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[bookmark: _Hlk106377851]Supplementary Fig. 1. | The atomic models of different phases of MoS2. Schematic illustration of 2H, 1T and 1T’ phase MoS2 structure. Upside: top view of the structure; downside: side view of the structures. 
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Supplementary Fig. 2. | Characterizations of MoS2 bulk powder. (a) SEM images of MoS2 powder on a large scale. (b) SEM images of selected MoS2 particles. c,d EDS elemental mappings of Mo (c) and S (d) corresponding to (b).
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Supplementary Fig. 3. | Characterizations of WS2 bulk powder. (a) SEM images of WS2 powder on a large scale. (b) SEM images of selected WS2 particles. c,d EDS elemental mappings of W (c) and S (d) corresponding to (b).
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Supplementary Fig. 4. | Characterizations of MoSe2 bulk powder. (a) SEM images of MoSe2 powder on a large scale. (b) SEM images of selected MoSe2 particles. c,d EDS elemental mappings of Mo (c) and Se (d) corresponding to (b).
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Supplementary Fig. 5. | XRD spectra of (a) bulk MoS2, (b) bulk WS2 and (c) bulk MoSe2. XRD results show the high purity of bulk TMDs source, no peaks for impurities are detected.
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Supplementary Fig. 6. | XPS spectra of (a) bulk MoS2, (b) bulk WS2 and (c) bulk MoSe2. XPS results show the bulk TMDs source are all pure 2H phase.
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Supplementary Fig. 7. | Photograph of exfoliated MoS2 NSs dispersed in water. (a) 2H-MoS2. (b) 1T’-MoS2. After 5 minutes of sonication, MoS2 was completely dispersed in the DI water, presenting two suspensions that would appear dark green and dark black, respectively.
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Supplementary Fig. 8. | Phase analysis of exfoliated MoS2 NSs by traditional electrochemical Li-ion intercalation. (a) Raman spectra of the exfoliated MoS2. (b) XPS spectra of the exfoliated MoS2. (a.u., arbitrary unit).
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Supplementary Fig. 9. | XAFS results of 1T’- and 2H-MoS2 NSs. (a) Normalized XAFS spectra of 1T’- and 2H-MoS2 NSs. (b) The EXAFS oscillation curves of the Mo K-edge of 1T’-MoS2 and 2H-MoS2. The Mo K-edge absorption spectra were recorded at room temperature in the transmission mode. The 1T’-MoS2 and 2H-MoS2 NSs aqueous solution (5 wt.% MoS2 in DI water) were used for the XAFS measurements. The chemical state of Mo in 1T’-MoS2 was a little lower than that of 2H-MoS2 according to the Mo K-edge XAFS spectra (Supplementary Fig. 9a), because the surface of 1T’-MoS2 is rich in electron1.
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Supplementary Fig. 10. | The structural model of 1T’- and 2H-MoS2 NSs. Schematic illustrations of the atomic structures of (a) 2H-MoS2 and (b) 1T’-MoS2, respectively.
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Supplementary Fig. 11. | TEM analysis of 1T’- and 2H-MoS2 NSs. TEM images of 1T’-MoS2 NSs (a) and 2H-MoS2 NSs (c). The corresponding selected area electron diffraction (SAED) pattern obtained from the 1T’-MoS2 NSs (b) and 2H-MoS2 NSs (d).
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Supplementary Fig. 12. | Electrochemical discharge voltage profiles of WS2 with traditional electrolyte (cut-off at 0.7 V) (a), DMSO-electrolyte (as a co-intercalation electrolyte for 2H-WS2 NSs, cut-off at 1.1 V) (b) and PC-electrolyte (as a solvent-free intercalation electrolyte for 1T’-WS2 NSs, cut-off at 0.7 V, 150 °C) (c). (d) Schematics for the phase-selective synthesis for WS2.
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Supplementary Fig. 13. | XPS spectra of exfoliated WS2 NSs by traditional electrochemical Li-ion intercalation. The mixed phase of 2H and 1T’ WS2 is consistent with previously reported results2. 


