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Supplementary Notes

Notel: Detailed analysis of beta cell subtype classification

We performed enrichment analysis for each P-GP and R-GP to determine the associated biological functions of
the gene programs. Then visual the average expression of these gene programs as activity distributions
(Supplementary Fig. 5). In the ProHi-Beta subpopulation, the high activity of P-GP13 represents enhanced ribosomal
translation, activation of secretory-related structures, and increased mitochondrial energy metabolism. This subtype
likely corresponds to a beta cell subpopulation specialized for insulin synthesis, hence we named Proinsulin-High
Beta cells (ProHi-Beta). In the EpiRes-Beta subpopulation, the high activity of P-GPS5 indicates a state of active
chromatin remodelling, possibly maintaining beta cell differentiation or responding to metabolic and inflammatory
stress. Therefore, we named Epigenetic-Responsive Beta cells (EpiRes-Beta). In the EMCI-Beta subpopulation, P-
GP2, P-GP4, P-GP11, and P-GP12 exhibited significant activity changes. P-GP2, P-GP11, and P-GP12 showed high
activity, representing mitochondrial oxidative phosphorylation and ATP production to support insulin secretion, as
well as endoplasmic reticulum. P-GP4 displayed low activity, indicating suppressed translation and ribosomal
pathways, suggesting reduced protein synthesis capacity with resources preferentially allocated to secretion. Thus,
we named ER-Mitochondria Coupled Insulin Secretory Beta cells (EMCI-Beta). In the StrRes-Beta subpopulation,
we defined it based on P-GP2, P-GP10, and R-GP3. The high activity of P-GP2 and R-GP3 reflects endoplasmic
reticulum stress and protein quality control, heightened mitochondrial metabolism, and oxidative stress defence. The
low activity of P-GP10 indicates compensatory suppression of secretory function. This subtype may represent a
critical transitional state during the compensation-to-decompensation shift in prediabetic beta cells. Targeting its
stress pathways could potentially delay beta cell failure, and its predominant presence in the aged beta group further
supports this hypothesis. Thus we named Stress responsive cell subtypes (StrRes-Beta). In the MSHy-Beta
subpopulation, we defined it based on P-GP14 and P-GP15. The high activity of these two gene programs reflects
mitochondrial energy metabolism and neurosecretory-cytoskeletal coordination. Thus, we named it Metabolic-
Secretory Hyperactive Beta cells (MSHy-Beta). In the SPAS-Beta subpopulation, we characterized it using P-GP5,
P-GP7, P-GP10, P-GP13, and P-GP14. The highly active gene programs represent chromatin structure regulation,
autoimmunity, and highly active secretory pathways, while the low-activity programs indicate suppressed ribosome
function, biosynthesis, and insufficient mitochondrial energy supply. This suggests that the subtype may represent a
transitional state in prediabetes or early disease progression. Therefore, we named Stress-Prone Autoimmune-
Sensitive Beta cells (SPAS-Beta). For the MAIS-Beta subpopulation, this was the only group isolated from the aged
cohort that closely resembled subpopulations in the adult group. We analysed it based on P-GP3, P-GPS5, P-GP6, P-
GP8, P-GP10, and P-GP12. The high activity of these gene programs reflects enhanced mitochondrial and energy
metabolism, activation of the ER-Golgi secretory system, and active chromatin remodelling and transcriptional
regulation. The low activity indicates reduced glycolysis and downregulated antioxidant defence systems. These
functional features suggest that this subtype likely corresponds to a functionally mature insulin-secreting beta cell
population, hence we named Metabolically Active Insulin-Secreting Beta cells (MAIS-Beta). Details on beta cell
subtypes, gene programs, and selected enrichment analysis functions are provided in Supplementary Table 9.
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Note2: scInfer reveals a more comprehensive change across different

tumour states

scInfer can be used to study the microenvironments associated with different stages of breast cancer. We used
the single-cell RNA expression atlas measured by Bhupinder et al. 37. which includes samples from human breast
tissue in the normal, preneoplastic, and tumour states (a total of more than 300,000 cells from 8 normal samples, 4
BRCAT1+ carrier tissue samples and 8 triple-negative breast cancer samples). We utilized sclnfer, referencing Leduc
2022, Specht, and Khan which are from breast tissue to infer the corresponding proteomic data for the Bhupinder
dataset. Using transcriptomic data combined with inferred proteomics data can better perform t-SNE dimensionality
reduction and clustering of cells (Supplementary Fig. 6). The inferred proteomics data can be reached by
Supplementary Table7-1 and Supplementary Table7-2. Subsequently, we conducted a joint analysis of transcriptomic
and proteomic data across the different microenvironments associated with the normal, preneoplastic, and cancerous
states. Here, we focused on mesenchymal and epithelial cells closely associated with the breast cancer
microenvironment.

