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Figure S 1:  Debriefing questionnaire page 1 - 3. Participants filled out the debriefing questionnaire after 
completing the planning task. It was used to check their understanding of basic task rules and receive qualitative 
information on their decision strategies. 



Psychological measures  
Analyses of psychological measures include 53 participants (out of 74) who 

completed the respective questionnaires. 

 

Impulsiveness 
To assess impulsiveness as a covariate for planning task performance and 

planning depth, we used the 15-item Barratt Impulsiveness Scale (BIS-15)1. 

Participants self-rated statements about their usual behavior on a 4-point Likert scale 

from 1 (rarely/never) to 4 (almost always). The BIS-15 includes three subscales: non-

planning, motor, and attentional impulsiveness. We assessed impulsiveness to 

account for individual differences in how participants respond to uncertainty induced 

by probabilistic state transitions in the planning task. We hypothesized that stronger 

impulsiveness is associated with shallower planning and lower performance in the 

planning task.  

Spearman correlational analyses were performed to assess the association of 

potential inter-individual differences in trait impulsiveness on relative planning task 

performance and planning depth across the entire task. The analyses were performed 

for the BIS-15 score of the three sub-scales and the summarized score separately. 

There was no significant correlation between any BIS-15 subscale or the total score 

with relative planning task performance (motor: 𝜌 = -0.026, p = 0.853; non-planning: 𝜌 

= 0.122, p = 0.384; attentional: 𝜌 = -0.017, p = 0.901; sum: 𝜌 = 0.055, p = 0.697) or 

planning depth (motor: 𝜌 = -0.174, p = 0.213; non-planning: 𝜌 = 0.031, p = 0.824; 

attentional: 𝜌 = -0.030, p = 0.833; sum: 𝜌 = -0.058, p = 0.678). 

Table S 1: Descriptive statistics of the BIS-15 Impulsiveness scale. Maximum possible impulsiveness score 
per subscale is 20. 

 

Risk propensity 
To assess risk propensity we used Holt and Laury’s lottery choice task (HLL)2. 

Participants made 10 binary choices between two lotteries A and B. In each choice, 

lottery A featured a lower variance in payoffs, while B had a higher variance. The 

Barratt impulsiveness scale (BIS, points) c 
Motor 9.15 (3.00) 
Non-planning 9.94 (2.96) 
Attentional 9.57 (2.93) 



payoffs themselves remained constant. However, as participants progressed through 

the decisions, the payoff probabilities changed, so that the expected value of A 

decreased as the expected value of B increased. Participants were informed that one 

of their choices would be played, and they would receive the winnings. We counted 

the 'number of safe choices' (choosing A) before switching to B. Switching before 

reaching item 4 indicates risk-seeking behavior, switching at item 4 indicates risk-

neutral behavior, and switching after item 4 indicates risk avoidance. Ten participants, 

who switched back to lottery A after initially switching to B were excluded from the 

analysis of this measure3. The grouping based on the HLL revealed in 26 risk-avoidant 

and 8 risk-seeking participants. 

In our probabilistic planning task of the main experiment, uncertainty in the 

probabilistic transition can be defined as “expected uncertainty”4, i.e., it reflects known 

or learned probabilities of outcomes without knowing which specific outcome will occur. 

This type of uncertainty is similar to decision-making uncertainty in the HLL. Thus, we 

expected participants that exhibit risk-seeking behavior in the HLL to be more prone to 

risk-taking in the planning task. 

To account for the effects of risk propensity on planning task behavior we 

divided the sample into a risk-averse, risk-neutral, and risk-seeking sub-sample based 

on their risk propensity measured by their HLL responses. The effects of mini-block 

type regarding replanning costs (within-subjects) and risk-attitude group (between-

subjects) on relative performance and planning depth were assessed in respective 

two-way mixed ANOVAs. Effect sizes are reported as partial 𝜂². 

