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Supplementary Notes 5 

Note1: Detailed analysis of beta cell subtype classification 6 

We performed enrichment analysis for each P-GP and R-GP to determine the associated biological functions of 7 

the gene programs. Then visual the average expression of these gene programs as activity distributions 8 

(Supplementary Fig. 5). In the ProHi-Beta subpopulation, the high activity of P-GP13 represents enhanced ribosomal 9 

translation, activation of secretory-related structures, and increased mitochondrial energy metabolism. This subtype 10 

likely corresponds to a beta cell subpopulation specialized for insulin synthesis, hence we named Proinsulin-High 11 

Beta cells (ProHi-Beta). In the EpiRes-Beta subpopulation, the high activity of P-GP5 indicates a state of active 12 

chromatin remodelling, possibly maintaining beta cell differentiation or responding to metabolic and inflammatory 13 

stress. Therefore, we named Epigenetic-Responsive Beta cells (EpiRes-Beta). In the EMCI-Beta subpopulation, P-14 

GP2, P-GP4, P-GP11, and P-GP12 exhibited significant activity changes. P-GP2, P-GP11, and P-GP12 showed high 15 

activity, representing mitochondrial oxidative phosphorylation and ATP production to support insulin secretion, as 16 

well as endoplasmic reticulum. P-GP4 displayed low activity, indicating suppressed translation and ribosomal 17 

pathways, suggesting reduced protein synthesis capacity with resources preferentially allocated to secretion. Thus, 18 

we named ER-Mitochondria Coupled Insulin Secretory Beta cells (EMCI-Beta). In the StrRes-Beta subpopulation, 19 

we defined it based on P-GP2, P-GP10, and R-GP3. The high activity of P-GP2 and R-GP3 reflects endoplasmic 20 

reticulum stress and protein quality control, heightened mitochondrial metabolism, and oxidative stress defence. The 21 

low activity of P-GP10 indicates compensatory suppression of secretory function. This subtype may represent a 22 

critical transitional state during the compensation-to-decompensation shift in prediabetic beta cells. Targeting its 23 

stress pathways could potentially delay beta cell failure, and its predominant presence in the aged beta group further 24 

supports this hypothesis. Thus we named Stress responsive cell subtypes (StrRes-Beta). In the MSHy-Beta 25 

subpopulation, we defined it based on P-GP14 and P-GP15. The high activity of these two gene programs reflects 26 

mitochondrial energy metabolism and neurosecretory-cytoskeletal coordination. Thus, we named it Metabolic-27 

Secretory Hyperactive Beta cells (MSHy-Beta). In the SPAS-Beta subpopulation, we characterized it using P-GP5, 28 

P-GP7, P-GP10, P-GP13, and P-GP14. The highly active gene programs represent chromatin structure regulation, 29 

autoimmunity, and highly active secretory pathways, while the low-activity programs indicate suppressed ribosome 30 

function, biosynthesis, and insufficient mitochondrial energy supply. This suggests that the subtype may represent a 31 

transitional state in prediabetes or early disease progression. Therefore, we named Stress-Prone Autoimmune-32 

Sensitive Beta cells (SPAS-Beta).  For the MAIS-Beta subpopulation, this was the only group isolated from the aged 33 

cohort that closely resembled subpopulations in the adult group. We analysed it based on P-GP3, P-GP5, P-GP6, P-34 

GP8, P-GP10, and P-GP12. The high activity of these gene programs reflects enhanced mitochondrial and energy 35 

metabolism, activation of the ER-Golgi secretory system, and active chromatin remodelling and transcriptional 36 

regulation. The low activity indicates reduced glycolysis and downregulated antioxidant defence systems. These 37 

functional features suggest that this subtype likely corresponds to a functionally mature insulin-secreting beta cell 38 

population, hence we named Metabolically Active Insulin-Secreting Beta cells (MAIS-Beta). Details on beta cell 39 

subtypes, gene programs, and selected enrichment analysis functions are provided in Supplementary Table 9. 40 
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Note2: scInfer reveals a more comprehensive change across different 42 

tumour states 43 

scInfer can be used to study the microenvironments associated with different stages of breast cancer. We used 44 

the single-cell RNA expression atlas measured by Bhupinder et al. 37. which includes samples from human breast 45 

tissue in the normal, preneoplastic, and tumour states (a total of more than 300,000 cells from 8 normal samples, 4 46 

