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Text 1. Marker-to-marker translation model

The M2M model consists of two main components: a marker encoder-decoder and an image-
conditioned diffusion model. As shown in Fig. 2C, the marker encoder transforms deformed images
I from sensor i and the reference image I, from sensor j into latent vectors z’ and z,’
respectively, while the marker decoder converts the output latent vector z% from the diffusion
model to the generated deformed images /% . The image-conditioned diffusion model fuses latent
vector z” with the conditional input ZOT’ through cross-attention mechanisms®® and denoises the
fused feature map to produce latent vectors z . This end-to-end architecture enables direct
translation of marker-based images from I* to I” with the image style of ItTf while preserving
the deformation from /* The training objective combines two primary components to train the
model in a pixel-to-pixel manner®, i.e. an adversarial loss £, *’, and a reconstruction loss £,
incorporating L2 and LPIPS % loss.

Adversarial Loss The adversarial loss aims to align the distribution of generated tactile images
p(I9) with the target images p(I") . The discriminator D, learns to differentiate between
generated images /° and real target images /” . The adversarial loss is formulated as:

Lo =B, o [ogD (IN+E .. [log(-D, (G, I}))] (1)

where G minimizes this objective while D, maximizes it: min max, £

r~gan °
Reconstruction Loss The reconstruction loss £ ensures both pixel-level and perceptual-level

similarity between generated images /% and target images /" through L2 and LPIPS metrics,
capturing subtle marker displacement during translation:

Erec = ; ; ﬂ'LZE[Si Np(]5i )
Where A, is the weight for L2 loss, A,

pips

‘IT" LGS, IV )H2 200 B
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Ii~p(1®) PIPS )

is the weight for LPIPS loss.

Overall Objective The complete learning objective for the generative model combines the above
losses with weights 4, and 4, :

n rec

argminA,_L +A1 L (3)

‘gan”~gan rec”rec

Marker encoder-decoder. As shown in Supplementary Figure 1, we adapt the variational
autoencoder (VAE) architecture from SD-Turbo’. The VAE processes marker images with a size
0f256x256 and employs an encoder-decoder structure: an encoder that compresses marker patterns
into a latent space, and a decoder that reconstructs marker patterns from these latent representations.
To optimize the model’s performance while maintaining parameter efficiency, we implement Low-
Rank Adaptation (LoRA)>* for efficient fine-tuning. The LoRA is with rank-4 adaptation on key
network components, including convolutional layers and attention modules. The training objective
combines reconstruction loss (L1 and L2) with a KL divergence loss to balance accurate pattern
reconstruction with latent space regularization. This architecture enables effective compression of
marker patterns into a structured latent space while preserving essential geometric and spatial
relationships between different marker types.

Image-conditioned diffusion model. The conditional diffusion model is based on the UNet’!

architecture from SD-Turbo (Supplementary Figure 1) combined with a DDPM Scheduler’?. We
implement a one-step diffusion process® for efficient marker pattern translation. The UNet model
is also augmented with LoRA adaptation (rank-8) applied to key network components, including
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attention layers, convolutional layers, and projection layers. We split the reconstruction loss £,
into £ ;. and £,. The model was optimized using a multi-component loss function:

L= ﬂ“gan £gan + Z’LpipsﬁLpips + 4,0, 4)
where 4, =0.5, 4. =5.0,and A, =1.0 to balance the contributions of adversarial, LPIPS, and
L2 loss respectively. We employed a CLIP-based vision-aided discriminator ®' with multilevel
sigmoid loss for the adversarial component, and a VGG-based LPIPS network  for perceptual loss
computation.

Pretraining for the marker encoder-decoder. The marker encoder-decoder is first trained on the
simulation dataset for marker feature extraction. All raw marker images are 640x480 pixels with
packed bits file in .npy format. We employ an 80-20 train-test split. All images are preprocessed to
auniform size of 256x256 pixels and normalized to [0,1] range. The model is trained using AdamW
optimizer with a learning rate of 1x10™*, betas=(0.9, 0.999), and weight decay of 1x107. We
employ mixed-precision training (FP16) with a batch size of 4. The loss function combined a
reconstruction loss (L1 + L2) and KL divergence with weights of 1.0 and 1x10~° respectively.
Training proceeded for 100,000 steps. The training process for the marker encoder-decoder is
demonstrated in Supplementary Figure 3.

