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Appendix B. Proofs of Lemma A.1

The following three lemmas are useful for proving Lemmas A.1 given in the Appendix. Lemma

B.1 is the lemma A.1 of Wang et al. (2010), and it can also be used when the variable t is

removed. The proof of Lemma B.2 is similar to the proofs of Lemmas 1 and 2 in Zhu and Xue

(2006). Lemma B.3 is the Theorem 1 of Xue (2023). Using Theorem 2 of Einmahl and Mason

(2005), we can derive the first equation of Lemma B.4. The proof of the second equation of

Lemma B.4 is similar to the proofs of Lemma 3 in Zhu and Xue (2006). Therefore, we omit

their proofs. Let c represents a positive constant that does not depend on n, which may take

a different value for each appearance.

Lemma B.1. Assume that {ξi(t, β), 1 ≤ i ≤ n} are random variables, and satisfy the

following two conditions:
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n

n∑

i=1

|ξi(t, β)− ξi(t0, β0)| ≤ cna(|t− t0|+ ‖β − β0‖) (B.1)

for some constants c > 0, a ≥ 0, t0 and β0;

P

(∣∣∣∣
1

n

n∑

i=1

ξi(t, β)
∣∣∣∣ > εn

)
≤ 1

2
(B.2)

for β ∈ Bn and εn > 0 depend only on n. Then
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where Bn = {β | β ∈ Rp, ‖β − β0‖ ≤ c1n
−1/2} for a positive constant c1, and Tβ is defined in

condition (C1),

Lemma B.2. Assume that conditions (C1), (C2) and (C5)–(C7) hold. Then, we have,

uniformly over 1 ≤ i ≤ n,
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where Wnj(·; β), W̃nj(·; β) and ITβ
(·) are defined in (2.3), (2.4) and (2.7), respectively.

Lemma B.3. Assume that conditions (C1)–(C3) and (C5)–(C7) in Section 3 hold. Then

sup
t∈Tβ ,(β,θ)∈B∗n×Θn

‖ĝ(t; β, θ)− g(t)‖ = OP

(
n−2/5

√
log n

)

and

sup
t∈Tβ ,(β,θ)∈B∗n×Θn

‖ĝ′(t; β, θ)− g′(t)‖ = OP

(
n−1/5

√
log n

)
,

where B∗n = {β| ‖β − β0‖ ≤ c1n
−1/2} for a positive constant c1, ĝ(t; β, θ), ĝ′(t; β, θ), Tβ and Θn

are defined in (2.1), (2.7) and (2.10), respectively, and g′(t) = (ġ1(t), . . . , ġq(t))
T .

Lemma B.4. Assume that conditions (C4)–(C7) hold. Then

sup
(t,z)∈Tβ×Z,β∈B∗n

‖m̂l(t, z; β)−ml(t, z)‖ = OP

(
n−2/5

√
log n

)
, l = 1, 2

and uniformly over 1 ≤ i ≤ n,

E
[
ITβ

(βT Xi)IZ(Zi)|m̂lk(β
T Xi, Zi; β)−mlk(β

T Xi, Zi)|2
]

= O(n−4/5), (B.3)

where m̂lk and mlk are the kth component of m̂l and ml respectively, m̂1, m̂2, Tβ, Z and B∗n
are defined in (2.4), (2.5), (2.7) and Lemma B.3, respectively.

Proof of Lemma A.1. Note that the second derivative of ψ(t) is 0. Therefore, by using the

Taylor’s formula, it can be obtained that for any point (β, θ) in the neighborhood of (β0, θ0),

ψ(Yi − θT Ui − ĝT (βT Xi; β, θ)Zi)− ψ(εi)

= ψ′(εi)
[
(θ0 − θ)T Ui + {g(βT

0 Xi)− ĝ(βT Xi; β, θ)}T Zi

]
. (B.4)
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Using (B.4), Lemma B.3, the first equation of Lemma B.4, Taylor’s formula and the law of

large numbers, we can obtain that uniformly for β(r) ∈ Bn and θ ∈ Θn,

Q̂(β(r), θ) = Qn(β(r), θ) + H1(β
(r)) + H2(β

(r)) + H3(β
(r)) + oP (n−1/2), (B.5)

where Hl(β
(r)) = (HT

l1(β
(r)), HT

l2(β
(r)))T , l = 1, 2, H3(β

(r)) = (HT
31(β

(r)), 0)T ,
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1

n

n∑

i=1

ITβ
(βT Xi)IZ(Zi)J

T
β(r){m1(β

T Xi, Zi)− m̂1(β
T Xi, Zi; β)}g′T (βT Xi)Ziψ(εi),
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T
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X̃i = Xi −m1(β
T Xi, Zi) and Ũi = Ui −m2(β

T Xi, Zi).

