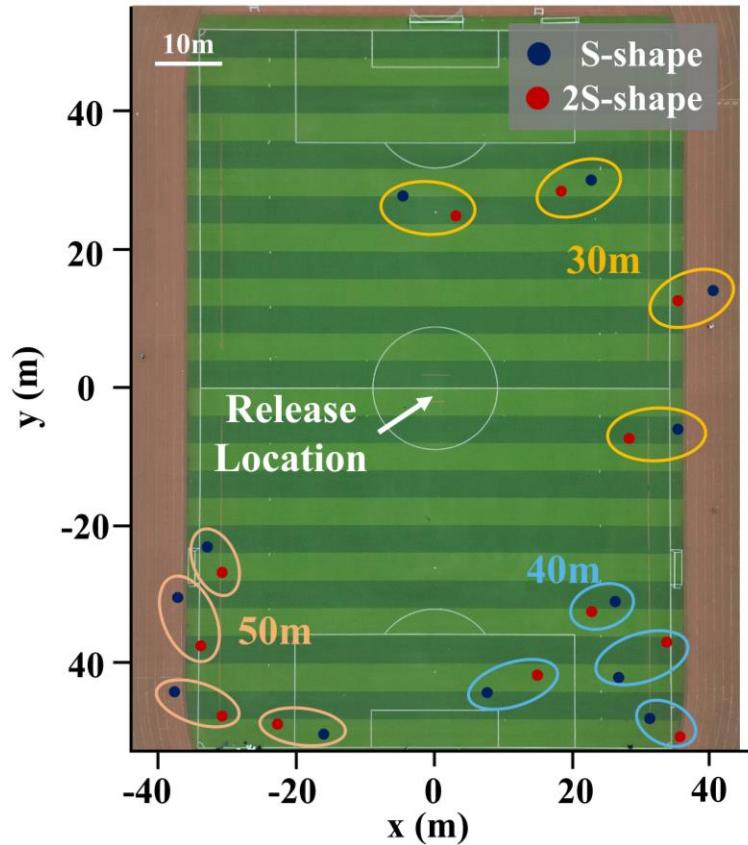
177 The simulated stress field distribution of the straight aerodynamic structure under under
178 longitudinal wind filed. Compared to the arc-shape aerodynamic structure, the stress field
179 distribution of str-shape aerodynamic structure is more uniform, so the spinning tendency
180 should be reduced during flight.


181

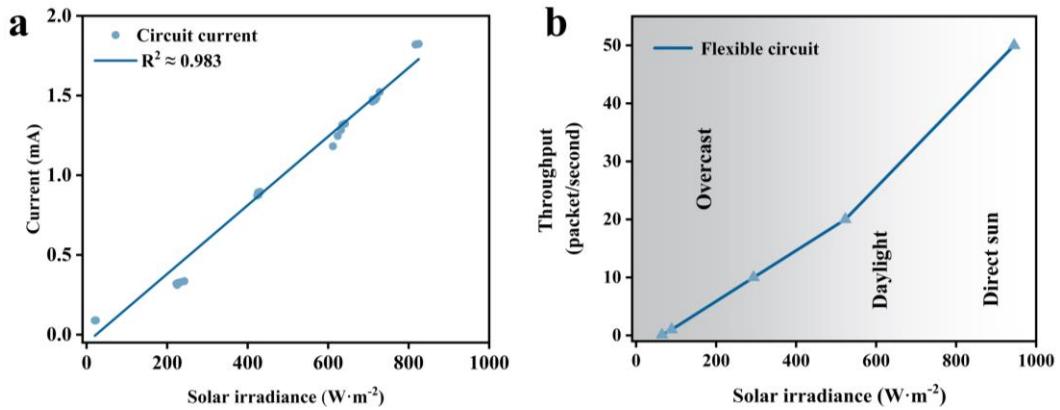
182 **Supplementary Fig. 4. Designs and dispersal distances of aerodynamic structures**
 183 **with different sizes and patterns. a** Aerodynamic structures with different sizes and
 184 patterns. **b** Dispersal distances of aerodynamic structures with different sizes and patterns
 185 when outdoor deployed at a height of 2 meters. **c** Dispersal distances of aerodynamic
 186 structures with different sizes and patterns when outdoor deployed at a height of 10 meters.


