

Large-scale proteomic inference at single-cell resolution by scInfer

Tianyi Zhao^{1, 2, #}, Yuzhi Sun^{3, #}, Renjie Liu^{2, 3, #}, Liyuan Zhang³, Chengcheng Zhang³, Yuran Jia³, Liang Cheng^{4, *}, Guohua Wang^{3, *}, Yadong Wang^{1, *}

These authors contributed equally: Tianyi Zhao, Yuzhi Sun, Renjie Liu.

* Corresponding authors: Liang Cheng (liangcheng@hrbmu.edu.cn), Guohua Wang (ghwang@hit.edu.cn), Yadong Wang (ydwang@hit.edu.cn).

1 School of Medicine and Health, Harbin Institute of Technology, Harbin, China.

2 Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou, China.

3 Faculty of Computing, Harbin Institute of Technology, Harbin, China.

4 Harbin Medical University, Harbin, China.

5 **Supplementary Notes**

6 **Note1: Detailed analysis of beta cell subtype classification**

7 We performed enrichment analysis for each P-GP and R-GP to determine the associated biological functions of
8 the gene programs. Then visual the average expression of these gene programs as activity distributions
9 (Supplementary Fig. 5). In the ProHi-Beta subpopulation, the high activity of P-GP13 represents enhanced ribosomal
10 translation, activation of secretory-related structures, and increased mitochondrial energy metabolism. This subtype
11 likely corresponds to a beta cell subpopulation specialized for insulin synthesis, hence we named Proinsulin-High
12 Beta cells (ProHi-Beta). In the EpiRes-Beta subpopulation, the high activity of P-GP5 indicates a state of active
13 chromatin remodelling, possibly maintaining beta cell differentiation or responding to metabolic and inflammatory
14 stress. Therefore, we named Epigenetic-Responsive Beta cells (EpiRes-Beta). In the EMCI-Beta subpopulation, P-
15 GP2, P-GP4, P-GP11, and P-GP12 exhibited significant activity changes. P-GP2, P-GP11, and P-GP12 showed high
16 activity, representing mitochondrial oxidative phosphorylation and ATP production to support insulin secretion, as
17 well as endoplasmic reticulum. P-GP4 displayed low activity, indicating suppressed translation and ribosomal
18 pathways, suggesting reduced protein synthesis capacity with resources preferentially allocated to secretion. Thus,
19 we named ER-Mitochondria Coupled Insulin Secretory Beta cells (EMCI-Beta). In the StrRes-Beta subpopulation,
20 we defined it based on P-GP2, P-GP10, and R-GP3. The high activity of P-GP2 and R-GP3 reflects endoplasmic
21 reticulum stress and protein quality control, heightened mitochondrial metabolism, and oxidative stress defence. The
22 low activity of P-GP10 indicates compensatory suppression of secretory function. This subtype may represent a
23 critical transitional state during the compensation-to-decompensation shift in prediabetic beta cells. Targeting its
24 stress pathways could potentially delay beta cell failure, and its predominant presence in the aged beta group further
25 supports this hypothesis. Thus we named Stress responsive cell subtypes (StrRes-Beta). In the MSHy-Beta
26 subpopulation, we defined it based on P-GP14 and P-GP15. The high activity of these two gene programs reflects
27 mitochondrial energy metabolism and neurosecretory-cytoskeletal coordination. Thus, we named it Metabolic-
28 Secretory Hyperactive Beta cells (MSHy-Beta). In the SPAS-Beta subpopulation, we characterized it using P-GP5,
29 P-GP7, P-GP10, P-GP13, and P-GP14. The highly active gene programs represent chromatin structure regulation,
30 autoimmunity, and highly active secretory pathways, while the low-activity programs indicate suppressed ribosome
31 function, biosynthesis, and insufficient mitochondrial energy supply. This suggests that the subtype may represent a
32 transitional state in prediabetes or early disease progression. Therefore, we named Stress-Prone Autoimmune-
33 Sensitive Beta cells (SPAS-Beta). For the MAIS-Beta subpopulation, this was the only group isolated from the aged
34 cohort that closely resembled subpopulations in the adult group. We analysed it based on P-GP3, P-GP5, P-GP6, P-
35 GP8, P-GP10, and P-GP12. The high activity of these gene programs reflects enhanced mitochondrial and energy
36 metabolism, activation of the ER-Golgi secretory system, and active chromatin remodelling and transcriptional
37 regulation. The low activity indicates reduced glycolysis and downregulated antioxidant defence systems. These
38 functional features suggest that this subtype likely corresponds to a functionally mature insulin-secreting beta cell
39 population, hence we named Metabolically Active Insulin-Secreting Beta cells (MAIS-Beta). Details on beta cell
40 subtypes, gene programs, and selected enrichment analysis functions are provided in Supplementary Table 9.
41