The effect of risk propensity on planning task performance was not significant 

(F = 2.104, p = .135, 𝜂² = .095), nor was the interaction with replanning cost condition 

(F = 1.009, p = .399, 𝜂² = .048). Also for planning depth neither the main effect of group 

(F = 0.143, p = .867, 𝜂² = .007) nor the interaction of risk propensity group and 

replanning cost condition (F = 1.211, p = .314, 𝜂² = .057) was significant. 

Table S 2: HLL risk propensity measure. The maximum number of risky choices is 10. Fewer than 4 indicates 
risk avoidance, 4 indicates risk neutrality, and more than 4 indicates risk-seeking behavior. 

Lottery task (HLL, risk propensity) 
Mean N (SD) of low risk choices  5.37 (2.23) 
Proportion risk-avoidant (%) 60.47 
Proportion risk-neutral (%) 20.93 



Mathematical model description 
We modeled participants’ action choices in the probabilistic planning task using 

reinforcement learning (RL) agents. Each agent could have a planning depth 𝑑 of one, 

two, or three steps, respectively, limited by the number of (remaining) available actions. 

The agents’ environmental model includes the available actions 𝐴 =

{′𝑜𝑛𝑒	𝑠𝑡𝑒𝑝!, ′𝑡𝑤𝑜	𝑠𝑡𝑒𝑝𝑠!} and states 𝑆 (planet positions), transition probabilities 

𝑝(𝑠"#$|𝑠" , 𝑎") for reaching a subsequent state 𝑠"#$ from a given state 𝑠" with action 𝑎", 

as well as the immediate reward 𝑟(𝑠"), which is returned upon reaching a state 𝑠". 

Agents plan their actions by computing the expected cumulative reward for executing 

each action (Q-values) with an optimal forward planning algorithm.  

Planning is constrained by the agent’s planning depth. Action selection is 

modeled for the two available actions (one-step and two-step action). The choice 

probabilities are determined by a sigmoid transformation 𝜎(𝑥) of the difference 

between the corresponding state-action Q-values 𝛥𝑄(𝑠" , 𝑑) = 𝑄(𝑎" =

	!𝑜𝑛𝑒	𝑠𝑡𝑒𝑝!|𝑠" , 𝑑) − 𝑄(𝑎" = ′𝑡𝑤𝑜	𝑠𝑡𝑒𝑝𝑠!|𝑠" , 𝑑), where the probability of choosing an 

action increases with its relative Q-value.  

𝑝(𝑎" = 	′𝑜𝑛𝑒	𝑠𝑡𝑒𝑝′|𝑠" , 𝑑) = 𝜎(𝛽 ∗ 𝛥𝑄(𝑠" , 𝑑) + 𝜃),  (S 1) 

𝜎(𝑥) =
1

1 + 𝑒%& (S 2) 

Δ𝑄(𝑠" , 𝑑) = 𝑄(𝑎" =	!𝑜𝑛𝑒	𝑠𝑡𝑒𝑝!|𝑠" , 𝑑) − 𝑄(𝑎" = ′𝑡𝑤𝑜	𝑠𝑡𝑒𝑝𝑠′|𝑠" , 𝑑) (S 3) 

Choice probabilities for each RL model were additionally modified by a 

participant-specific inverse decision temperature 𝛽 and an action bias 𝜃. The inverse 

decision temperature 𝛽 controls the sensitivity of the model to differences in Q-values, 

with 𝛽 = 0 leading to random behavior. 𝜃 denotes an a priori response bias, where 

positive values imply a bias towards choosing the two-steps action. 

For deterministic transitions, the computation of Q-values is identical across 

models. However, the planning strategies differ in how Q-values are calculated for the 

probabilistic transition. 

In the unbiased full-breadth planning model, Q-values are computed using the 

planets’ true values, weighted with the true transition probabilities of 𝑝(𝑠"#$|𝑠" , 𝑎") = 0.5 



for high-probability transitions and 𝑝(𝑠"#$|𝑠" , 𝑎") = 0.25 for each low-probability 

transition. All possible transition outcomes are considered for the computation of Q-

values. 

