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Probabilistic multi-step planning task: Debriefing questionnaire

Space Adventure Task Debriefing Questionnaire

In order to assess the clarity of the instructions and gain a deeper insight into youi
decision-making process, we now ask you to fill in the following questionnaire
related to the game you just participated in.

1. Which keyboard button did you have to press in order to fly one step in the
clockwise direction?

M X

2. Which keyboard button did you have to press in order to fly two steps in the
clockwise direction?

M X

3. Please indicate how many game points could be collected by landing on the
respective planets.
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4. Because of the asteroid storm, landing on the target planet became more
challenging, increasing the chance of the spaceship not reaching its destination.
Please estimate the chance of missing the target planet.

10% 20% 30% 40% 50% 60% 70% 80% 90%

5. How many actions did you typically plan in advance?

1 action 2 actions 3 actions it varied often | don't know.

The following questions are about the strategies you used to collect fuel in the
game. Please explain your strategies as precisely as you can.

6. What strategy did you typically use to determine the best flight route in a planet
constellation? Please describe your strategy below.

7. Did you include the chance that your spaceship would not reach the planet you
were heading for in your planning? If so, please describe how this affected your
route choice. If not, please just write "No".

8. Did you change or adapt your strategy within a planet constellation or throughout
the game? If so, what circumstances triggered that? If not, please just write "No".

9. How would you describe your action strategy regarding target planets in an
asteroid storm?

Risk-taking: | was rather willing to attempt a landing on a planet in an asteroid storm when it could have been
beneficial, even though the outcome was uncertain.

Cautious: | rather tried to avoid landing on a planet in an asteroid storm, because the outcome was uncertain.



7. Did you include the chance that your spaceship would not reach the planet you
were heading for in your planning? If so, please describe how this affected your
route choice. If not, please just write "No".

8. Did you change or adapt your strategy within a planet constellation or throughout
the game? If so, what circumstances triggered that? If not, please just write "No".

9. How would you describe your action strategy regarding target planets in an
asteroid storm?

Risk-taking: | was rather willing to attempt a landing on a planet in an asteroid storm when it could have been
beneficial, even though the outcome was uncertain.

Cautious: | rather tried to avoid landing on a planet in an asteroid storm, because the outcome was uncertain.

Neither: | was neither particularly risk-seeking nor cautious; rather, | adapted my behavior to the circumstances of the
planetary constellation.

| don't know.

10. Now you have made it to the end of the space adventure game. Do you have any
general feedback or impressions that you would like to share with us? If not, please
just write "No".

Submit Form

Figure S 1: Debriefing questionnaire page 1 - 3. Participants filled out the debriefing questionnaire after
completing the planning task. It was used to check their understanding of basic task rules and receive qualitative
information on their decision strategies.



Psychological measures
Analyses of psychological measures include 53 participants (out of 74) who
completed the respective questionnaires.

Impulsiveness

To assess impulsiveness as a covariate for planning task performance and
planning depth, we used the 15-item Barratt Impulsiveness Scale (BIS-15)".
Participants self-rated statements about their usual behavior on a 4-point Likert scale
from 1 (rarely/never) to 4 (almost always). The BIS-15 includes three subscales: non-
planning, motor, and attentional impulsiveness. We assessed impulsiveness to
account for individual differences in how participants respond to uncertainty induced
by probabilistic state transitions in the planning task. We hypothesized that stronger
impulsiveness is associated with shallower planning and lower performance in the
planning task.

Spearman correlational analyses were performed to assess the association of
potential inter-individual differences in trait impulsiveness on relative planning task
performance and planning depth across the entire task. The analyses were performed
for the BIS-15 score of the three sub-scales and the summarized score separately.
There was no significant correlation between any BIS-15 subscale or the total score
with relative planning task performance (motor: p = -0.026, p = 0.853; non-planning: p
= 0.122, p = 0.384; attentional: p = -0.017, p = 0.901; sum: p = 0.055, p = 0.697) or
planning depth (motor: p = -0.174, p = 0.213; non-planning: p = 0.031, p = 0.824;
attentional: p =-0.030, p = 0.833; sum: p =-0.058, p = 0.678).