42 **Note2: scInfer reveals a more comprehensive change across different**
43 **tumour states**

44 scInfer can be used to study the microenvironments associated with different stages of breast cancer. We used
45 the single-cell RNA expression atlas measured by Bhupinder *et al.*³⁷, which includes samples from human breast
46 tissue in the normal, preneoplastic, and tumour states (a total of more than 300,000 cells from 8 normal samples, 4
47 BRCA1+ carrier tissue samples and 8 triple-negative breast cancer samples). We utilized scInfer, referencing Leduc
48 2022, Specht, and Khan which are from breast tissue to infer the corresponding proteomic data for the Bhupinder
49 dataset. Using transcriptomic data combined with inferred proteomics data can better perform t-SNE dimensionality
50 reduction and clustering of cells (Supplementary Fig. 6). The inferred proteomics data can be reached by
51 Supplementary Table7-1 and Supplementary Table7-2. Subsequently, we conducted a joint analysis of transcriptomic
52 and proteomic data across the different microenvironments associated with the normal, preneoplastic, and cancerous
53 states. Here, we focused on mesenchymal and epithelial cells closely associated with the breast cancer
54 microenvironment.

55 We conducted differential expression analysis (N-B1 and B1-TN) on the transcriptomic and proteomic data,
56 respectively. We then summarized the gene sets on the basis of upregulation and downregulation as well as cell type,
57 and created an UpSet plot. As shown in Supplementary Fig. 7a, in epithelial cells, the ATOX1, CSTB, and NUCKS1
58 genes were significantly upregulated at both the RNA and protein levels. Previous studies have shown that the ATOX1
59 gene can alter cell migration capabilities, which is closely related to the progression of breast cancer^{38–40}. The CSTB
60 gene has been identified as crucial for the proteolytic cascade associated with tumour progression, including tumour
61 growth, invasion, and metastasis⁴¹. Additionally, the NUCKS1 gene has been confirmed to participate in tumor
62 suppression^{42,43}. In epithelial cells, 27 genes were significantly downregulated at both the RNA and protein levels,
63 with functions related primarily to metabolic regulation, survival, and anti-apoptosis^{44–48}. Similarly, as shown in
64 Supplementary Fig. 7b, 25 genes in mesenchymal cells were downregulated at both stages, with functions also related
65 to metabolic regulation and anti-apoptosis^{49–53}. However, no genes exhibiting consistent upregulation were identified
66 in mesenchymal cells; the specific gene sets are shown in Supplementary Table 3. Thus, scInfer efficiently analyses
67 breast cancer progression at the cellular level from a proteomic perspective.

68 We then analysed the RNAs and proteins that exhibited significant expression changes at both the N-B1 and B1-
69 TN stages within the same cell type. Specifically, we first selected the top 200 genes (100 upregulated and 100
70 downregulated, sorted by logarithmic fold change) that presented significant changes (p-adjusted less than 0.05) at
71 each stage. Detailed data records can be found in Supplementary Table 3. We then took the overlap of the two gene
72 sets and created a Sankey plot to illustrate the continuous changes in the expression of the RNAs and proteins at each
73 stage. A substantial portion of RNAs in epithelial and mesenchymal cells exhibited a trend of downregulation
74 followed by upregulation, while some showed upregulation followed by no change (Supplementary Fig. 7c).
75 However, proteins predominantly displayed a continuous upregulation trend in epithelial cells, whereas a continuous
76 downregulation trend was more evident in mesenchymal cells. As executors of cellular functions, proteins exhibit a
77 more stable trend of change than do RNAs. Notably, during the two stages (N-B1 and B1-TN), we identified a gene,
78 HMGA1, in epithelial cells that exhibited a persistent decline in RNA expression while protein abundance
79 continuously increased. HMGA1 is closely related to the migration, invasion, and metastasis of TNBC cells⁵⁴, and
80 its high protein expression can serve as a biomarker to predict metastasis incidence⁵⁵, histological grade, clinical
81 stage⁵⁶, and survival time⁵⁷. The protein abundance inferred by scInfer aligns with that reported in previous studies,
82 indicating that high expression of the HMGA1 protein is highly correlated with breast cancer progression, while
83 scRNA-seq showed contrasting results. This highlights the importance of scInfer in complementing multiomics

84 information to comprehensively investigate the role of the tumour microenvironment.