Pretraining for M2M model with simulation data. We load the pretrained marker encoder-
decoder for the M2M model. For the encoder for the image condition, we freeze the weights to
ensure the extracted features are fixed. The training process utilizes all of the 132 combinations
from the simulation dataset with 80-20 train-test split. Each training sample in one batch consists
of a triplet: a deformed marker image /> from sensor i, its corresponding paired marker image IIT’
from sensor j, and a reference marker image /,” from sensor j. The model is trained using AdamW
optimizer with an initial learning rate of 5x10™° with 500 warm up steps, betas=(0.9, 0.999),
epsilon=1x10", and weight decay of 1x107. Training proceeded with a batch size of 4. The
training process is shown in Supplementary Figure 4.

Training for M2M model with real-world data. For the homogeneous translation, we first split
the homogeneous location-paired image data into two groups with seen indenters and unseen
indenters. We finetune the simulation pretrained model using the seen group with an 80-20 train-
test split with the same hyperparameters as above for the simulation data. The training process for
the homogeneous translation is shown in Supplementary Figure 5.

The training for the material effect data uses the same process and hyperparameters but involves
loading the model trained with homogeneous data as the pretrained model.

The training for the heterogeneous data loads the model weights trained with homogeneous data.
The hyperparameters are the same as the homogeneous training except we change the batch size to
16 for speeding up training. The training process for the heterogeneous translation is shown in
Supplementary Figure 6.

Notably, as manual annotation of markers is costly, we employ the original efficient-SAM model
for marker extraction without fine-tuning, resulting in a few low-quality marker images in our
dataset. Since marker image quality directly impacts both generated marker images and force
prediction accuracy, using a dedicated marker segmentation model could further improve
performance.

Inference Process. For model inference, we utilize the mean vector, without variance, of the latent
distribution from the marker encoder to ensure deterministic outputs. For datasets in homogeneous
translation, material effect and heterogeneous translation, each one is preprocessed using consistent
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image transformations, including resizing and normalization. The model processes images in
batches of 8, generating images with a size of 256x256 that are subsequently upscaled to the target
resolution (640x480) using Lanczos interpolation. The upscaled outputs are then thresholded to
binary marker images. The results are saved as compressed binary Numpy arrays.

Text 2. Spatiotemporal force prediction model

Model architecture. The model consists of four main components demonstrated in Supplementary
Figure 2: a marker feature encoder backbone, a spatiotemporal module with convolutional GRU
(ConvGRU)*, a post-processing network with ResNet Unit, and a regression head with multilayer
perceptron (MLP). The input to our model is a sequence of tactile images with shape
SxNx3x256x256, where S is the sequence length, N is the batch size, and each image has 3
channels with 256x256 spatial resolution. The marker feature encoder processes these images
through three convolutional blocks, each incorporating instance normalization and dropout. The
first block reduces spatial dimensions to 128%128 while increasing channels to 64, the second block
further reduces to 64x64 with 96 channels, and the third block outputs features at 32x32 resolution
with 128 channels. These spatial features are then processed by a ConvGRU module that maintains
the 32x32 spatial resolution while capturing temporal dependencies across the sequence. With a
hidden state dimension of 128 channels, the ConvGRU tracks temporal patterns while preserving
spatial information. The temporal features undergo spatial dimension reduction through two
residual blocks (stride 2), expanding the channel dimension from 128 to 256, then to 512, while
reducing spatial dimensions to 16x16 and 8x8 respectively. An adaptive average pooling layer
collapses the remaining spatial dimensions to 1x1, producing a 512-dimensional feature vector per
timestep. The regression head maps these features to three-axis force predictions using a fully
connected layer followed by sigmoid activation. This architecture effectively combines spatial and
temporal processing to capture both the detailed marker deformations in individual frames and their
evolution over time, enabling accurate prediction of three-axis force from tactile image sequences.
The network is optimized using a mean absolute error (MAE) loss function:

14 -
Lye == D | E=F | (&)
NS
where I:“l and F, denote the predicted and ground-truth forces respectively