BRCA1+ carrier tissue samples and 8 triple-negative breast cancer samples). We utilized scInfer, referencing Leduc 47 

2022, Specht, and Khan which are from breast tissue to infer the corresponding proteomic data for the Bhupinder 48 

dataset. Using transcriptomic data combined with inferred proteomics data can better perform t-SNE dimensionality 49 

reduction and clustering of cells (Supplementary Fig. 6). The inferred proteomics data can be reached by 50 

Supplementary Table7-1 and Supplementary Table7-2. Subsequently, we conducted a joint analysis of transcriptomic 51 

and proteomic data across the different microenvironments associated with the normal, preneoplastic, and cancerous 52 

states. Here, we focused on mesenchymal and epithelial cells closely associated with the breast cancer 53 

microenvironment. 54 

We conducted differential expression analysis (N-B1 and B1-TN) on the transcriptomic and proteomic data, 55 

respectively. We then summarized the gene sets on the basis of upregulation and downregulation as well as cell type, 56 

and created an UpSet plot. As shown in Supplementary Fig. 7a, in epithelial cells, the ATOX1, CSTB, and NUCKS1 57 

genes were significantly upregulated at both the RNA and protein levels. Previous studies have shown that the ATOX1 58 

gene can alter cell migration capabilities, which is closely related to the progression of breast cancer 38–40. The CSTB 59 

gene has been identified as crucial for the proteolytic cascade associated with tumour progression, including tumour 60 

growth, invasion, and metastasis 41. Additionally, the NUCKS1 gene has been confirmed to participate in tumor 61 

suppression 42,43. In epithelial cells, 27 genes were significantly downregulated at both the RNA and protein levels, 62 

with functions related primarily to metabolic regulation, survival, and anti-apoptosis 44–48. Similarly, as shown in 63 

Supplementary Fig. 7b, 25 genes in mesenchymal cells were downregulated at both stages, with functions also related 64 

to metabolic regulation and anti-apoptosis 49–53. However, no genes exhibiting consistent upregulation were identified 65 

in mesenchymal cells; the specific gene sets are shown in Supplementary Table 3. Thus, scInfer efficiently analyses 66 

breast cancer progression at the cellular level from a proteomic perspective. 67 

We then analysed the RNAs and proteins that exhibited significant expression changes at both the N-B1 and B1-68 

TN stages within the same cell type. Specifically, we first selected the top 200 genes (100 upregulated and 100 69 

downregulated, sorted by logarithmic fold change) that presented significant changes (p-adjusted less than 0.05) at 70 

each stage. Detailed data records can be found in Supplementary Table 3. We then took the overlap of the two gene 71 

sets and created a Sankey plot to illustrate the continuous changes in the expression of the RNAs and proteins at each 72 

stage. A substantial portion of RNAs in epithelial and mesenchymal cells exhibited a trend of downregulation 73 

followed by upregulation, while some showed upregulation followed by no change (Supplementary Fig. 7c). 74 

However, proteins predominantly displayed a continuous upregulation trend in epithelial cells, whereas a continuous 75 

downregulation trend was more evident in mesenchymal cells. As executors of cellular functions, proteins exhibit a 76 

more stable trend of change than do RNAs. Notably, during the two stages (N-B1 and B1-TN), we identified a gene, 77 

HMGA1, in epithelial cells that exhibited a persistent decline in RNA expression while protein abundance 78 

continuously increased. HMGA1 is closely related to the migration, invasion, and metastasis of TNBC cells 54, and 79 

its high protein expression can serve as a biomarker to predict metastasis incidence 55, histological grade, clinical 80 

stage 56, and survival time 57. The protein abundance inferred by scInfer aligns with that reported in previous studies, 81 

indicating that high expression of the HMGA1 protein is highly correlated with breast cancer progression, while 82 

scRNA-seq showed contrasting results. This highlights the importance of scInfer in complementing multiomics 83 



information to comprehensively investigate the role of the tumour microenvironment. 84 