85 We summarized the genes whose expression was continuously upregulated or downregulated and conducted
86 functional enrichment analysis. As shown in Supplementary Fig. 7d, we identified many pathways with similar
87 functions in both cell types, such as extracellular exosomes, which play important roles in cancer development and
88 metastasis. We also discovered functions unique to specific cell types; for example, apoptosis-related pathways were
89 found in epithelial cells, whereas mitochondrial function-related pathways, such as ATP:ADP antiporter activity, were
90 identified in mesenchymal cells. These pathways are closely related to the development and environment of cancer
91 cells. Detailed data records can be found in Supplementary Table 3.

92

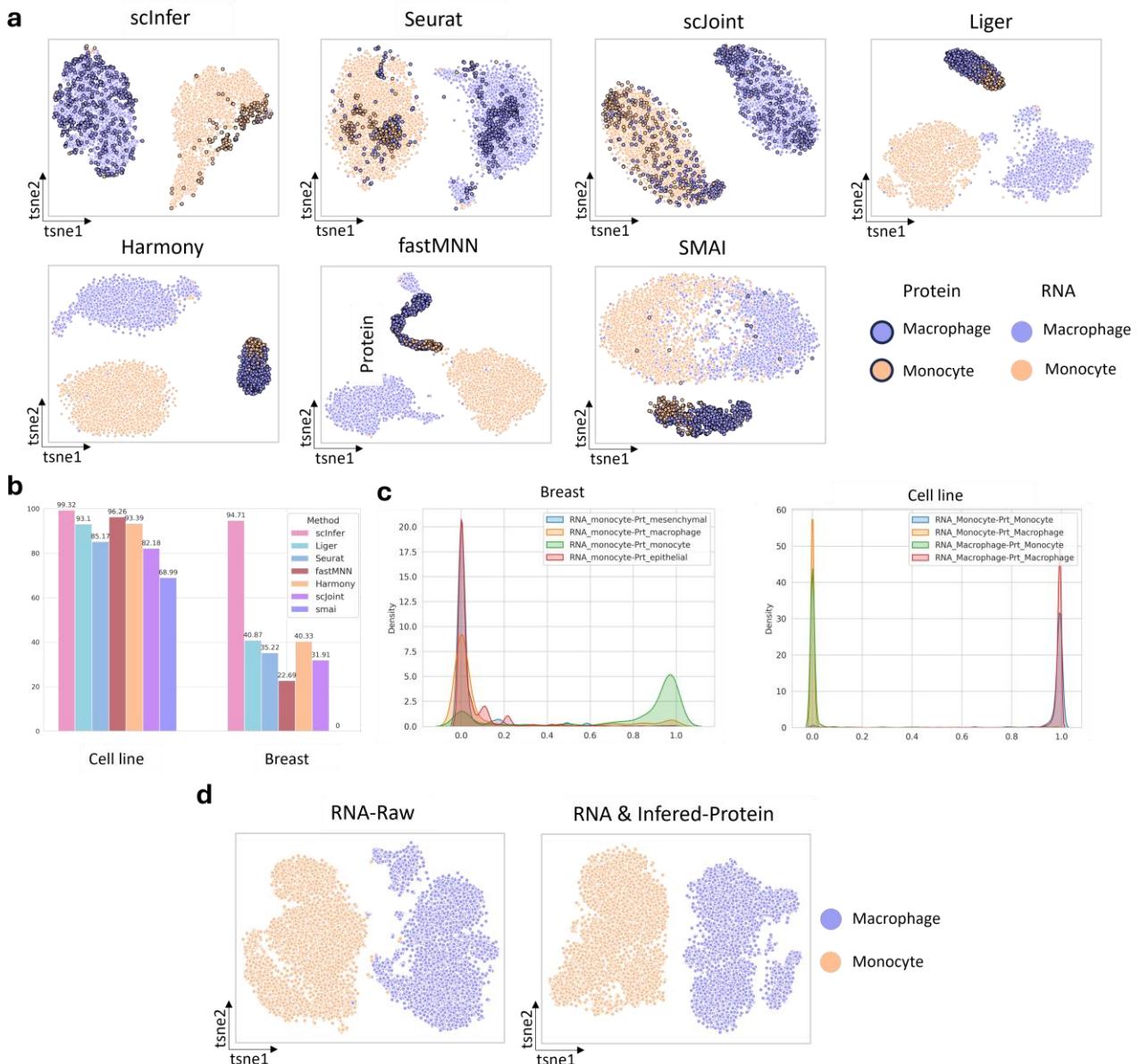
93 **Supplementary Figures**

	Paired Data	Unpaired Data
Integration	totalVI Seurat V3 CiteFuse ⋮	scJoint Seurat V5 LIGER ⋮
Inference	scVAE sciPENN Seurat V4 ⋮	Not implemented

94

95 **Supplementary Fig. 1 Existing methods.** The two columns in the figure represent paired and unpaired data, whereas the two rows
96 represent integration and inference methods, forming four quadrants. Within each quadrant, the existing methods are listed.

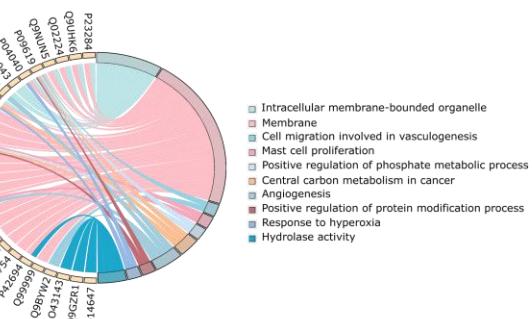
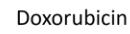