Barratt impulsiveness scale (BIS, points) °

Motor 9.15 (3.00)
Non-planning 9.94 (2.96)
Attentional 9.57 (2.93)

Table S 1: Descriptive statistics of the BIS-15 Impulsiveness scale. Maximum possible impulsiveness score
per subscale is 20.

Risk propensity

To assess risk propensity we used Holt and Laury’s lottery choice task (HLL).
Participants made 10 binary choices between two lotteries A and B. In each choice,
lottery A featured a lower variance in payoffs, while B had a higher variance. The



payoffs themselves remained constant. However, as participants progressed through
the decisions, the payoff probabilities changed, so that the expected value of A
decreased as the expected value of B increased. Participants were informed that one
of their choices would be played, and they would receive the winnings. We counted
the 'number of safe choices' (choosing A) before switching to B. Switching before
reaching item 4 indicates risk-seeking behavior, switching at item 4 indicates risk-
neutral behavior, and switching after item 4 indicates risk avoidance. Ten participants,
who switched back to lottery A after initially switching to B were excluded from the
analysis of this measure?. The grouping based on the HLL revealed in 26 risk-avoidant
and 8 risk-seeking participants.

In our probabilistic planning task of the main experiment, uncertainty in the
probabilistic transition can be defined as “expected uncertainty™, i.e., it reflects known
or learned probabilities of outcomes without knowing which specific outcome will occur.
This type of uncertainty is similar to decision-making uncertainty in the HLL. Thus, we
expected participants that exhibit risk-seeking behavior in the HLL to be more prone to
risk-taking in the planning task.

To account for the effects of risk propensity on planning task behavior we
divided the sample into a risk-averse, risk-neutral, and risk-seeking sub-sample based
on their risk propensity measured by their HLL responses. The effects of mini-block
type regarding replanning costs (within-subjects) and risk-attitude group (between-
subjects) on relative performance and planning depth were assessed in respective
two-way mixed ANOVAs. Effect sizes are reported as partial n>.

The effect of risk propensity on planning task performance was not significant
(F =2.104, p = .135, n* = .095), nor was the interaction with replanning cost condition
(F =1.009, p =.399, n* =.048). Also for planning depth neither the main effect of group
(F = 0.143, p = .867, n* = .007) nor the interaction of risk propensity group and
replanning cost condition (F = 1.211, p = .314, n* = .057) was significant.

Lottery task (HLL, risk propensity)

Mean N (SD) of low risk choices 5.37 (2.23)
Proportion risk-avoidant (%) 60.47
Proportion risk-neutral (%) 20.93

Table S 2: HLL risk propensity measure. The maximum number of risky choices is 10. Fewer than 4 indicates
risk avoidance, 4 indicates risk neutrality, and more than 4 indicates risk-seeking behavior.



Mathematical model description

We modeled participants’ action choices in the probabilistic planning task using
reinforcement learning (RL) agents. Each agent could have a planning depth d of one,
two, or three steps, respectively, limited by the number of (remaining) available actions.
The agents’ environmental model includes the available actions A=
{'one step’,'two steps'} and states S (planet positions), transition probabilities
p(s:+1l8: a;) for reaching a subsequent state s, from a given state s, with action a;,
as well as the immediate reward r(s;), which is returned upon reaching a state s,.
Agents plan their actions by computing the expected cumulative reward for executing
each action (Q-values) with an optimal forward planning algorithm.