Model Training. The image data undergoes preprocessing including resizing to 256x256 pixels
and normalization using ImageNet statistics (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224,
0.225]). Force measurements are normalized using pre-computed global minimum and maximum
values to ensure consistent scaling across different samples. Our dataloader implements dynamic
sequence sampling, where for each batch, we randomly sample sequence lengths between the first
frame and the maximum available length with at least two frames, enabling the model to learn from
varying temporal contexts. For model initialization, we employ normalization for convolutional
layers and constant initialization for normalization layers. The training process follows a two-stage
approach: first, we pre-train the model on a single randomly selected sensor with a learning rate of
0.1 for 40 epochs, then fine-tune on the complete dataset with a learning rate of 1x10~ for another
40 epochs. We use SGD optimization with momentum (0.9) and weight decay 5x107*, along with
a learning rate scheduler. During training, we utilize a custom collate function that handles varying
sequence lengths through dynamic padding, where shorter sequences are padded to match the
batch’s sampled sequence length by repeating the last frame. The model is trained with a batch size
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of 4 using L1 loss between predicted and ground truth forces, exclusively on the seen group data,
with early stopping based on validation performance.

Model Inference. During inference, our model processes tactile image sequences to predict three-
axis force. The inference pipeline utilizes a modified data loading scheme where, unlike training,
we process the complete sequence length without random sampling. The dataloader maintains the
same image preprocessing pipeline (resizing to 256x256 and normalization with ImageNet
statistics). For both source and target domain evaluation, we load full sequences with a batch size
of 1 to ensure consistent temporal processing across all samples. The predictions undergo
denormalization using globally tracked minimum and maximum force values the same as in training
to restore the actual force scale. We evaluate the model’s performance using multiple metrics: Mean
Absolute Error (MAE) for individual force components (FX,Fy,FZ) , MAE for total force
magnitude F;, and R? values to assess prediction accuracy over the whole force range. Notably,
while our unsupervised method has shown impressive performance, a gap remains compared to
supervised learning approaches. Enhancing accuracy may involve compensating for additional
material properties such as Poisson’s ratio, roughness, and viscosity. Alternatively, few-shot
finetuning using force labels from simple gauges, weighted objects, or calibrated tactile sensors
could help close this gap.

Text 3. Trajectory for marker deformation simulation

The trajectory shown Extended Data Fig. 1B covers a grid of contact locations with horizontal steps
Ax and Ay of 4 mm and vertical increments Az of 0.3 mm, reaching a maximum indentation depth
z_.. of 1.5 mm. This approach yields 45 target contact locations (5 steps in depth x9 grid) per
indenter, resulting in 810 unique deformed meshes in total. For each movement to target location,
the indenter is initialized at a position where its bottom surface is parallel to and 10 mm above the
elastomer surface. To ensure we are obtaining smooth mesh, we set the world step time to 1x107*

s and the contact speed to —10 mm/s.
Text 4. Fabrication of soft skins

The fabrication process is demonstrated in Extended Data Fig. 2A. First, we mix XPA-565 silicone
base (B) with activator (A) using different ratios to control the softness. For homogeneous
translation and heterogeneous translation, we use a ratio of 15:1. In material compensation, we
employ seven different ratios ranging from 6:1 to 18:1, where higher ratios produce softer
elastomers. We pour the mixture into a mold for 4 mm thickness for 24-hour natural curing to obtain
transparent silicone elastomer. Next, we print designed markers (see Fig. 3A) on sticker paper using
an inkjet printer and transfer them onto the cured elastomer. We then prepare a coating mixture by
combining aluminum powder and silver bullet powder with solvent in a 1:1:2.5 ratio, then mix this
with silicone elastomer (15:1 ratio) to pour onto the elastomers with markers. The pigment mixture
ensures opaqueness while maintaining negligible increase in the elastomers’ thickness. After
another 24 hours of curing, we cut the elastomer to 20 mm x 20 mm dimensions for testing.
Notably, increasing the XPA-565 ratio extends the required curing time.