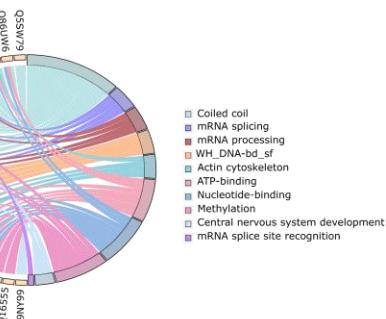
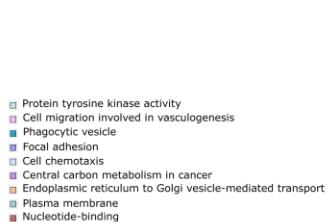
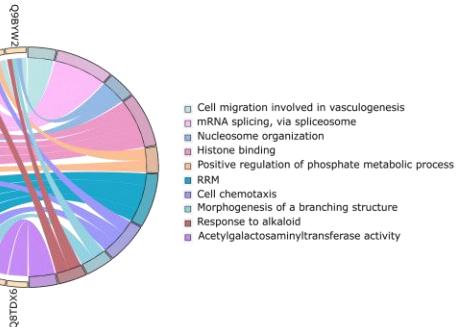
97



98

Supplementary Fig. 2 Evaluations on unpaired datasets. **a.** T-SNE scatter plot displays the result of integrating unpaired transcriptomics and proteomics data in cell line task. The scatter points without edges represent transcriptomic cells, whereas the scatter points with black edges represent proteomic cells. Different cell types are distinguished by fill colours. It is preferable for cells of the same type from two omics to cluster closely together, whereas different types should be more distant. **b.** Bar plot of the cell type matching accuracy. Cosine similarity is calculated on the basis of embedded features to find the most matching cells. The proportion of consistent matches among cell types is calculated as the accuracy. **c.** Distribution of cosine similarity for all cells. The Cartesian product of cell collections from two types of omics is performed to obtain cell pairs, followed by the calculation of the cosine similarity for each cell pair and kernel density visualization of the similarity across all cell pairs. **d.** T-SNE plot of using transcriptomics and combined with proteomics predicted by scInfer in cell line task.

