

1 **Supplementary Information**

2 **Training Tactile Sensors to Learn Force Sensing from Each Other**

4 Zhuo Chen^{1*}, Ni Ou¹, Xuyang Zhang¹, Zhiyuan Wu¹, Yongqiang Zhao¹, Yupeng Wang¹, Nathan
5 Lepora², Lorenzo Jamone³, Jiankang Deng^{4*}, Shan Luo^{1*}

6 ¹King's College London, London, United Kingdom.

7 ²University of Bristol, Bristol, United Kingdom.

8 ³University College London, London, United Kingdom.

9 ⁴Imperial College London, London, United Kingdom.

10 ¹²*Corresponding authors. Email: shan.luo@kcl.ac.uk,
11 zhuo.7.chen@kcl.ac.uk , j.deng16@imperial.ac.uk

13 **This PDF file includes:**

14 Supplementary Text 1 to 9

15 Supplementary Figures 1 to 6

16 Supplementary Table 1 to 2

17 Supplementary Caption 1 to 8 for Supplementary Video 1 to 8

18 Supplementary Video 1 to 8

21 Text 1. Marker-to-marker translation model

22 The M2M model consists of two main components: a marker encoder-decoder and an image-
 23 conditioned diffusion model. As shown in Fig. 2C, the marker encoder transforms deformed images
 24 $I_i^{S_i}$ from sensor i and the reference image $I_0^{T_j}$ from sensor j into latent vectors $z_i^{S_i}$ and $z_0^{T_j}$
 25 respectively, while the marker decoder converts the output latent vector $z_i^{G_i}$ from the diffusion
 26 model to the generated deformed images $I_i^{G_i}$. The image-conditioned diffusion model fuses latent
 27 vector $z_i^{S_i}$ with the conditional input $z_0^{T_j}$ through cross-attention mechanisms⁵⁸ and denoises the
 28 fused feature map to produce latent vectors $z_i^{G_i}$. This end-to-end architecture enables direct
 29 translation of marker-based images from $I_i^{S_i}$ to $I_i^{G_i}$ with the image style of $I_i^{T_j}$ while preserving
 30 the deformation from $I_i^{S_i}$. The training objective combines two primary components to train the
 31 model in a pixel-to-pixel manner⁵⁹, i.e. an adversarial loss \mathcal{L}_{gan} ⁴⁷, and a reconstruction loss \mathcal{L}_{rec}
 32 incorporating L2 and LPIPS⁶⁰ loss.

33 **Adversarial Loss** The adversarial loss aims to align the distribution of generated tactile images
 34 $p(I^G)$ with the target images $p(I^T)$. The discriminator D_T learns to differentiate between
 35 generated images I^G and real target images I^T . The adversarial loss is formulated as:

$$36 \quad \mathcal{L}_{gan} = \mathbb{E}_{I^T \sim p(I^T)} [\log D_T(I^T)] + \mathbb{E}_{I^G \sim p(I^G)} [\log (1 - D_T(G(I^S, I_0^T)))] \quad (1)$$

37 where G minimizes this objective while D_T maximizes it: $\min_G \max_{D_T} \mathcal{L}_{gan}$.

38 **Reconstruction Loss** The reconstruction loss \mathcal{L}_{rec} ensures both pixel-level and perceptual-level
 39 similarity between generated images I^G and target images I^T through L2 and LPIPS metrics,
 40 capturing subtle marker displacement during translation:

$$41 \quad \mathcal{L}_{rec} = \sum_{i=1}^n \sum_{j=1}^m \lambda_{L2} \mathbb{E}_{I_i^{S_i} \sim p(I_i^{S_i})} \left\| I_j^{T_j}, G(I_i^{S_i}, I_0^{T_j}) \right\|_2 + \lambda_{LPIPS} \mathbb{E}_{I_i^{S_i} \sim p(I_i^{S_i})} \left\| I_j^{T_j}, G(I_i^{S_i}, I_0^{T_j}) \right\|_{LPIPS} \quad (2)$$

42 Where λ_{L2} is the weight for L2 loss, λ_{LPIPS} is the weight for LPIPS loss.

43 **Overall Objective** The complete learning objective for the generative model combines the above
 44 losses with weights λ_{gan} and λ_{rec} :

$$45 \quad \arg \min \lambda_{gan} \mathcal{L}_{gan} + \lambda_{rec} \mathcal{L}_{rec} \quad (3)$$