Planning is constrained by the agent’s planning depth. Action selection is
modeled for the two available actions (one-step and two-step action). The choice
probabilities are determined by a sigmoid transformation o(x) of the difference
between the  corresponding state-action Q-values  4Q(s;, d) = Q(a; =
‘one step'|s;, d) — Q(a; = "'two steps’|s;, d), where the probability of choosing an

action increases with its relative Q-value.

p(a; = 'one step'|s;, d) = a(B * AQ (s, d) + 6), (S1)
S (S2)
o(x) = 1+e™™
AQ(s;, d) = Q(a, ='one step'|s;,d) — Q(a, = "'two steps'|s;, d) (S 3)

Choice probabilities for each RL model were additionally modified by a
participant-specific inverse decision temperature  and an action bias 8. The inverse
decision temperature S controls the sensitivity of the model to differences in Q-values,
with g = 0 leading to random behavior. 6 denotes an a priori response bias, where
positive values imply a bias towards choosing the two-steps action.

For deterministic transitions, the computation of Q-values is identical across
models. However, the planning strategies differ in how Q-values are calculated for the
probabilistic transition.

In the unbiased full-breadth planning model, Q-values are computed using the

planets’ true values, weighted with the true transition probabilities of p(s;;1|s: a;) =0.5



for high-probability transitions and p(s;;1ls.,a;) = 0.25 for each low-probability
transition. All possible transition outcomes are considered for the computation of Q-
values.

In contrast, the low-probability pruning model assumes that low-probability
transitions are ignored (pruned) in the planning process to reduce computational
demands. This was implemented by setting the belief about the likelihood of a high-
probability transition to 1.

In the discounted low-probability pruning model, the action value for the high-

probability transition is discounted with a probability discounting factor v,

Q(Stl d) = ypron(st' d) (S 4)

The discounting factor follows a typical hyperbolic discounting function®.

1
Yprob = H—’% (S95)
1-p
Ges1 = — (S6)
Pt+1

The hyperbolic discounting function y,,,, is modified by an individual
discounting parameter kappa (k). For k = 0, the discounted value y,,,,Q(a;, s¢, d) for
an uncertain planet equals the undiscounted expected value Q(a;,s;, d). Larger k-
values indicate stronger discounting of probabilistic outcomes, where actions leading
to an uncertain planet have a lower subjective value and become therefore less likely
to be chosen in an action sequence, while actions leading to uncertain losses have a
higher subjective value and become more likely to be chosen. The k-values were

capped at 30, as values beyond this threshold did not offer additional information.

Planning depth and parameter inference

To infer distributions over the model parameters and planning depth d, we used
approximate Bayesian inference with a hierarchical generative model and a
hierarchical approximate posterior. This model incorporates participant-specific
parameters and mini-block-level information for choices and learning, with planning
depth d modeled at the mini-block level and all other parameters at the participant
level. We used stochastic variational inference using the Pyro v1.5.2 library’. For more
details on the inference procedure, see Steffen et al. (2023).



We assume that planning occurs before the first action within each mini-block.
Therefore, the primary variable of interest when analyzing planning behavior is the
planning depth prior to the first action.

Behavioral simulations
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Figure S 2: Comparison of points earned and planning costs in the probabilistic planning task for various
strategies (simulated data). The numbers 1 to 5 for each subplot indicate the position of the uncertain planet
within the planet constellation of a mini-block, relative to the planner’s starting position. These categories represent
different mini-block types, each associated with varying (re-)planning costs. a Relative performance for each mini-
block type was scaled between optimal performance (full-breadth planning strategy, planning depth three) and
random performance as null reference. Relative performance for each strategy is informed by the sum of the
average gain of points per mini-block of 1,000 agents. The discounting parameter for the discounted low-probability
pruning model was set to k =5 (S 5). b Efficiency of each strategy as the relative performance divided by the
relative initial planning costs as approximated by the number of decision tree nodes considered.



Goodness of model fit and model comparison

We compared the fits of three RL models averaged across the planning task.
As a raw measure of model fit, we first computed the negative log-likelihood {(¢) (NLL,
Equation (S 7) for each model. The NLL denotes the log-likelihood of participants’

action choices {a;} given the inferred set of parameters summarized as ¢.

