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Text 1. Marker-to-marker translation model 21 

The M2M model consists of two main components: a marker encoder-decoder and an image-22 

conditioned diffusion model. As shown in Fig. 2C, the marker encoder transforms deformed images 23 
iS

tI  from sensor i and the reference image 0
jT

I  from sensor j into latent vectors iS

tz  and 0
jT

z  24 

respectively, while the marker decoder converts the output latent vector iG

tz from the diffusion 25 

model to the generated deformed images iG

tI . The image-conditioned diffusion model fuses latent 26 

vector iS

tz  with the conditional input 0
jT

z  through cross-attention mechanisms58 and denoises the 27 

fused feature map to produce latent vectors iG

tz . This end-to-end architecture enables direct 28 

translation of marker-based images from iS

tI  to i

t

G
I  with the image style of j

t

T
I  while preserving 29 

the deformation from iS

tI .The training objective combines two primary components to train the 30 

model in a pixel-to-pixel manner59, i.e. an adversarial loss gan  47, and a reconstruction loss 
rec

 31 

incorporating L2 and LPIPS 60 loss.   32 

Adversarial Loss The adversarial loss aims to align the distribution of generated tactile images  33 

( )Gp I  with the target images ( )Tp I . The discriminator 
TD  learns to differentiate between 34 

generated images GI  and real target images TI . The adversarial loss is formulated as:   35 

 
0~ ( ) ~ ( )

[log ( )] [log(1 ( ( , ))]T T S S

T S T

gan TI p I IT p I
D I D G I I= + −  (1) 36 

where G  minimizes this objective while 
TD  maximizes it: min max

TG D gan  . 37 

Reconstruction Loss The reconstruction loss 
rec

 ensures both pixel-level and perceptual-level 38 

similarity between generated images iG
I  and target images jT

I  through L2 and LPIPS metrics, 39 

capturing subtle marker displacement during translation: 40 

 L2 0 Lpips 0~ ( ) ~ ( )2
1 1

, ( , ) , ( , )j j j ji i
S S S Si i i i

n m
T T T TS S

rec I p I I p I PIPS
i j

I G I I I G I I 
= =

= +  (2) 41 

Where 
L2  is the weight for L2 loss, Lpips  is the weight for LPIPS loss. 42 

Overall Objective The complete learning objective for the generative model combines the above 43 

losses with weights gan  and 
rec : 44 

 arg min gan g crea cn re +   (3) 45 

Marker encoder-decoder.  As shown in Supplementary Figure 1, we adapt the variational 46 

autoencoder (VAE) architecture from SD-Turbo50. The VAE processes marker images with a size 47 

of 256×256 and employs an encoder-decoder structure: an encoder that compresses marker patterns 48 

into a latent space, and a decoder that reconstructs marker patterns from these latent representations. 49 

To optimize the model’s performance while maintaining parameter efficiency, we implement Low-50 

Rank Adaptation (LoRA)53 for efficient fine-tuning. The LoRA is with rank-4 adaptation on key 51 

network components, including convolutional layers and attention modules. The training objective 52 

combines reconstruction loss (L1 and L2) with a KL divergence loss to balance accurate pattern 53 

reconstruction with latent space regularization. This architecture enables effective compression of 54 

marker patterns into a structured latent space while preserving essential geometric and spatial 55 

relationships between different marker types. 56 

Image-conditioned diffusion model. The conditional diffusion model is based on the UNet51 57 

architecture from SD-Turbo (Supplementary Figure 1) combined with a DDPM Scheduler52. We 58 

implement a one-step diffusion process59 for efficient marker pattern translation. The UNet model 59 

is also augmented with LoRA adaptation (rank-8) applied to key network components, including 60 
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attention layers, convolutional layers, and projection layers. We split the reconstruction loss 
rec

 61 

into Lpips  and 
L2

. The model was optimized using a multi-component loss function: 62 

 gan gan Lpips Lpips L2 L2  = + +  (4) 63 

where gan 0.5 = , Lpips 5.0 = , and 
L2 1.0 =  to balance the contributions of adversarial, LPIPS, and 64 