[image: ]
Supplementary Fig. 14. | Electrochemical discharge voltage profiles of MoSe2 with traditional electrolyte (cut-off at 0.7 V) (a), DMSO-electrolyte (as a co-intercalation electrolyte for 2H-MoSe2 NSs, cut-off at 1.1 V) (b) and PC-electrolyte (as a solvent-free intercalation electrolyte for 1T’-MoSe2 NSs, cut-off at 0.7 V, 110 °C) (c). (d) Schematics for the phase-selective synthesis for WS2.
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Supplementary Fig. 15. | XPS spectra of exfoliated MoSe2 NSs by traditional electrochemical Li-ion intercalation. The mixed phase of 2H and 1T’ MoSe2 is consistent with previously reported results3,4.
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Supplementary Fig. 16. | AFM measurement of 1T’-WS2 NSs. (a) The measured thicknesses (WS2 NSs selected from Extended Data Fig. 1b), (b) height profiles of 1T’-WS2 NSs and (c) thickness distribution histogram of 1T’-WS2 NSs measured by AFM (0.98 nm is the mean thickness, and 0.25 nm is the s.d.) with a single-layer yield of 91%.
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Supplementary Fig. 17. | AFM measurement of 1T’-MoSe2 NSs. (a) The measured thicknesses (MoSe2 NSs selected from Extended Data Fig. 1f), (b) height profiles of 1T’-MoSe2 NSs and (c) thickness distribution histogram of 1T’-MoS2 NSs measured by AFM with a single-layer yield of 90% (1.15 nm is the mean thickness, and 0.27 nm is the s.d.).


[image: ]
Supplementary Fig. 18. | AFM images of exfoliated 2H-WS2 NSs. (a) The measured thicknesses, (b) height profiles of 2H-WS2 NSs and (c) thickness distribution histogram of 2H-WS2 NSs measured by AFM with a bi-layer yield of 75% (2.05 nm is the mean thickness, and 0.31 nm is the s.d.).
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Supplementary Fig. 19. | AFM images of exfoliated 2H-MoSe2 NSs. (a) The measured thicknesses, (b) height profiles of 2H-MoSe2 NSs and (c) thickness distribution histogram of 2H-MoSe2 NSs measured by AFM with a tri-layer yield of 87% (4.05 nm is the mean thickness, and 0.25 nm is the s.d.).
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Supplementary Fig. 20. | TEM analysis of 1T’- and 2H-WS2 NSs. TEM images of 1T’-WS2 NSs (a) and 2H-WS2 NSs (c). The corresponding SAED pattern obtained from the 1T’-WS2 NSs (b) and 2H-WS2 NSs (d).
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Supplementary Fig. 21. | TEM analysis of 1T’- and 2H-MoSe2 NSs. TEM images of 1T’-MoSe2 NSs (a) and 2H-MoSe2 NSs (c). The corresponding SAED pattern obtained from the 1T’-MoSe2 NSs (b) and 2H-MoSe2 NSs (d).
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Supplementary Fig. 22. | XPS spectra corresponding to 1T’ phase and MoOx ratios of MoS2 by regulation of cut-off voltage and temperature during electrosynthesis. In our study, we analysed the phase composition of MoS2 using XPS. After performing peak deconvolution, the areas under the peaks corresponding to the 1T’ and 2H phases were determined, allowing us to calculate the total area as the sum of both phases and 1T’ phase relative ratio. To calculate the relative content of MoOx in relation to the MoS2, we first determine the area under the peak corresponding to MoOx from the XPS spectrum. Next, we calculate the total area of the MoS2 phases by summing the corrected areas of the 1T’ and 2H phases. Finally, the relative content of MoOx is found by dividing the area of MoOx by the total area of the MoS2 phases and multiplying by 100 to express it as a percentage. This approach provides the relative content of MoOx as a percentage of the total area of the MoS2.
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Supplementary Fig. 23. | The discharge curves for the Li-ion intercalation capacity in DEGDME-based (a) and PC-based electrolytes (b) compared to traditional electrolytes (discharged to 0.9 V).
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Supplementary Fig. 24. | Structural diagram of In-situ XRD. (a) Optical photograph of the test setup for electrochemical in-situ XRD. (b) Schematic of In-situ XRD cell. (c) Schematic for diffraction of X-rays in MoS2.
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Supplementary Fig. 25. | In-situ Raman patterns of electrochemical lithiation of MoS2 in PC-based electrolyte. Stacked The peaks attributed to 1T(1T’) LixMoS2 (J1) and 2H MoS2 (E2g) are increasing and decreasing with Li-ion intercalation time, implying a 2H to 1T(1T’) transition.