In contrast, the low-probability pruning model assumes that low-probability 

transitions are ignored (pruned) in the planning process to reduce computational 

demands. This was implemented by setting the belief about the likelihood of a high-

probability transition to 1.  

In the discounted low-probability pruning model, the action value for the high-

probability transition is discounted with a probability discounting factor 𝛾'()*. 

𝑄(𝑠" , 𝑑) = 𝛾'()*𝑄(𝑠" , 𝑑) (S 4) 

The discounting factor follows a typical hyperbolic discounting function6. 

𝛾'()* =
1

1 + 	𝜅𝑞"#$
   (S 5) 

𝑞"#$ =	
1 − 𝜌"#$
𝜌"#$

 (S 6) 

The hyperbolic discounting function 𝛾'()* is modified by an individual 

discounting parameter kappa (𝜅). For 𝜅 = 0, the discounted value 𝛾'()*𝑄(𝑎" , 𝑠" , 𝑑) for 

an uncertain planet equals the undiscounted expected value 𝑄(𝑎" , 𝑠" , 𝑑). Larger 𝜅-

values indicate stronger discounting of probabilistic outcomes, where actions leading 

to an uncertain planet have a lower subjective value and become therefore less likely 

to be chosen in an action sequence, while actions leading to uncertain losses have a 

higher subjective value and become more likely to be chosen. The 𝜅-values were 

capped at 30, as values beyond this threshold did not offer additional information. 

 

Planning depth and parameter inference 
To infer distributions over the model parameters and planning depth 𝑑, we used 

approximate Bayesian inference with a hierarchical generative model and a 

hierarchical approximate posterior. This model incorporates participant-specific 

parameters and mini-block-level information for choices and learning, with planning 

depth 𝑑 modeled at the mini-block level and all other parameters at the participant 

level. We used stochastic variational inference using the Pyro v1.5.2 library7. For more 

details on the inference procedure, see Steffen et al. (2023). 



We assume that planning occurs before the first action within each mini-block. 

Therefore, the primary variable of interest when analyzing planning behavior is the 

planning depth prior to the first action. 

 

Behavioral simulations  

 
Figure S 2: Comparison of points earned and planning costs in the probabilistic planning task for various 
strategies (simulated data). The numbers 1 to 5 for each subplot indicate the position of the uncertain planet 
within the planet constellation of a mini-block, relative to the planner’s starting position. These categories represent 
different mini-block types, each associated with varying (re-)planning costs. a Relative performance for each mini-
block type was scaled between optimal performance (full-breadth planning strategy, planning depth three) and 
random performance as null reference. Relative performance for each strategy is informed by the sum of the 
average gain of points per mini-block of 1,000 agents. The discounting parameter for the discounted low-probability 
pruning model was set to 𝜅 = 5   (S 5). b Efficiency of each strategy as the relative performance divided by the 
relative initial planning costs as approximated by the number of decision tree nodes considered. 

  



Goodness of model fit and model comparison 
We compared the fits of three RL models averaged across the planning task. 

As a raw measure of model fit, we first computed the negative log-likelihood 𝑙(𝜙) (NLL, 

Equation (S 7) for each model. The NLL denotes the log-likelihood of participants’ 

action choices {𝑎"} given the inferred set of parameters summarized as 𝜙.  

 

𝑙(𝜙) = − 𝑙𝑜𝑔 𝑃+[{𝑎"}",$- ] = −M𝑙𝑜𝑔 𝑝"(𝑎"|𝜙) 		
-

",$

 
(S 7) 

Choice probabilities 𝑝"(𝑎"|𝜙) denote the average of individual choice 

probabilities, weighted by the probability inferred for each planning depth per mini-

block. Based on the NLL we then computed pseudo Rho-squared (𝜌.)8 for each model 

as a standardized measure of model fit as a likelihood ratio index (Equation (S 8).	