46 **Marker encoder-decoder.** As shown in Supplementary Figure 1, we adapt the variational
 47 autoencoder (VAE) architecture from SD-Turbo⁵⁰. The VAE processes marker images with a size
 48 of 256×256 and employs an encoder-decoder structure: an encoder that compresses marker patterns
 49 into a latent space, and a decoder that reconstructs marker patterns from these latent representations.
 50 To optimize the model's performance while maintaining parameter efficiency, we implement Low-
 51 Rank Adaptation (LoRA)⁵³ for efficient fine-tuning. The LoRA is with rank-4 adaptation on key
 52 network components, including convolutional layers and attention modules. The training objective
 53 combines reconstruction loss (L1 and L2) with a KL divergence loss to balance accurate pattern
 54 reconstruction with latent space regularization. This architecture enables effective compression of
 55 marker patterns into a structured latent space while preserving essential geometric and spatial
 56 relationships between different marker types.

57 **Image-conditioned diffusion model.** The conditional diffusion model is based on the UNet⁵¹
 58 architecture from SD-Turbo (Supplementary Figure 1) combined with a DDPM Scheduler⁵². We
 59 implement a one-step diffusion process⁵⁹ for efficient marker pattern translation. The UNet model
 60 is also augmented with LoRA adaptation (rank-8) applied to key network components, including

61 attention layers, convolutional layers, and projection layers. We split the reconstruction loss \mathcal{L}_{rec}
62 into \mathcal{L}_{Lips} and \mathcal{L}_{L2} . The model was optimized using a multi-component loss function:

63
$$\mathcal{L} = \lambda_{gan} \mathcal{L}_{gan} + \lambda_{Lips} \mathcal{L}_{Lips} + \lambda_{L2} \mathcal{L}_{L2} \quad (4)$$

64 where $\lambda_{gan} = 0.5$, $\lambda_{Lips} = 5.0$, and $\lambda_{L2} = 1.0$ to balance the contributions of adversarial, LPIPS, and
65 L2 loss respectively. We employed a CLIP-based vision-aided discriminator⁶¹ with multilevel
66 sigmoid loss for the adversarial component, and a VGG-based LPIPS network⁶⁰ for perceptual loss
67 computation.

68 **Pretraining for the marker encoder-decoder.** The marker encoder-decoder is first trained on the
69 simulation dataset for marker feature extraction. All raw marker images are 640×480 pixels with
70 packed bits file in .npy format. We employ an 80-20 train-test split. All images are preprocessed to
71 a uniform size of 256×256 pixels and normalized to [0,1] range. The model is trained using AdamW
72 optimizer with a learning rate of 1×10^{-4} , betas=(0.9, 0.999), and weight decay of 1×10^{-2} . We
73 employ mixed-precision training (FP16) with a batch size of 4. The loss function combined a
74 reconstruction loss (L1 + L2) and KL divergence with weights of 1.0 and 1×10^{-6} respectively.
75 Training proceeded for 100,000 steps. The training process for the marker encoder-decoder is
76 demonstrated in Supplementary Figure 3.

77 **Pretraining for M2M model with simulation data.** We load the pretrained marker encoder-
78 decoder for the M2M model. For the encoder for the image condition, we freeze the weights to
79 ensure the extracted features are fixed. The training process utilizes all of the 132 combinations
80 from the simulation dataset with 80-20 train-test split. Each training sample in one batch consists
81 of a triplet: a deformed marker image $I_i^{S_i}$ from sensor i , its corresponding paired marker image $I_j^{T_j}$
82 from sensor j , and a reference marker image $I_0^{T_j}$ from sensor j . The model is trained using AdamW
83 optimizer with an initial learning rate of 5×10^{-6} with 500 warm up steps, betas=(0.9, 0.999),
84 epsilon= 1×10^{-8} , and weight decay of 1×10^{-2} . Training proceeded with a batch size of 4. The
85 training process is shown in Supplementary Figure 4.

86 **Training for M2M model with real-world data.** For the homogeneous translation, we first split
87 the homogeneous location-paired image data into two groups with seen indenters and unseen
88 indenters. We finetune the simulation pretrained model using the seen group with an 80-20 train-
89 test split with the same hyperparameters as above for the simulation data. The training process for
90 the homogeneous translation is shown in Supplementary Figure 5.