[image: ]
Supplementary Fig. 26. | The (a) binding and (b) desolvation energies of DEGDME, DEC, PC, and EC with Li+ in different coordination numbers. 
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Supplementary Fig. 27. | The MSD of Li+ in DEGDME, DEC, PC, and EC electrolytes.
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Supplementary Fig. 28. | The interaction energies between Li+ and MoS2 as well as the distortion ratios of MoS2 in different electrolytes.
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Supplementary Fig. 29. | 2H-MoS2||LiFePO4 pouch-type battery before charging. (a) Schematic diagram of internal structure of 2H-MoS2||LiFePO4 pouch-type battery. b,c Photograph of pouch-type battery (b) consisting of 38 pieces of MoS2 anodes (left) and 37 pieces of LiFePO4 cathode sheets (right) (c). (d) Photograph of five pouch-type batteries for scale-up preparation of high-phase-purity MoS2 NSs. 
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Supplementary Fig. 30. | Charge profiles of battery in DEGDME-based and PC-based electrolytes. a,c Charge profiles of the LiFePO4||Li battery in DEGDME-based electrolyte (a) and PC-based electrolyte (c). b,d Charge profiles of the LiFePO4||MoS2 battery in DEGDME-based electrolyte (b) and PC-based electrolyte (d) at room temperature. The LiFePO4||MoS2 pouch-type batteries were charged at current density of 0.1 C (1 C = 167.4 mA g-1).
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Supplementary Fig. 31. | Characterizations of the as-fabricated 2D 1T’-MoS2 NSs. (a) AFM characterizations of 1T’-MoS2. (b) High resolution XPS spectra of Mo 3d peaks. The 1T phase proportion in the resultant MoS2 NSs was calculated to be ~98 wt.% based on the deconvolution results of Mo 3d peaks.
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Supplementary Fig. 32. | Schematic representation of monolayer MoS2 nanosheets with different particle sizes obtained using differential centrifugation. The nanosheet sediments were collected by alternating high and low rotational speeds between 3000 and 5000 rpm, between 5000 and 8000 rpm, and between 8000 and 12000 rpm, and were recorded as sample 1, sample 2, and sample 3, respectively.
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Supplementary Fig. 33. | AFM images of exfoliated 1T’-MoS₂ NSs with measured thicknesses in different sizes. (a) 1T’-MoS2 monolayer with dimensions greater than 1 µm, screened by centrifugation at 3000-5000 rpm. (b) 1T’-MoS2 monolayer with dimensions between 500 nm and 1 µm, screened by centrifugation at 5000-8000 rpm. (c) 1T’-MoS2 monolayer with dimensions smaller than 500 nm, screened by centrifugation at 8000-12000 rpm. TMDs of the smallest size (like sample 3) screened using differential centrifugation were used for subsequent NO3− reduction reaction.
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Supplementary Fig. 34. | Standard curves of NH4+-N quantification by the colorimetric method. (a) UV-vis absorption spectroscopy of Nessler Reagent method with different concentrations of NH4+-N, (b) the corresponding standard curve. The calibration curve shows good linearity.
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Supplementary Fig. 35. | Chronoamperometric curves of (a) 1T’ MoS2, (b) 1T’ WS2, (c) 2H MoS2, (d) 2H WS2, (e) 1T’-MoSe2, and (f) 1T’/2H mixed MoS2 nanosheets in at different potentials.
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Supplementary Fig. 36. | The PDOS of 1T’-WS2, 1T’-MoS2, and 1T’-MoSe2.
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Supplementary Fig. 37. | The d-band center and p-band center evolutions for 1T’-WS2, 1T’-MoS2 and 1T’-MoSe2.
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Supplementary Fig. 38. | The PDOS comparisons between 1T’ and 2H phases of MoS2 and WS2.
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Supplementary Fig. 39. | The energy evolutions for nitrate reduction in 1T’-WS2 and 2H-WS2.