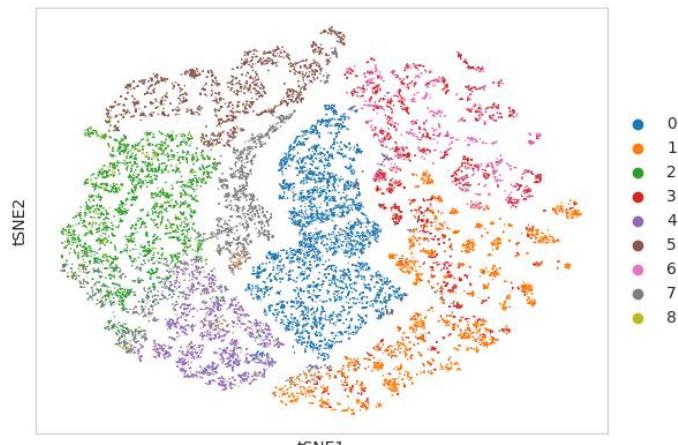
107



108

109 **Supplementary Fig. 3 Differential Enrichment Analysis Plot.** Under different medications, we first conduct enrichment analysis on
110 the differentially expressed proteins and RNAs between the treatment group and the control group. Then, we extract the enrichment
111 analysis results that appeared in the protein analysis but were not involved in the RNA analysis results.