 
𝜌. = 1 −

𝑙(𝜙)
𝑙(/01)2

 (S 8) 

The compared models have different numbers of free parameters: Three in the 

full-breadth planning model (𝛽, 𝜃, 𝑑), three in the low-probability pruning model (𝛽, 𝜃, 𝑑), 

and four in the discounted low-probability pruning model (𝛽, 𝜃, 𝜅, 𝑑). Since models with 

more parameters tend to have a better fit than models with fewer parameters, we 

additionally computed the Bayesian Information Criterion (BIC)9 to determine the 

quality of model fit, adjusted for the number of free model parameters 𝑚 with the 

number of observations 𝑛 (S 9). 

 𝐵𝐼𝐶 = 2𝑙S𝜙U + 𝑚 log 𝑛 (S 9) 

To quantify and interpret the strength of evidence for each model according to 

the BIC, we calculated the difference DBIC (S 10) for each pair of models where 𝑘1 

and 𝑘2 represent two out of the three models being compared10. Model evidence 

interpretation is based on Neath & Cavanaugh (2012) with “bare mention” for 0 ≤ DBIC 

≤ 2, “positive” for 2 < DBIC ≤ 6, “strong” for 6 < DBIC ≤ 10, and “very strong” for 10 < 

DBIC. 

 𝛥𝐵𝐼𝐶 = 𝐵𝐼𝐶(𝑘1) − 𝐵𝐼𝐶(𝑘2) (S 10) 



 
Figure S 3: Results of model comparison. Model fit comparisons averaged across mini-block types for each 
participant. Error bars indicate standard error of the mean. Higher ρ² values and lower BIC values indicate better 
model fit.  

 

Averaged across participants, the low-probability pruning model fits the 

behavioral data best compared to the model alternatives with positive evidence for the 

low-probability pruning model compared to the full-breadth planning model (DBIC = 

4.93) and strong evidence compared to the discounted low-probability pruning model 

(DBIC = 8.79). Three participants were excluded from all following analyses as the low-

probability pruning model explained their data below chance-level, indicated by 𝜌. ≤ 0, 

hence parameters could not be inferred reliably. Excluding them did not change the 

results of the model comparison (full-breadth planning vs. low-probability pruning: 

DBIC = 5.86; discounted low-probability pruning vs. low-probability pruning: DBIC = 

11.01). Note that only the cleaned values are reported in the main text.  

  



Model cross-fitting 
In our study, we employed the following model cross-fitting procedure to 

evaulate the accuracy of our model selection. We generated a set of simulated data 

consisting of 100 samples using our candidate models: full-breadth planning, low-

probability pruning, and discounted low-probability pruning. The respective parameters 

for each model were set as follows: 𝛽 = 3, 𝜃 = 0, 𝜅 = 10. Subsequently, we fitted the 

simulated data to each of the three alternative models, performing 30 runs with 500 

iterations for each fit. To determine the best-fitting model among these alternatives, we 

employed the BIC for comparison. We selected the model exhibiting the lowest BIC as 

the best-fitting model and generated confusion matrices and inversion matrices. These 

matrices quantified the probability of correctly identifying the true underlying planning 

model from the set of alternative models (confusion matrix) and the probability of the 

identified best-fitting model being the true underlying planning model (inversion matrix). 

This approach enabled us to assess our approach's feasibility to differentiate and 

reliably identify planning strategies within the human data. A summary of the results 

can be found in Figure S 4. 	

The results show that agent behavior coming from different underlying models 

can be differentiated and identified in our model comparison based on BIC, indicated 

by the high probabilities along the diagonal of the matrices.  

Figure S 4: Cross-fitting for model selection based on BIC. To assess the accuracy of our model selection, 
confusion and inversion matrices were generated. Diagonals from top left to bottom right indicate the true positives. 
a Confusion matrix for model selection as the probability of a model being identified as best-fitting based on the BIC 
given the simulated data from the respective model. b Inversion matrix for model selection as the probability of the 
simulated data being based on a respective model, given that it was identified as the best-fitting model based on 
the BIC. 
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