L2 loss respectively. We employed a CLIP-based vision-aided discriminator 61 with multilevel 65 

sigmoid loss for the adversarial component, and a VGG-based LPIPS network 60 for perceptual loss 66 

computation. 67 

Pretraining for the marker encoder-decoder. The marker encoder-decoder is first trained on the 68 

simulation dataset for marker feature extraction. All raw marker images are 640×480 pixels with 69 

packed bits file in .npy format. We employ an 80-20 train-test split. All images are preprocessed to 70 

a uniform size of 256×256 pixels and normalized to [0,1] range. The model is trained using AdamW 71 

optimizer with a learning rate of 41 10− , betas=(0.9, 0.999), and weight decay of 21 10− . We 72 

employ mixed-precision training (FP16) with a batch size of 4. The loss function combined a 73 

reconstruction loss (L1 + L2) and KL divergence with weights of 1.0 and 61 10−  respectively. 74 

Training proceeded for 100,000 steps. The training process for the marker encoder-decoder is 75 

demonstrated in Supplementary Figure 3.  76 

Pretraining for M2M model with simulation data.  We load the pretrained marker encoder-77 

decoder for the M2M model. For the encoder for the image condition, we freeze the weights to 78 

ensure the extracted features are fixed.  The training process utilizes all of the 132 combinations 79 

from the simulation dataset with 80-20 train-test split. Each training sample in one batch consists 80 

of a triplet: a deformed marker image iS

tI  from sensor i, its corresponding paired marker image j

t

T
I  81 

from sensor j, and a reference marker image 0
jT

I  from sensor j. The model is trained using AdamW 82 

optimizer with an initial learning rate of 65 10−  with 500 warm up steps, betas=(0.9, 0.999), 83 

epsilon= 81 10− , and weight decay of 21 10− . Training proceeded with a batch size of 4. The 84 

training process is shown in Supplementary Figure 4. 85 

Training for M2M model with real-world data.  For the homogeneous translation, we first split 86 

the homogeneous location-paired image data into two groups with seen indenters and unseen 87 

indenters. We finetune the simulation pretrained model using the seen group with an 80-20 train-88 

test split with the same hyperparameters as above for the simulation data. The training process for 89 

the homogeneous translation is shown in Supplementary Figure 5.  90 

The training for the material effect data uses the same process and hyperparameters but involves 91 

loading the model trained with homogeneous data as the pretrained model.   92 

The training for the heterogeneous data loads the model weights trained with homogeneous data. 93 

The hyperparameters are the same as the homogeneous training except we change the batch size to 94 

16 for speeding up training. The training process for the heterogeneous translation is shown in 95 

Supplementary Figure 6. 96 

Notably, as manual annotation of markers is costly, we employ the original efficient-SAM model 97 

for marker extraction without fine-tuning, resulting in a few low-quality marker images in our 98 

dataset. Since marker image quality directly impacts both generated marker images and force 99 

prediction accuracy, using a dedicated marker segmentation model could further improve 100 

performance. 101 

Inference Process. For model inference, we utilize the mean vector, without variance, of the latent 102 

distribution from the marker encoder to ensure deterministic outputs. For datasets in homogeneous 103 

translation, material effect and heterogeneous translation, each one is preprocessed using consistent 104 
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image transformations, including resizing and normalization. The model processes images in 105 

batches of 8, generating images with a size of 256×256 that are subsequently upscaled to the target 106 

resolution (640×480) using Lanczos interpolation. The upscaled outputs are then thresholded to 107 

binary marker images. The results are saved as compressed binary Numpy arrays.  108 

Text 2. Spatiotemporal force prediction model 109 

Model architecture. The model consists of four main components demonstrated in Supplementary 110 

Figure 2: a marker feature encoder backbone, a spatiotemporal module with convolutional GRU 111 

(ConvGRU)54, a post-processing network with ResNet Unit, and a regression head with multilayer 112 

perceptron (MLP). The input to our model is a sequence of tactile images with shape 113 