Supplementary Table S1. | Comparison of other exfoliation methods with phase-selective exfoliation for producing high-phase purity TMDs nanosheets.
	Method
	Phase purity
	Thickness (nm)
	Scale (g)
	Reference

	Phase-selective exfoliation for 1T’ TMDs
	98%
	0.8-1.6
	~100
	This work

	Phase-selective exfoliation for 2H TMDs
	100%
	1.3-4.2
	~100
	This work

	Li-ion electrochemical exfoliation for 1T’ TMDs
	~72%
	1-2
	<1
	Ref 5

	n-BuLi chemical exfoliation for 1T’ TMDs
	~70%
	1-2
	<5
	Ref 6

	nap-Li chemical exfoliation for 1T’ TMDs
	~72%
	0.9-1.2
	~3
	Ref 7

	Solid lithiation for exfoliation for 1T’ TMDs
	~80%
	2-14
	~100
	Ref 8

	Solution-processable exfoliation for 2H TMDs
	100%
	0.9-8
	<2.5
	Ref 9

	Mild electrochemical exfoliation for 2H TMDs
	100% 
	0.8-8
	<5
	Ref 10

	Solvent lithium intercalation for exfoliation for 1T’ TMDs
	98%
	0.8-10
	<1
	Ref 11

	Solvent lithium intercalation for exfoliation for 2H TMDs
	100%
	0.8-10
	<1
	Ref 11

	Solvent-assisted mechanical exfoliation for 2H TMDs
	100%
	2.5-37.5
	<10
	Ref 12

	Solid-state ball milling exfoliation for 1T’ TMDs
	~70%
	1-6
	<1
	Ref 13

	Redox liquid phase exfoliation for 2H TMDs
	95%
	2-16
	<1
	Ref 14

	Intermediate assisted grinding exfoliation for 2H TMDs
	100%
	1-5
	15
	Ref 15




Supplementary Table S2. | Detailed information for previously published NO3− reduction reaction catalyst.
	Material
	Current density (A cm-2)
	NH3 Faraday efficiency
	Reference

	1T’ WS2
	2.00
	93.2%
	This work

	1T’ MoS2
	1.40
	90.4%
	This work

	1T’ MoSe2
	1.31
	91.1%
	This work

	1T’/2H MoS2
	1.37
	87.3%
	This work

	Co3O4/Cu-N-C
	1.75
	76.5%
	Ref 16

	Ru-CuNW
	1.12
	93.2%
	Ref 17

	Bi
	0.95
	55.1%
	Ref 18

	Cu/CuAu
	0.68
	78.5%
	Ref 19

	CoP-CNS
	0.67
	87.1%
	Ref 20

	Ru/Cu
	0.63
	100%
	Ref 21

	CuPd
	0.8
	73.6%
	Ref 22

	HsGDY@Cu
	0.18
	92.2%
	Ref 23

	Cu/Cu2O
	0.13
	97.1%
	Ref 24

	I1Cu4
	0.12
	85.3%
	Ref 25

	Ru/RuOx
	0.11
	80.1%
	Ref 26

	LF/Cu
	0.011
	51.2%
	Ref 27

	CuCoAl
	0.005
	99.5%
	Ref 28


NO3− concentration: 0.1 mol L−1 in Ref 23, 0.05 M mol L−1 in Ref 28, 2000 ppm in Ref 17, 200 ppm in Ref 24, 100 ppm in Ref 26, 50 ppm in Ref 27. All other remaining references use 1.0 mol L-1 NO3−.
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