1(¢p) = —log Pyl{a}t-,] = — Z log p: (a;/p) (57)

Choice probabilities p;(a;|¢) denote the average of individual choice
probabilities, weighted by the probability inferred for each planning depth per mini-
block. Based on the NLL we then computed pseudo Rho-squared (p?)8 for each model

as a standardized measure of model fit as a likelihood ratio index (Equation (S 8).

L(¢) (S 8)

lrandom

pt=1-

The compared models have different numbers of free parameters: Three in the
full-breadth planning model (8, 6, d), three in the low-probability pruning model (5,6, d),
and four in the discounted low-probability pruning model (g, 6, k, d). Since models with
more parameters tend to have a better fit than models with fewer parameters, we
additionally computed the Bayesian Information Criterion (BIC)° to determine the
quality of model fit, adjusted for the number of free model parameters m with the

number of observations n (S 9).

BIC = 2l($) + mlogn (S9)

To quantify and interpret the strength of evidence for each model according to
the BIC, we calculated the difference ABIC (S 10) for each pair of models where k1
and k2 represent two out of the three models being compared'®. Model evidence
interpretation is based on Neath & Cavanaugh (2012) with “bare mention” for 0 < ABIC
< 2, “positive” for 2 < ABIC < 6, “strong” for 6 < ABIC < 10, and “very strong” for 10 <
ABIC.

ABIC = BIC(k1) — BIC(k2) ($10)
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Figure S 3: Results of model comparison. Model fit comparisons averaged across mini-block types for each
participant. Error bars indicate standard error of the mean. Higher p? values and lower BIC values indicate better
model fit.

Averaged across participants, the low-probability pruning model fits the
behavioral data best compared to the model alternatives with positive evidence for the
low-probability pruning model compared to the full-breadth planning model (ABIC =
4.93) and strong evidence compared to the discounted low-probability pruning model
(ABIC = 8.79). Three participants were excluded from all following analyses as the low-
probability pruning model explained their data below chance-level, indicated by p? <0,
hence parameters could not be inferred reliably. Excluding them did not change the
results of the model comparison (full-breadth planning vs. low-probability pruning:
ABIC = 5.86; discounted low-probability pruning vs. low-probability pruning: ABIC =

11.01). Note that only the cleaned values are reported in the main text.



Model cross-fitting

In our study, we employed the following model cross-fitting procedure to
evaulate the accuracy of our model selection. We generated a set of simulated data
consisting of 100 samples using our candidate models: full-breadth planning, low-
probability pruning, and discounted low-probability pruning. The respective parameters
for each model were set as follows: = 3, 8 = 0, k = 10. Subsequently, we fitted the
simulated data to each of the three alternative models, performing 30 runs with 500
iterations for each fit. To determine the best-fitting model among these alternatives, we
employed the BIC for comparison. We selected the model exhibiting the lowest BIC as
the best-fitting model and generated confusion matrices and inversion matrices. These
matrices quantified the probability of correctly identifying the true underlying planning
model from the set of alternative models (confusion matrix) and the probability of the
identified best-fitting model being the true underlying planning model (inversion matrix).
This approach enabled us to assess our approach's feasibility to differentiate and
reliably identify planning strategies within the human data. A summary of the results
can be found in Figure S 4.

The results show that agent behavior coming from different underlying models
can be differentiated and identified in our model comparison based on BIC, indicated
by the high probabilities along the diagonal of the matrices.

Confusion matrix Inversion matrix
a p(best-fitting model | simulated model) b p(simulated model | best-fitting model)
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Figure S 4: Cross-fitting for model selection based on BIC. To assess the accuracy of our model selection,
confusion and inversion matrices were generated. Diagonals from top left to bottom right indicate the true positives.
a Confusion matrix for model selection as the probability of a model being identified as best-fitting based on the BIC
given the simulated data from the respective model. b Inversion matrix for model selection as the probability of the

simulated data being based on a respective model, given that it was identified as the best-fitting model based on
the BIC.
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