187

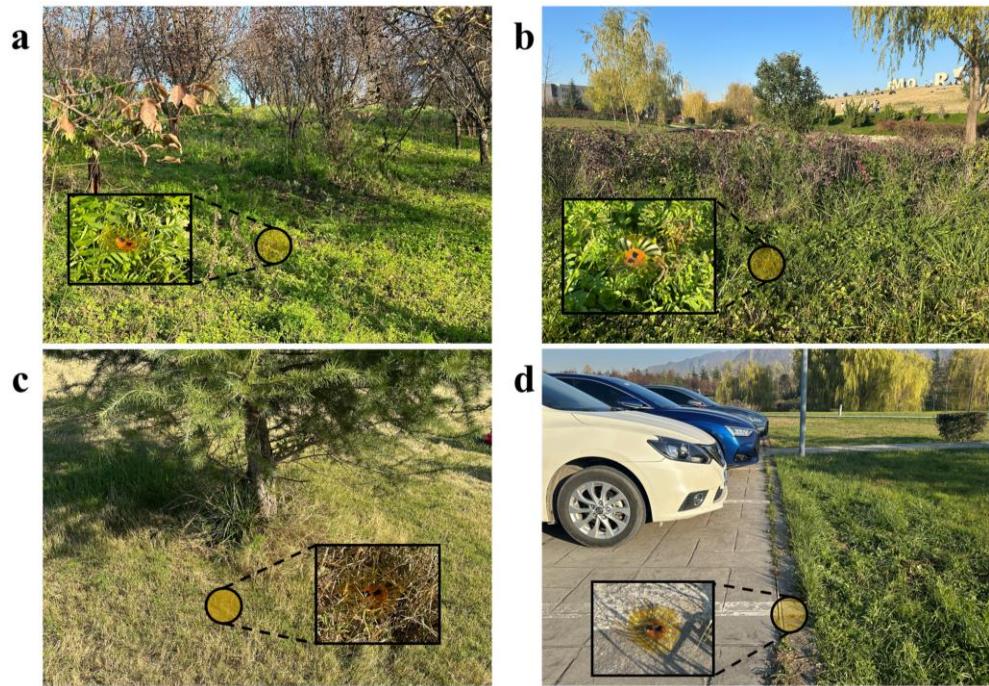
188 **Supplementary Fig. 5. Payload capacity.** The terminal velocities of aerodynamic
189 structures with three different diameters (40 mm, 50 mm, and 60 mm) under different
190 weights of approximately 40 mg, 80 mg, 120 mg, and 160 mg.


191

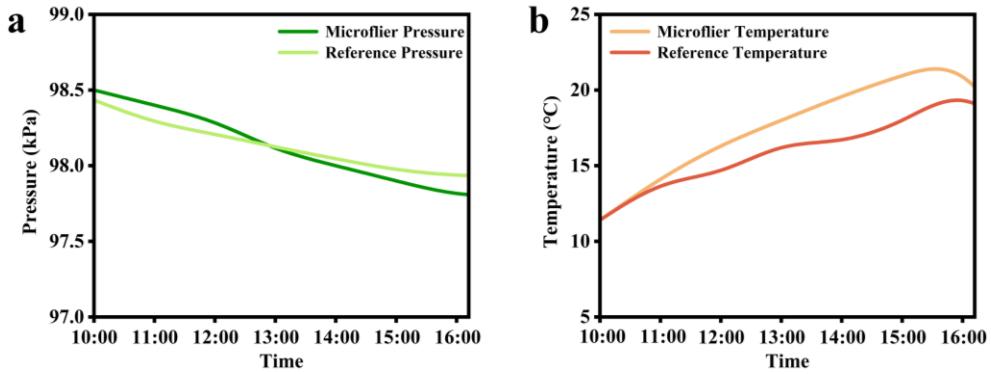
192 **Supplementary Fig. 6. Aerodynamic layer structure optimization.** The optimized
193 bionic aerodynamic layer featured SMAA integration bias and electrically conductive
194 aperture to improve the integrability of microflier, these designs could eliminate redundant
195 jump wires.


196

197 **Supplementary Fig. 7. Wind dispersal distance tests.** **a** The saddle microfliers are
 198 released at different heights (5 m, 10 m, 20 m, 30 m), and their landing points are recorded
 199 on an aerial map ($N \geq 8$ drop trials). **b** The saddle microfliers are released at 40 m height,
 200 and their landing points are recorded on an aerial map with wind speeds were recorded by
 201 a hot wire anemometer ($N = 6$ drop trials). **c** Wind speeds versus travel distances for 40 m
 202 height drop measurements (error bars indicate $\pm\sigma$, $N \geq 30$ wind measurements).


203

204 **Supplementary Fig. 8. Comparison of the actual landing points of the saddle and**
 205 **hemisphere microfliers, as shown in Fig. 3g.** Landing positions of saddle and hemisphere
 206 microfliers after being released at heights of 30 meters, 40 meters, and 50 meters ($N = 4$).


207

208 **Supplementary Fig. 9. Solar irradiances to currents and throughputs.** **a** Currents
 209 harvested from two solar cells at different light intensities. We apply linear regression to
 210 obtain a mapping with $R^2 \geq 0.983$ ($N \geq 20$). **b** Achievable Bluetooth throughput under
 211 different light intensities ($N = 3, \pm \sigma$).

212

213 **Supplementary Fig. 10.4 environments for environmental factors monitoring.** These
214 images showed that microfliers self-sustaining monitored the environment factors in forest,
215 brushwood, hill, and road conditions.

216

217 **Supplementary Fig. 11. Sensor evaluation. a** The pressure recorded by the microflier
 218 sensor at hourly intervals from 10:00 am to 16:00 pm, compared with the pressure curve
 219 recorded by the meteorological station at the same times, the error is $\delta \leq 5\%$. **b** After
 220 applying coefficient correction to account for self-heating interference, the temperature
 221 recorded by the microflier sensor at hourly intervals from 10:00 am to 16:00 pm, compared
 222 with the temperature curve recorded by the meteorological station at the same times, the
 223 error is $\delta \leq 15.94\%$.