S×N×3×256×256, where S is the sequence length, N is the batch size, and each image has 3 114 

channels with 256×256 spatial resolution. The marker feature encoder processes these images 115 

through three convolutional blocks, each incorporating instance normalization and dropout. The 116 

first block reduces spatial dimensions to 128×128 while increasing channels to 64, the second block 117 

further reduces to 64×64 with 96 channels, and the third block outputs features at 32×32 resolution 118 

with 128 channels. These spatial features are then processed by a ConvGRU module that maintains 119 

the 32×32 spatial resolution while capturing temporal dependencies across the sequence. With a 120 

hidden state dimension of 128 channels, the ConvGRU tracks temporal patterns while preserving 121 

spatial information. The temporal features undergo spatial dimension reduction through two 122 

residual blocks (stride 2), expanding the channel dimension from 128 to 256, then to 512, while 123 

reducing spatial dimensions to 16×16 and 8×8 respectively. An adaptive average pooling layer 124 

collapses the remaining spatial dimensions to 1×1, producing a 512-dimensional feature vector per 125 

timestep. The regression head maps these features to three-axis force predictions using a fully 126 

connected layer followed by sigmoid activation. This architecture effectively combines spatial and 127 

temporal processing to capture both the detailed marker deformations in individual frames and their 128 

evolution over time, enabling accurate prediction of three-axis force from tactile image sequences. 129 

The network is optimized using a mean absolute error (MAE) loss function: 130 

 
MAE 1

1

1 ˆ| | ||
N

i i

i

F F
N =

= −  (5) 131 

where ˆ
iF  and 

iF  denote the predicted and ground-truth forces respectively 132 

Model Training. The image data undergoes preprocessing including resizing to 256 256  pixels 133 

and normalization using ImageNet statistics (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 134 

0.225]). Force measurements are normalized using pre-computed global minimum and maximum 135 

values to ensure consistent scaling across different samples. Our dataloader implements dynamic 136 

sequence sampling, where for each batch, we randomly sample sequence lengths between the first 137 

frame and the maximum available length with at least two frames, enabling the model to learn from 138 

varying temporal contexts. For model initialization, we employ normalization for convolutional 139 

layers and constant initialization for normalization layers. The training process follows a two-stage 140 

approach: first, we pre-train the model on a single randomly selected sensor with a learning rate of 141 

0.1 for 40 epochs, then fine-tune on the complete dataset with a learning rate of 31 10−  for another 142 

40 epochs. We use SGD optimization with momentum (0.9) and weight decay 45 10− , along with 143 

a learning rate scheduler. During training, we utilize a custom collate function that handles varying 144 

sequence lengths through dynamic padding, where shorter sequences are padded to match the 145 

batch’s sampled sequence length by repeating the last frame. The model is trained with a batch size 146 
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of 4 using L1 loss between predicted and ground truth forces, exclusively on the seen group data, 147 

with early stopping based on validation performance. 148 

Model Inference. During inference, our model processes tactile image sequences to predict three-149 

axis force. The inference pipeline utilizes a modified data loading scheme where, unlike training, 150 

we process the complete sequence length without random sampling. The dataloader maintains the 151 

same image preprocessing pipeline (resizing to 256 256  and normalization with ImageNet 152 

statistics). For both source and target domain evaluation, we load full sequences with a batch size 153 

of 1 to ensure consistent temporal processing across all samples. The predictions undergo 154 

denormalization using globally tracked minimum and maximum force values the same as in training 155 

to restore the actual force scale. We evaluate the model’s performance using multiple metrics: Mean 156 

Absolute Error (MAE) for individual force components x y z( , , )F F F , MAE for total force 157 

magnitude 
tF , and 2R  values to assess prediction accuracy over the whole force range. Notably, 158 

while our unsupervised method has shown impressive performance, a gap remains compared to 159 

supervised learning approaches. Enhancing accuracy may involve compensating for additional 160 

material properties such as Poisson’s ratio, roughness, and viscosity. Alternatively, few-shot 161 

finetuning using force labels from simple gauges, weighted objects, or calibrated tactile sensors 162 

could help close this gap. 163 

Text 3. Trajectory for marker deformation simulation 164 

The trajectory shown Extended Data Fig. 1B covers a grid of contact locations with horizontal steps 165 