We conducted differential expression analysis (N-B1 and B1-TN) on the transcriptomic and proteomic data,
respectively. We then summarized the gene sets on the basis of upregulation and downregulation as well as cell type,
and created an UpSet plot. As shown in Supplementary Fig. 7a, in epithelial cells, the ATOX1, CSTB, and NUCKSI1
genes were significantly upregulated at both the RN A and protein levels. Previous studies have shown that the ATOX1
gene can alter cell migration capabilities, which is closely related to the progression of breast cancer **#°. The CSTB
gene has been identified as crucial for the proteolytic cascade associated with tumour progression, including tumour
growth, invasion, and metastasis *'. Additionally, the NUCKS1 gene has been confirmed to participate in tumor
suppression 4>, In epithelial cells, 27 genes were significantly downregulated at both the RNA and protein levels,
with functions related primarily to metabolic regulation, survival, and anti-apoptosis 8. Similarly, as shown in
Supplementary Fig. 7b, 25 genes in mesenchymal cells were downregulated at both stages, with functions also related
to metabolic regulation and anti-apoptosis #*-33. However, no genes exhibiting consistent upregulation were identified
in mesenchymal cells; the specific gene sets are shown in Supplementary Table 3. Thus, scInfer efficiently analyses
breast cancer progression at the cellular level from a proteomic perspective.

We then analysed the RNAs and proteins that exhibited significant expression changes at both the N-B1 and B1-
TN stages within the same cell type. Specifically, we first selected the top 200 genes (100 upregulated and 100
downregulated, sorted by logarithmic fold change) that presented significant changes (p-adjusted less than 0.05) at
each stage. Detailed data records can be found in Supplementary Table 3. We then took the overlap of the two gene
sets and created a Sankey plot to illustrate the continuous changes in the expression of the RNAs and proteins at each
stage. A substantial portion of RNAs in epithelial and mesenchymal cells exhibited a trend of downregulation
followed by upregulation, while some showed upregulation followed by no change (Supplementary Fig. 7c¢).
However, proteins predominantly displayed a continuous upregulation trend in epithelial cells, whereas a continuous
downregulation trend was more evident in mesenchymal cells. As executors of cellular functions, proteins exhibit a
more stable trend of change than do RNAs. Notably, during the two stages (N-B1 and B1-TN), we identified a gene,
HMGAL, in epithelial cells that exhibited a persistent decline in RNA expression while protein abundance
continuously increased. HMGAL is closely related to the migration, invasion, and metastasis of TNBC cells **, and
its high protein expression can serve as a biomarker to predict metastasis incidence >, histological grade, clinical
stage 3, and survival time 3”. The protein abundance inferred by scInfer aligns with that reported in previous studies,
indicating that high expression of the HMGAI1 protein is highly correlated with breast cancer progression, while
scRNA-seq showed contrasting results. This highlights the importance of scInfer in complementing multiomics
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information to comprehensively investigate the role of the tumour microenvironment.

We summarized the genes whose expression was continuously upregulated or downregulated and conducted
functional enrichment analysis. As shown in Supplementary Fig. 7d, we identified many pathways with similar
functions in both cell types, such as extracellular exosomes, which play important roles in cancer development and
metastasis. We also discovered functions unique to specific cell types; for example, apoptosis-related pathways were
found in epithelial cells, whereas mitochondrial function-related pathways, such as ATP: ADP antiporter activity, were
identified in mesenchymal cells. These pathways are closely related to the development and environment of cancer
cells. Detailed data records can be found in Supplementary Table 3.
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Supplementary Fig. 1 Existing methods. The two columns in the figure represent paired and unpaired data, whereas the two rows

represent integration and inference methods, forming four quadrants. Within each quadrant, the existing methods are listed.