Text 5. Parameters for data collection in real world

For homogeneous and material compensation tests, we implement the following parameters to the
parameters defined in Extended Data Fig. 2B: horizontal moving distances Ax =3mm, Ay =4 mm,
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depth step Az=0.3 mm with maximum depth z_, =1.2 mm, moving angle #=30", and shear
distance Ar =1mm. This configuration yields 5x4x12 =240 target points with varying moving
directions and locations. The heterogeneous tranlsation employs a moving angle @ =45  with depth
parameters of Az=0.25mm and z_, =1mm for GelSight and uSkin. The parameters for TacPalm
are configured with Ax=Ay=6.5mm, Az=1.125mm, z_, =4.5mm, 0= 30" and Ar =1.5 mm.
This configuration yields 5x4x8 =160 target points. This configuration enables image collection
at 0.25 mm intervals for GelSight and uSkin to pair with TacPalm collected at 1.125 mm intervals,
ensuring comparable force ranges collected from TacPalm.

Text 6. Parameters for marker conversion for uSkin

Through grid search for the parameters shown in Extended Data Fig. 8A, we determine the optimal
visualization parameters: D . =300 , D__=6000 , AX, =AY =06 , S,=02 ,
S, =8,=0.002 . These parameters provide an optimal balance between sensitivity to subtle
deformations and clear visualization of larger forces while preventing marker overlap or grid

distortion.
Text 7. Relationship of force and indentation depth

According to contact mechanics, when a flat rigid indenter applies force F on an elastic specimen's
surface®, the relationship between force F and penetration depth d, is given by:

F=aFd (6)

where « is a geometric constant specific to the indenter, and £ represents the elastic modulus of
the specimen. Based on Equation (6), we can compare the elastomers’ softness among different
sensors by measuring the relationship between applied force /" and indentation depth d, using a flat
rigid indenter.

Text 8. Parameters for data collection in force-depth curve

For heterogeneous translation, we applied maximum depths d, of Imm for GelSight and uSkin,
while extending to 4.5mm for TacPalm due to its extremely soft property. For comparing the
softness among heterogeneous sensors, we normalize their indentation depths to the range of 0 to 1
(see Extended Data Fig. 8B). The F'—d_ curves are drawn by using the mean and variance values
during three indentations.

Text 9. Material compensation process

As shown in Fig. SE-i, the pipeline for material compensation is included in training the force
prediction model by correcting the force label F° to F*“. When loading the force-image pair data,
the contact depth d, is used to index force f:’and f. from the material priors of the source sensor
S and the target sensor 7 respectively. The compensation ratio » can then be calculated by:
T

=

Then, the force label F° can be corrected with either the ratio of 7, or 7, depending on the
contact is in loading phase L or unloading phase U. Notably, we introduce two additional
hyperparameters: starting depth d,(0<d, <d,, ) and correction weight A (0<A<1).d, limits

max

the compensation where the contact depth d, exceeds its value. 4 controls the compensation

(M

=
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227  magnitude. These parameters used in our paper are obtained via grid search (see Supplementary
228  Table 1 and Supplementary Table 2). Thus, the corrected force label F*° can be derived as:
229 FC =F%.(1+ Ar) (8)
230 where ris 7, or 1, indexed with the contact location d_ :
v, ifd, >d,andd, eL
231 r=40, ifd <d, 9)
ry, ifd,>d,andd, eU
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Supplementary Figure 1. Maker-to-marker translation model architecture.
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Supplementary Figure 2. Spatiotemporal force prediction model architecture.
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237 Supplementary Figure 3. Training process for the marker encoder-decoder. (A) KL Loss. (B)
238 Reconstruction Loss. (C) The development process of decoded images.
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Supplementary Figure 4. Training Process for M2M model with simulated data. (A) L2 loss.
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generated images with simulated data.
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251 Supplementary Table 1. Hyperparameters used in material compensation
252 in study of material softness effect
Target
ré r8 r10 ri2 ri4 rlé r18
Source
ré 0/0.5 0.4/1 0/0.5 0/0.75 0/0.75 0/0.75
r8 0/1 \ 0.8/1 0/0.75 0/0.75 0/0.75 0/0.75
r10 0/0.5 0/0.75 \ 0.4/0.25 0/0.5 0/0.5 0/0.5
ri2 0.8/0.75 0.8/0.25 0.8/0.25 \ 0/0.75 0/0.75 0/0.5
rl4 0.8/0.5 0/1 0.8/0.25 0/1 \ 0/1 0/0.75
rlé 0.8/0.5 0/1 0/1 0/1 0/1 \ 0/0.5
rl8 0.4/0.25 0/1 0/1 0.8/0.5 0.8/0.25 0.4/0.25