x  and y of 4 mm and vertical increments z of 0.3 mm, reaching a maximum indentation depth 166 

maxz  of 1.5 mm. This approach yields 45 target contact locations (5 steps in depth 9  grid) per 167 

indenter, resulting in 810 unique deformed meshes in total. For each movement to target location, 168 

the indenter is initialized at a position where its bottom surface is parallel to and 10 mm above the 169 

elastomer surface. To ensure we are obtaining smooth mesh, we set the world step time to 41 10−170 

s and the contact speed to 10−  mm/s.  171 

Text 4. Fabrication of soft skins  172 

The fabrication process is demonstrated in Extended Data Fig. 2A. First, we mix XPA-565 silicone 173 

base (B) with activator (A) using different ratios to control the softness. For homogeneous 174 

translation and heterogeneous translation, we use a ratio of 15:1. In material compensation, we 175 

employ seven different ratios ranging from 6:1 to 18:1, where higher ratios produce softer 176 

elastomers. We pour the mixture into a mold for 4 mm thickness for 24-hour natural curing to obtain 177 

transparent silicone elastomer. Next, we print designed markers (see Fig. 3A) on sticker paper using 178 

an inkjet printer and transfer them onto the cured elastomer. We then prepare a coating mixture by 179 

combining aluminum powder and silver bullet powder with solvent in a 1:1:2.5 ratio, then mix this 180 

with silicone elastomer (15:1 ratio) to pour onto the elastomers with markers. The pigment mixture 181 

ensures opaqueness while maintaining negligible increase in the elastomers’ thickness. After 182 

another 24 hours of curing, we cut the elastomer to 20 mm   20 mm dimensions for testing. 183 

Notably, increasing the XPA-565 ratio extends the required curing time. 184 

Text 5. Parameters for data collection in real world  185 

For homogeneous and material compensation tests, we implement the following parameters to the 186 

parameters defined in Extended Data Fig. 2B: horizontal moving distances 3x = mm, 4y = mm, 187 
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depth step 0.3z = mm with maximum depth 
max 1.2z = mm, moving angle 30 = , and shear 188 

distance 1r = mm. This configuration yields 5 4 12 240  =  target points with varying moving 189 

directions and locations. The heterogeneous tranlsation employs a moving angle 45 =  with depth 190 

parameters of 0.25z = mm and 
max 1z = mm for GelSight and uSkin. The parameters for TacPalm 191 

are configured with 6.5x y =  = mm, 1.125z = mm, 
max 4.5z = mm, 30 = and 1.5r = mm. 192 

This configuration yields 5 4 8 160  =  target points.  This configuration enables image collection 193 

at 0.25 mm intervals for GelSight and uSkin to pair with TacPalm collected at 1.125 mm intervals, 194 

ensuring comparable force ranges collected from TacPalm. 195 

 196 

Text 6. Parameters for marker conversion for uSkin 197 

Through grid search for the parameters shown in Extended Data Fig. 8A, we determine the optimal 198 

visualization parameters: 
min 300D = , 

max 6000D = , 
max max 0.6X Y == , 0.2DS = , 199 

0.002x yS S= = . These parameters provide an optimal balance between sensitivity to subtle 200 

deformations and clear visualization of larger forces while preventing marker overlap or grid 201 

distortion.  202 

Text 7. Relationship of force and indentation depth  203 

According to contact mechanics, when a flat rigid indenter applies force F on an elastic specimen's 204 

surface62, the relationship between force F and penetration depth 
zd  is given by:   205 

 
zF Ed=  (6) 206 

where   is a geometric constant specific to the indenter, and E  represents the elastic modulus of 207 

the specimen. Based on Equation (6), we can compare the elastomers’ softness among different 208 

sensors by measuring the relationship between applied force F and indentation depth 
zd using a flat 209 

rigid indenter. 210 

Text 8. Parameters for data collection in force-depth curve 211 

For heterogeneous translation, we applied maximum depths 
maxd  of 1mm for GelSight and uSkin, 212 

while extending to 4.5mm for TacPalm due to its extremely soft property. For comparing the 213 

softness among heterogeneous sensors, we normalize their indentation depths to the range of 0 to 1 214 