112

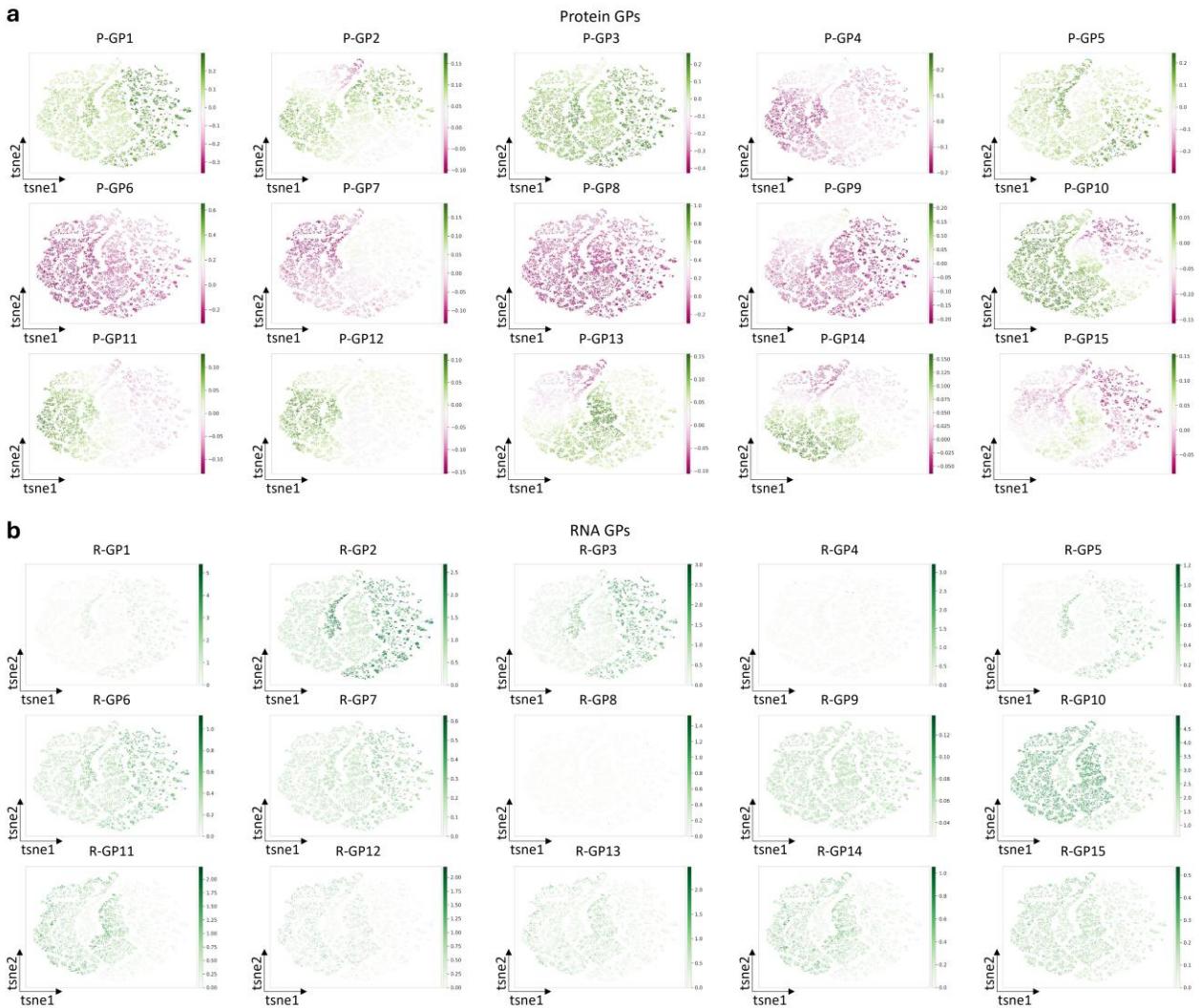


113

114

Supplementary Fig. 4 Cell clustering results using Leiden algorithm on gene program activity data.

115

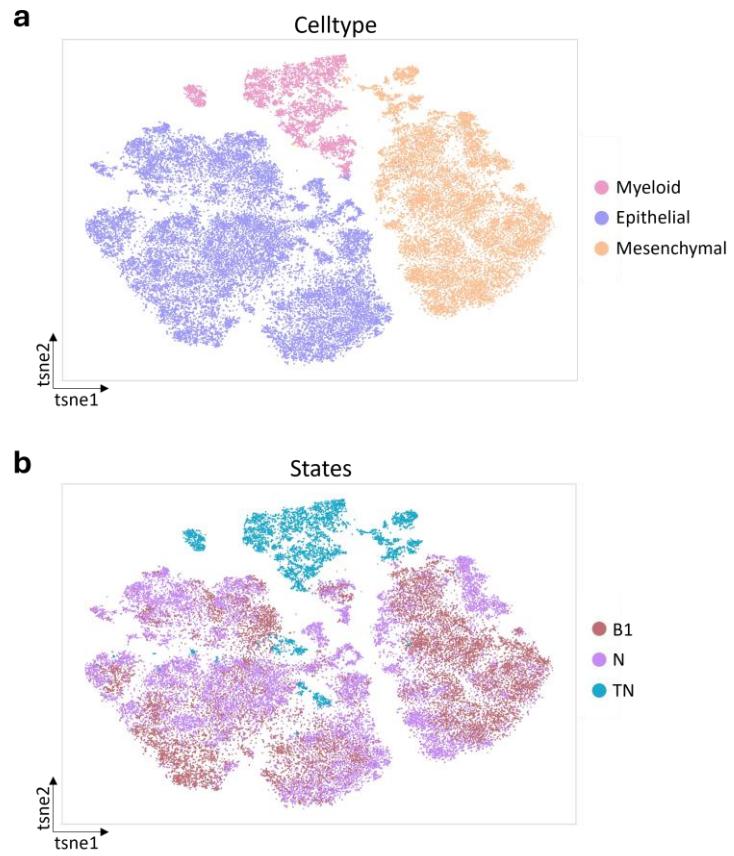


116

117

Supplementary Fig. 5 Gene programs activity distribution on RNA and protein. **a.** Protein GPs. **b.** RNA GPs.