We summarized the genes whose expression was continuously upregulated or downregulated and conducted 85 

functional enrichment analysis. As shown in Supplementary Fig. 7d, we identified many pathways with similar 86 

functions in both cell types, such as extracellular exosomes, which play important roles in cancer development and 87 

metastasis. We also discovered functions unique to specific cell types; for example, apoptosis-related pathways were 88 

found in epithelial cells, whereas mitochondrial function-related pathways, such as ATP:ADP antiporter activity, were 89 

identified in mesenchymal cells. These pathways are closely related to the development and environment of cancer 90 

cells. Detailed data records can be found in Supplementary Table 3. 91 
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Supplementary Figures 93 

 94 

Supplementary Fig. 1 Existing methods. The two columns in the figure represent paired and unpaired data, whereas the two rows 95 

represent integration and inference methods, forming four quadrants. Within each quadrant, the existing methods are listed. 96 
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 98 

Supplementary Fig. 2 Evaluations on unpaired datasets. a. T-SNE scatter plot displays the result of integrating unpaired transcriptomics and 99 

proteomics data in cell line task. The scatter points without edges represent transcriptomic cells, whereas the scatter points with black edges represent 100 

proteomic cells. Different cell types are distinguished by fill colours. It is preferable for cells of the same type from two omics to cluster closely 101 

together, whereas different types should be more distant. b. Bar plot of the cell type matching accuracy. Cosine similarity is calculated on the basis of 102 

embedded features to find the most matching cells. The proportion of consistent matches among cell types is calculated as the accuracy. c. Distribution 103 

of cosine similarity for all cells. The Cartesian product of cell collections from two types of omics is performed to obtain cell pairs, followed by the 104 

calculation of the cosine similarity for each cell pair and kernel density visualization of the similarity across all cell pairs. d. T-SNE plot of using 105 

transcriptomics and combined with proteomics predicted by scInfer in cell line task. 106 
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 108 

Supplementary Fig. 3 Differential Enrichment Analysis Plot. Under different medications, we first conduct enrichment analysis on 109 

the differentially expressed proteins and RNAs between the treatment group and the control group. Then, we extract the enrichment 110 

analysis results that appeared in the protein analysis but were not involved in the RNA analysis results. 111 

112 



 113 

Supplementary Fig. 4 Cell clustering results using Leiden algorithm on gene program activity data. 114 

  115 



 116 
Supplementary Fig. 5 Gene programs activity distribution on RNA and protein. a. Protein GPs. b. RNA GPs. 117 
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 119 

Supplementary Fig. 6 T-SNE plot of using transcriptomics and combined with proteomics predicted by scInfer in N, B1, and 120 

TN group cells. 121 
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 123 

Supplementary Fig. 7 Single-cell RNA and protein changes in different environments. a. UpSet plot showing the number of differentially 124 

expressed RNAs and proteins in epithelial cells at different cancer stages. N represents the normal (healthy) state, B1 indicates the preneoplastic state 125 

(BRCA1+/–), and TN denotes cancer patients. For example, N-B1(RNA) indicates the differentially expressed RNAs between the preneoplastic state 126 



and the normal state, with the upper bar plot showing the number of genes (33) and the line connecting the points indicating the overlap of different 127 

groups. b. UpSet plot showing the number of differentially expressed RNAs and proteins in mesenchymal cells at different cancer stages. c. Sankey plot 128 

illustrating the continuous changes in RNA and protein levels from the normal to preneoplastic to cancerous state. The top 200 differentially expressed 129 

RNAs and proteins shared between the N-B1 and B1-TN states were selected for plotting, with No change indicating no significant differences. d. 130 

RNAs and proteins whose expression continuously changed, as shown in Fig. 5c, were selected for functional enrichment analysis. For example, 131 

ALDOC was selected for enrichment analysis since its protein expression is upregulated in both N-B1 and B1-TN. The same pathways are represented 132 

in the same colour in the two enrichment analysis diagrams. 133 
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Supplementary Tables 135 

The supplementary tables are stored on Zendo(https://doi.org/10.5281/zenodo.14986872) 136 

https://doi.org/10.5281/zenodo.14986872