(see Extended Data Fig. 8B). The 
zF d−  curves are drawn by using the mean and variance values 215 

during three indentations.  216 

Text 9. Material compensation process 217 

As shown in Fig. 5E-i, the pipeline for material compensation is included in training the force 218 

prediction model by correcting the force label 
SF  to 

SCF . When loading the force-image pair data, 219 

the contact depth 
zd  is used to index force 

S

zf and 
T

zf  from the material priors of the source sensor 220 

S and the target sensor T respectively. The compensation ratio r can then be calculated by:  221 

 1
T

z

S

z

f

f
r = −  (7) 222 

     Then, the force label 
SF  can be corrected with either the ratio of 

Lr  or 
Ur  depending on the 223 

contact is in loading phase L or unloading phase U. Notably, we introduce two additional 224 

hyperparameters: starting depth 
0d (

00 maxdd  ) and correction weight   ( 0 1  ).
0d  limits 225 

the compensation where the contact depth 
zd exceeds its value.   controls the compensation 226 
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magnitude. These parameters used in our paper are obtained via grid search (see Supplementary 227 

Table 1 and Supplementary Table 2). Thus, the corrected force label SCF  can be derived as: 228 

 (1 )SC SF F r=  +  (8) 229 

where r is 
Lr  or 

Ur  indexed with the contact location 
zd : 230 

 

L z 0 z

z 0

U z 0 z

, if  and 

0, if 

, if  and 

r d d d L

r d d

r d d d U

 


= 
  

 (9)  231 
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 232 

Supplementary Figure 1. Maker-to-marker translation model architecture.  233 
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 234 

Supplementary Figure 2. Spatiotemporal force prediction model architecture.  235 
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 236 

Supplementary Figure 3. Training process for the marker encoder-decoder. (A) KL Loss. (B) 237 

Reconstruction Loss. (C) The development process of decoded images.  238 
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 239 

Supplementary Figure 4. Training Process for M2M model with simulated data. (A) L2 loss. 240 

(B) LPIPS loss. (C) Generator loss. (D) Discriminator loss. (E) The development process of 241 

generated images with simulated data.  242 



      Page 12 of 16 

 

 243 

Supplementary Figure 5. Training Process for M2M model with homogeneous sensors. (A) 244 

L2 loss. (B) LPIPS loss. (C) Generator loss. (D) Discriminator loss. (E) The development process 245 

of generated images from homogeneous GelSight sensors.  246 
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 247 

Supplementary Figure 6. Training Process for M2M model with heterogeneous sensors. (A) 248 

L2 loss. (B) LPIPS loss. (C) Generator loss. (D) Discriminator loss. (E) The development process 249 

of generated images from uSkin. (F) The development process of generated images from TacPalm.  250 
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Supplementary Table 1. Hyperparameters used in material compensation 251 

in study of material softness effect 252 

   Target 

 

Source 

r6 r8 r10 r12 r14 r16 r18 

r6  0/0.5 0.4/1 0/0.5 0/0.75 0/0.75 0/0.75 

r8 0/1  0.8/1 0/0.75 0/0.75 0/0.75 0/0.75 

r10 0/0.5 0/0.75  0.4/0.25 0/0.5 0/0.5 0/0.5 

r12 0.8/0.75 0.8/0.25 0.8/0.25  0/0.75 0/0.75 0/0.5 

r14 0.8/0.5 0/1 0.8/0.25 0/1  0/1 0/0.75 

r16 0.8/0.5 0/1 0/1 0/1 0/1  0/0.5 

r18 0.4/0.25 0/1 0/1 0.8/0.5 0.8/0.25 0.4/0.25  

*Demonstrate starting depth 
0d (mm) and correction weights   as  

0d /  in each cell) 253 

*Grid search in range of [0,1] with a step of 0.4 for 
0d and 0.25 for  254 

 255 

 256 

 257 

Supplementary Table 2. Hyperparameters used in material compensation 258 

in study of heterogeneous translation 259 

  Target 

 