118

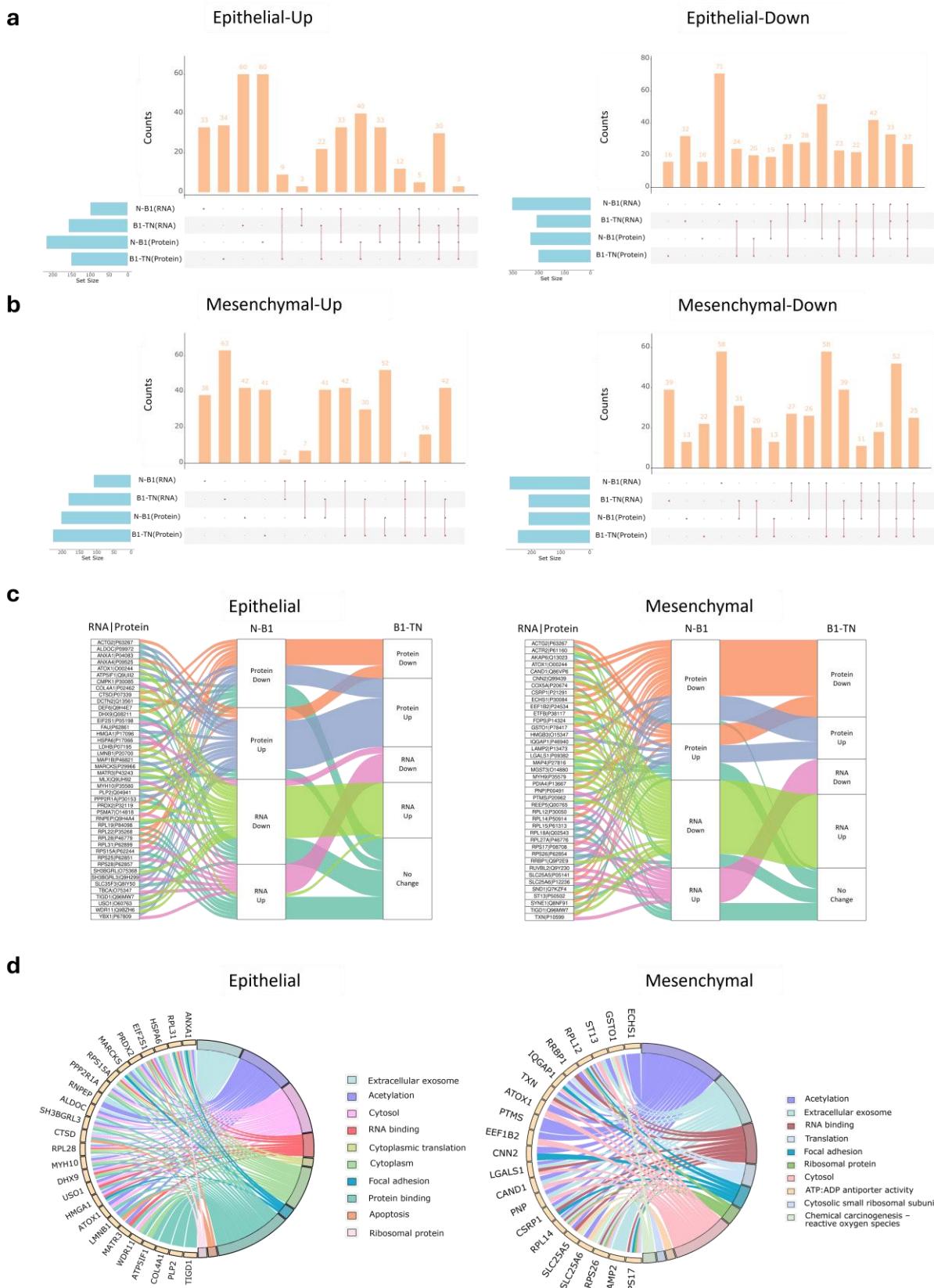


119

120

Supplementary Fig. 6 T-SNE plot of using transcriptomics and combined with proteomics predicted by scInfer in N, B1, and
121 TN group cells.

122



123

124

125

126

Supplementary Fig. 7 Single-cell RNA and protein changes in different environments. a. UpSet plot showing the number of differentially expressed RNAs and proteins in epithelial cells at different cancer stages. N represents the normal (healthy) state, B1 indicates the preneoplastic state (RCA1+/-), and TN denotes cancer patients. For example, N-B1(RNA) indicates the differentially expressed RNAs between the preneoplastic state

127 and the normal state, with the upper bar plot showing the number of genes (33) and the line connecting the points indicating the overlap of different
128 groups. **b.** UpSet plot showing the number of differentially expressed RNAs and proteins in mesenchymal cells at different cancer stages. **c.** Sankey plot
129 illustrating the continuous changes in RNA and protein levels from the normal to preneoplastic to cancerous state. The top 200 differentially expressed
130 RNAs and proteins shared between the N-B1 and B1-TN states were selected for plotting, with No change indicating no significant differences. **d.**
131 RNAs and proteins whose expression continuously changed, as shown in Fig. 5c, were selected for functional enrichment analysis. For example,
132 ALDOC was selected for enrichment analysis since its protein expression is upregulated in both N-B1 and B1-TN. The same pathways are represented
133 in the same colour in the two enrichment analysis diagrams.

134

135

Supplementary Tables

136

The supplementary tables are stored on Zendo(<https://doi.org/10.5281/zenodo.14986872>)