253 *Demonstrate starting depth d, o (mm) and correction weights Aas d o A in each cell)

254 *Grid search

255
256
257

258

259

260
261

in range of [0,1] with a step of 0.4 for do and 0.25 for A

Supplementary Table 2. Hyperparameters used in material compensation

in study of heterogeneous translation

Target
uSkin GelSight TacPalm
Source
uSkin 0.5/1 0/0.5
GelSight 0/1 \ 0/0.75
TacPalm 0.75/0.5 0/0.5

*Demonstrate starting depth d, o (mm) and correction weights Aas d o/ A in each cell)

*Grid search in range of [0,1] with a step of 0.25 for do and 0.25 for A
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Supplementary Caption for Video 1. Marker-to-marker translation with simulated data. The
examples showcase the marker-to-marker translation results with sequential image translations
when 41, C2, and D3 are used as the source domains, respectively. The generated images preserve
similar deformations to the source domains while adopting the image styles of the target domains.

Supplementary Caption for Video 2. Marker-to-marker translation in homogeneous
translation. The examples showcase the marker-to-marker translation results with sequential
image translations when A4-1, C-1, D-1, A-II, and C-II are used as the source domains, respectively.
The generated images exhibit similar deformations to the source domains while adopting the image
styles of the target domains. We observed a few failure cases involving a flickering effect when
transferring from A-/I and C-1I to A-I. This issue is caused by the shift of the elastomer in 4-/ during
data collection, leading to continuous changes in the reference marker patterns. These continuous
changes result in inconsistency between image conditions and reference images for 4-/, producing
a small number of generated images with noise.

Supplementary Caption for Video 3. Marker-to-marker translation in heterogeneous
translation. The examples showcase the marker-to-marker translation results with sequential
image translations when uSkin, TacPalm, and GelSight are used as the source domains,
respectively. The generated images exhibit similar deformations to the source domains while
adopting the image styles of the target domains.

Supplementary Caption for Video 4. Real-time force prediction for homogeneous translation.
The examples showcase the force prediction performance before (source-only) and after applying
the GenForce model when transferring from A-1, A-Il, C-1, and D-I to C-II. Prior to using the
GenForce model, significant force prediction errors are observed across all four combinations. After
implementing the GenForce model, the force prediction accuracy is greatly improved, resulting in
significantly reduced errors.

Supplementary Caption for Video 5. Material compensation performance. The examples
showcase the force prediction performance before and after applying material compensation on the
GenForce model when transferring from sensor with hard skin to sensor with soft skin (r6_r16),
and from sensor with soft skin to sensor with hard skin (#/6 r6). Noticeable error reduction is
observed, particularly in the normal force, after applying material compensation.

Supplementary Caption for Video 6. Real-time force prediction for heterogeneous translation
to uSkin. The examples showcase the force prediction performance before (source-only) and after
applying the GenForce model when transferring from GelSight and TacPalm to uSkin. Significant
force prediction errors are observed in both combinations prior to using the GenForce model. After
applying the GenForce model, force prediction accuracy is significantly improved, with greatly
reduced errors across the entire tested force range. Notably, lower force errors are observed in the
lower force range.
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Supplementary Caption for Video 7. Real-time force prediction for heterogeneous translation
to TacPalm. The examples showcase the force prediction performance before (source-only) and
after applying the GenForce model when transferring from uSkin and GelSight to TacPalm.
Significant force prediction errors are observed in both combinations prior to using the GenForce
model. After applying the GenForce model, force prediction accuracy is significantly improved,
with greatly reduced errors across the entire tested force range. Notably, lower force errors are
observed in the lower force range.

Supplementary Caption for Video 8. Real-time force prediction for heterogeneous translation
to GelSight. The examples showcase the force prediction performance before (source-only) and
after applying the GenForce model when transferring from uSkin and TacPalm to GelSight.
Significant force prediction errors are observed in both combinations prior to using the GenForce
model. After applying the GenForce model, force prediction accuracy is significantly improved,
with greatly reduced errors across the entire tested force range. Notably, lower force errors are
observed in the lower force range.
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