Source 

uSkin GelSight TacPalm 

uSkin  0.5/1 0/0.5 

GelSight 0/1  0/0.75 

TacPalm 0.75/0.5 0/0.5  

*Demonstrate starting depth 
0d (mm) and correction weights   as  

0d /  in each cell) 260 

*Grid search in range of [0,1] with a step of 0.25 for 
0d and 0.25 for   261 
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Supplementary Caption for Video 1. Marker-to-marker translation with simulated data. The 262 

examples showcase the marker-to-marker translation results with sequential image translations 263 

when A1, C2, and D3 are used as the source domains, respectively. The generated images preserve 264 

similar deformations to the source domains while adopting the image styles of the target domains. 265 

Supplementary Caption for Video 2. Marker-to-marker translation in homogeneous 266 

translation. The examples showcase the marker-to-marker translation results with sequential 267 

image translations when A-I, C-I, D-I, A-II, and C-II are used as the source domains, respectively. 268 

The generated images exhibit similar deformations to the source domains while adopting the image 269 

styles of the target domains. We observed a few failure cases involving a flickering effect when 270 

transferring from A-II and C-II to A-I. This issue is caused by the shift of the elastomer in A-I during 271 

data collection, leading to continuous changes in the reference marker patterns. These continuous 272 

changes result in inconsistency between image conditions and reference images for A-I, producing 273 

a small number of generated images with noise. 274 

Supplementary Caption for Video 3. Marker-to-marker translation in heterogeneous 275 

translation. The examples showcase the marker-to-marker translation results with sequential 276 

image translations when uSkin, TacPalm, and GelSight are used as the source domains, 277 

respectively. The generated images exhibit similar deformations to the source domains while 278 

adopting the image styles of the target domains.  279 

Supplementary Caption for Video 4. Real-time force prediction for homogeneous translation. 280 

The examples showcase the force prediction performance before (source-only) and after applying 281 

the GenForce model when transferring from A-I, A-II, C-I, and D-I to C-II. Prior to using the 282 

GenForce model, significant force prediction errors are observed across all four combinations. After 283 

implementing the GenForce model, the force prediction accuracy is greatly improved, resulting in 284 

significantly reduced errors.  285 

Supplementary Caption for Video 5. Material compensation performance. The examples 286 

showcase the force prediction performance before and after applying material compensation on the 287 

GenForce model when transferring from sensor with hard skin to sensor with soft skin (r6_r16), 288 

and from sensor with soft skin to sensor with hard skin (r16_r6). Noticeable error reduction is 289 

observed, particularly in the normal force, after applying material compensation. 290 

Supplementary Caption for Video 6. Real-time force prediction for heterogeneous translation 291 

to uSkin. The examples showcase the force prediction performance before (source-only) and after 292 

applying the GenForce model when transferring from GelSight and TacPalm to uSkin. Significant 293 

force prediction errors are observed in both combinations prior to using the GenForce model. After 294 

applying the GenForce model, force prediction accuracy is significantly improved, with greatly 295 

reduced errors across the entire tested force range. Notably, lower force errors are observed in the 296 

lower force range. 297 
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Supplementary Caption for Video 7. Real-time force prediction for heterogeneous translation 298 

to TacPalm. The examples showcase the force prediction performance before (source-only) and 299 

after applying the GenForce model when transferring from uSkin and GelSight to TacPalm. 300 

Significant force prediction errors are observed in both combinations prior to using the GenForce 301 

model. After applying the GenForce model, force prediction accuracy is significantly improved, 302 

with greatly reduced errors across the entire tested force range. Notably, lower force errors are 303 

observed in the lower force range. 304 

Supplementary Caption for Video 8. Real-time force prediction for heterogeneous translation 305 

to GelSight. The examples showcase the force prediction performance before (source-only) and 306 

after applying the GenForce model when transferring from uSkin and TacPalm to GelSight. 307 

Significant force prediction errors are observed in both combinations prior to using the GenForce 308 

model. After applying the GenForce model, force prediction accuracy is significantly improved, 309 

with greatly reduced errors across the entire tested force range. Notably, lower force errors are 310 

observed in the lower force range. 311 