We first deal with H11(β
(r)). Let m1k(β

T Xi, Zi) and m̂1k(β
T Xi, Zi; β) represent the kth

component of m1(β
T Xi, Zi) and m̂1(β

T Xi, Zi; β), and let

ξni(β
(r)) =

√
nITβ

(βT Xi)IZ(Zi){m1k(β
T Xi, Zi)− m̂1k(β

T Xi, Zi; β)}g′T (βT Xi)Ziψ(εi).

Using Lemma B.1, we have to verify (B.1) and (B.2). A simple calculation yields (B.1), so we

now verify (B.2). From the second equation of Lemma B.4, conditions (C2), (C5) and (C7),

and a simple calculation, we have

E

{
1

n
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ξni(β
(r))

}2

≤ 2n−1
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i=1

E[ITβ
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T Xi, Zi; β)}2

× {g′T (βT Xi)Zi}2E{ε2
i |Xi, Zi}] ≤ cn−4/5.

Hence, by Chebyshev’s inequality, for arbitrary ε > 0, we have
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}
≤ cn−4/5 <

1

2

when n large enough. This verifies that (B.2) of Lemma B.1 is satisfied. By the second equation

of Lemma B.4 and conditions (C2), (C5) and (C7), when n large enough, we have

n−2
n∑

i=1

E{ξ2
ni(β

(r))} = O(n−4/5).
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This implies that n−2
n∑

i=1

ξ2
ni(β

(r)) = OP (n−4/5). Thus, from Lemma B.1 we have
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{
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ξni(β
(r))

∣∣∣∣ > ε

}
≤ cn2pa exp (− cn4/5) −→ 0, ∀ε > 0.

This proves that

sup
β(r)∈Bn

‖H11(β
(r))‖ = oP (n−1/2). (B.6)

Similarly, we can prove that

sup
β(r)∈Bn

‖H12(β
(r))‖ = oP (n−1/2). (B.7)

We now deal with H21(β
(r)). Let X̃ik denotes the kth component of X̃i, and let

ξ̃ni(β
(r)) =

√
nITβ

(βT Xi)IZ(Zi){g(βT Xi)− ĝ(βT Xi; β, θ0)}T Zig
′T (βT Xi)ZiX̃ikψ

′(εi).

We yet use Lemma B.1. This need to verify that (B.1) and (B.2) of Lemma B.1 are satisfied.

A simple calculation yields (B.1). We now verify (B.2). From Lemma B.2 and conditions (C2),

(C5) and (C7), we have
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Thereupon, we can obtain that
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when n large enough. This verifies that (B.2) of Lemma B.1 is satisfied. By Lemma B.3 and

conditions (C2), (C5) and (C7), we have
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Therefore, from Lemma B.2 we can obtain that
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This implies that

sup
β(r)∈Bn

‖H21(β
(r))‖ = oP (n−1/2) (B.8)

Similarly, we can proves that

sup
β(r)∈Bn

‖H22(β
(r))‖ = oP (n−1/2) (B.9)

and

sup
β(r)∈Bn

‖H31(β
(r))‖ = oP (n−1/2) (B.10)

This, together with (B.5)–(B.10), completes the proof of Lemma A.1.
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Appendix C. Simulation results of Example 1

Table C. Simulation results of Example 1. Estimates of the regression parameters and variable
selection under different loss functions and penalty methods when n = 200.

β̂T β0 and average number 0’s θ̂ and average number 0’s

Loss Method Mean Bias SD C I GMSE C I

PSL FLEI 0.9978 0.0022 0.0013 4.9540 0.0020 0.1051 2.9300 0.0080

SCAD 0.9964 0.0026 0.0017 4.8580 0.0040 0.1185 2.8700 0.0100

ALASSO 0.9963 0.0037 0.0016 4.8600 0.0040 0.1080 2.8620 0.0100

Oracle 0.9974 0.0021 0.0011 5 0 0.1047 3 0

HL FLEI 0.9728 0.0272 0.1298 4.7720 0.0040 0.2678 2.6740 0.0100

SCAD 0.9663 0.0337 0.1551 4.7240 0.0060 0.2801 2.6680 0.0120

ALASSO 0.9568 0.0432 0.1658 4.6860 0.0060 0.2772 2.6680 0.0120

Oracle 0.9723 0.0269 0.1293 5 0 0.2672 3 0

SL FLEI 0.9649 0.0351 0.1399 4.7200 0.0060 0.2721 2.6300 0.0110

SCAD 0.9627 0.0373 0.1584 4.6400 0.0070 0.2810 2.6220 0.0130

ALASSO 0.9538 0.0462 0.1602 4.6280 0.0070 0.2760 2.6220 0.0130

Oracle 0.9643 0.0346 0.1392 5 0 0.2715 3 0
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