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Appendix B. Proofs of Lemma A.1

The following three lemmas are useful for proving Lemmas A.1 given in the Appendix. Lemma
B.1 is the lemma A.1 of Wang et al. (2010), and it can also be used when the variable ¢ is
removed. The proof of Lemma B.2 is similar to the proofs of Lemmas 1 and 2 in Zhu and Xue
(2006). Lemma B.3 is the Theorem 1 of Xue (2023). Using Theorem 2 of Einmahl and Mason
(2005), we can derive the first equation of Lemma B.4. The proof of the second equation of
Lemma B.4 is similar to the proofs of Lemma 3 in Zhu and Xue (2006). Therefore, we omit
their proofs. Let ¢ represents a positive constant that does not depend on n, which may take
a different value for each appearance.

Lemma B.1. Assume that {&;(¢,3),1 < i < n} are random variables, and satisfy the

following two conditions:
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where B, = {8|3 € R, || — Bo|| < ein~Y/?} for a positive constant ¢;, and 75 is defined in
condition (C1),

Lemma B.2.  Assume that conditions (C1), (C2) and (C5)—(C7) hold. Then, we have,
uniformly over 1 <i <mn,
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where W,;(+; ), Wi;(-; 3) and I7,(-) are defined in (2.3), (2.4) and (2.7), respectively.
Lemma B.3. Assume that conditions (C1)—(C3) and (C5)—(C7) in Section 3 hold. Then
sup [lg(t: 3,6) = g(t)]| = Op (0" /logn)
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where B = {] |3 — fo|| < cin~'/2} for a positive constant ¢, g(t; 3,0), §'(t; 3,0), T3 and O,
are defined in (2.1), (2.7) and (2.10), respectively, and g'(t) = (¢1(¢), ..., g,(¢))T.
Lemma B.j. Assume that conditions (C4)—(C7) hold. Then
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and uniformly over 1 <1 < n,
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where 77y, and my, are the kth component of 7 and my respectively, my, 19, 73, Z and B},
are defined in (2.4), (2.5), (2.7) and Lemma B.3, respectively.
Proof of Lemma A.1. Note that the second derivative of ¢(t) is 0. Therefore, by using the

Taylor’s formula, it can be obtained that for any point (/3,6) in the neighborhood of (3, 6),
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Using (B.4), Lemma B.3, the first equation of Lemma B.4, Taylor’s formula and the law of

large numbers, we can obtain that uniformly for 3" € B, and 6 € ©,,,
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We first deal with Hy1(3"). Let m(87X;, Z;) and (8T Xy, Zs; ) represent the kth
component of m (87 X, Z;) and (6T Xy, Zi; 3), and let
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Using Lemma B.1, we have to verify (B.1) and (B.2). A simple calculation yields (B.1), so we
now verify (B.2). From the second equation of Lemma B.4, conditions (C2), (C5) and (C7),

and a simple calculation, we have
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Hence, by Chebyshev’s inequality, for arbitrary ¢ > 0, we have
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when n large enough. This verifies that (B.2) of Lemma B.1 is satisfied. By the second equation
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of Lemma B.4 and conditions (C2), (C5) and (C7), when n large enough, we have
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This implies that n~2 Zfii(ﬁ(”) = Op(n~*?). Thus, from Lemma B.1 we have
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This proves that
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Similarly, we can prove that
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We now deal with Hy;(3™). Let X, denotes the kth component of )N(Z-, and let
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We yet use Lemma B.1. This need to verify that (B.1) and (B.2) of Lemma B.1 are satisfied.
A simple calculation yields (B.1). We now verify (B.2). From Lemma B.2 and conditions (C2),
(C5) and (CT7), we have
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Thereupon, we can obtain that
1
PAl= Y g
N i=1
when n large enough. This verifies that (B.2) of Lemma B.1 is satisfied. By Lemma B.3 and
conditions (C2), (C5) and (C7), we have
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Therefore, from Lemma B.2 we can obtain that

n
{ sup Z
BreB, 1 j=1

3\H

} < en*rexp (— en'?) — 0.

4



This implies that
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Similarly, we can proves that
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and
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This, together with (B.5)—(B.10), completes the proof of Lemma A.1.
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Appendix C. Simulation results of Example 1

Table C. Simulation results of Example 1. Estimates of the regression parameters and variable
selection under different loss functions and penalty methods when n = 200.

ﬁTﬁo and average number 0’s 6 and average number 0’s
Loss Method Mean  Bias SD C I GMSE C I
PSL FLEI 0.9978 0.0022 0.0013 4.9540 0.0020 0.1051 2.9300  0.0080
SCAD  0.9964 0.0026 0.0017 4.8580 0.0040 0.1185 2.8700  0.0100
ALASSO 0.9963 0.0037 0.0016 4.8600 0.0040 0.1080 2.8620  0.0100
Oracle  0.9974 0.0021 0.0011 5 0 0.1047 3 0
HL FLEI 0.9728 0.0272 0.1298 4.7720 0.0040 0.2678 2.6740  0.0100
SCAD  0.9663 0.0337 0.1551 4.7240 0.0060 0.2801 2.6680  0.0120
ALASSO 0.9568 0.0432 0.1658 4.6860 0.0060 0.2772 2.6680  0.0120
Oracle  0.9723 0.0269 0.1293 5 0 0.2672 3 0
SL FLEI 0.9649 0.0351 0.1399 4.7200 0.0060 0.2721 2.6300  0.0110
SCAD  0.9627 0.0373 0.1584 4.6400 0.0070 0.2810 2.6220  0.0130
ALASSO 0.9538 0.0462 0.1602 4.6280 0.0070 0.2760 2.6220  0.0130
Oracle  0.9643 0.0346 0.1392 5 0 0.2715 3 0