a scinfer Seurat scloint Liger

g b, &
° 03 3 ’. ': °
@ o % o
8Ny ()] [
Fid S <
- -
tsnel tsnel
Harmony fastMNN
Protein RNA
c o
% 3 O Macrophage (1) Macrophage
S O Monocyte Monocyte
o~ o~
tsnel tsnel
b . C Breast Cell line
wo 01 e Method [==1 RNA_monocyte-Prt_mesenchymal 4 [0 RNA_Monocyte-Prt_Monocyte
B5.1 scinfer 249 =1 RNA_monacyte-Prt_macrophage RNA_Monocyte-Prt_Macrophage
p2.18 Liger =1 RNA_monocyte-Prt_monocyte 50 3 RNA_Macrophage-Prt_Monocyte
® Seurat 3 [ RNA_monocyte-Prt_epithelial [0 RNA_Macrophage-Prt_Macrophage
8.99 - fastMNN
Harmony 150 )
60 : :;J‘oinl L 125 N
= g 230
€087 40.33 g A 8
° = 31.91 75 20
- 50
0 5
25
¢ . 2 0.0 0.2 04 06 08 l} ¢ 0‘: 02 ) 04 06- ;5 1‘0
Cell line Breast
RNA-Raw RNA & Infered-Protein
@ Macrophage
Monocyte
o~ o
lD QJ
[ c
2 2
tsnel tsnel
98
99 Supplementary Fig. 2 Evaluations on unpaired datasets. a. T-SNE scatter plot displays the result of integrating unpaired transcriptomics and
100 proteomics data in cell line task. The scatter points without edges represent transcriptomic cells, whereas the scatter points with black edges represent
101 proteomic cells. Different cell types are distinguished by fill colours. It is preferable for cells of the same type from two omics to cluster closely
102 together, whereas different types should be more distant. b. Bar plot of the cell type matching accuracy. Cosine similarity is calculated on the basis of
103 embedded features to find the most matching cells. The proportion of consistent matches among cell types is calculated as the accuracy. ¢. Distribution
104 of cosine similarity for all cells. The Cartesian product of cell collections from two types of omics is performed to obtain cell pairs, followed by the
105 calculation of the cosine similarity for each cell pair and kernel density visualization of the similarity across all cell pairs. d. T-SNE plot of using
106 transcriptomics and combined with proteomics predicted by scInfer in cell line task.
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109 Supplementary Fig. 3 Differential Enrichment Analysis Plot. Under different medications, we first conduct enrichment analysis on
110 the differentially expressed proteins and RNAs between the treatment group and the control group. Then, we extract the enrichment
111 analysis results that appeared in the protein analysis but were not involved in the RNA analysis results.

112
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Supplementary Fig. 4 Cell clustering results using Leiden algorithm on gene program activity data.
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Supplementary Fig. 5 Gene programs activity distribution on RNA and protein. a. Protein GPs. b. RNA GPs.

tsne2

tsnel

tsne2

tsne2

tsne2

tsnel

tsnel

tsnel

P-GP12

R-GP7

R-GP12

tsne2

tsnel

tsne2,

tsnel

tsne2

tsnel

tsne2

tsnel

Nf
o|
g
2|

tsnel

Protein GPs
P-GP3

P-GP8

RNA GPs
R-GP3

R-GP8

R-GP13

P-GP4

tsne2

tsnel P-GP9

tsne2

tsnel P-GP14

R-GP4

tsne2,

—

tsnel R-GP9

|
|

tsne2

s

tsnel R-GP14

tsne2

tsnel P-GP10

tsne2

tsnel

R-GP5

tsnel R-GP10




119
120
121
122

Celltype

%&;ﬁ?
g

@ Myeloid
@ Epithelial
© Mesenchymal

N
)
c
2
tsnel
®B1
@N
@®7TN
N
o
c
2
tsnel

Supplementary Fig. 6 T-SNE plot of using transcriptomics and combined with proteomics predicted by scInfer in N, B1, and
TN group cells.
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Supplementary Fig. 7 Single-cell RNA and protein changes in different environments. a. UpSet plot showing the number of differentially
expressed RNAs and proteins in epithelial cells at different cancer stages. N represents the normal (healthy) state, B1 indicates the preneoplastic state

(BRCA1+/-), and TN denotes cancer patients. For example, N-B1(RNA) indicates the differentially expressed RNAs between the preneoplastic state
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and the normal state, with the upper bar plot showing the number of genes (33) and the line connecting the points indicating the overlap of different
groups. b. UpSet plot showing the number of differentially expressed RNAs and proteins in mesenchymal cells at different cancer stages. ¢. Sankey plot
illustrating the continuous changes in RNA and protein levels from the normal to preneoplastic to cancerous state. The top 200 differentially expressed
RNAs and proteins shared between the N-B1 and B1-TN states were selected for plotting, with No change indicating no significant differences. d.
RNAs and proteins whose expression continuously changed, as shown in Fig. 5c, were selected for functional enrichment analysis. For example,
ALDOC was selected for enrichment analysis since its protein expression is upregulated in both N-B1 and B1-TN. The same pathways are represented

in the same colour in the two enrichment analysis diagrams.
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136 The supplementary tables are stored on Zendo(https://doi.org/10.5281/zenodo.14986872)
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