91 The training for the material effect data uses the same process and hyperparameters but involves
92 loading the model trained with homogeneous data as the pretrained model.

93 The training for the heterogeneous data loads the model weights trained with homogeneous data.
94 The hyperparameters are the same as the homogeneous training except we change the batch size to
95 16 for speeding up training. The training process for the heterogeneous translation is shown in
96 Supplementary Figure 6.

97 Notably, as manual annotation of markers is costly, we employ the original efficient-SAM model
98 for marker extraction without fine-tuning, resulting in a few low-quality marker images in our
99 dataset. Since marker image quality directly impacts both generated marker images and force
100 prediction accuracy, using a dedicated marker segmentation model could further improve
101 performance.

102 **Inference Process.** For model inference, we utilize the mean vector, without variance, of the latent
103 distribution from the marker encoder to ensure deterministic outputs. For datasets in homogeneous
104 translation, material effect and heterogeneous translation, each one is preprocessed using consistent

105 image transformations, including resizing and normalization. The model processes images in
106 batches of 8, generating images with a size of 256×256 that are subsequently upscaled to the target
107 resolution (640×480) using Lanczos interpolation. The upscaled outputs are then thresholded to
108 binary marker images. The results are saved as compressed binary Numpy arrays.

109 Text 2. Spatiotemporal force prediction model

110 **Model architecture.** The model consists of four main components demonstrated in Supplementary
111 Figure 2: a marker feature encoder backbone, a spatiotemporal module with convolutional GRU
112 (ConvGRU)⁵⁴, a post-processing network with ResNet Unit, and a regression head with multilayer
113 perceptron (MLP). The input to our model is a sequence of tactile images with shape
114 $S \times N \times 3 \times 256 \times 256$, where S is the sequence length, N is the batch size, and each image has 3
115 channels with 256×256 spatial resolution. The marker feature encoder processes these images
116 through three convolutional blocks, each incorporating instance normalization and dropout. The
117 first block reduces spatial dimensions to 128×128 while increasing channels to 64, the second block
118 further reduces to 64×64 with 96 channels, and the third block outputs features at 32×32 resolution
119 with 128 channels. These spatial features are then processed by a ConvGRU module that maintains
120 the 32×32 spatial resolution while capturing temporal dependencies across the sequence. With a
121 hidden state dimension of 128 channels, the ConvGRU tracks temporal patterns while preserving
122 spatial information. The temporal features undergo spatial dimension reduction through two
123 residual blocks (stride 2), expanding the channel dimension from 128 to 256, then to 512, while
124 reducing spatial dimensions to 16×16 and 8×8 respectively. An adaptive average pooling layer
125 collapses the remaining spatial dimensions to 1×1 , producing a 512-dimensional feature vector per
126 timestep. The regression head maps these features to three-axis force predictions using a fully
127 connected layer followed by sigmoid activation. This architecture effectively combines spatial and
128 temporal processing to capture both the detailed marker deformations in individual frames and their
129 evolution over time, enabling accurate prediction of three-axis force from tactile image sequences.

130 The network is optimized using a mean absolute error (MAE) loss function:

$$131 \quad \mathcal{L}_{\text{MAE}} = \frac{1}{N} \sum_{i=1}^N \|\hat{F}_i - F_i\|_1 \quad (5)$$

132 where \hat{F}_i and F_i denote the predicted and ground-truth forces respectively

133 **Model Training.** The image data undergoes preprocessing including resizing to 256×256 pixels
134 and normalization using ImageNet statistics (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224,
135 0.225]). Force measurements are normalized using pre-computed global minimum and maximum
136 values to ensure consistent scaling across different samples. Our dataloader implements dynamic
137 sequence sampling, where for each batch, we randomly sample sequence lengths between the first
138 frame and the maximum available length with at least two frames, enabling the model to learn from
139 varying temporal contexts. For model initialization, we employ normalization for convolutional
140 layers and constant initialization for normalization layers. The training process follows a two-stage
141 approach: first, we pre-train the model on a single randomly selected sensor with a learning rate of
142 0.1 for 40 epochs, then fine-tune on the complete dataset with a learning rate of 1×10^{-3} for another
143 40 epochs. We use SGD optimization with momentum (0.9) and weight decay 5×10^{-4} , along with
144 a learning rate scheduler. During training, we utilize a custom collate function that handles varying
145 sequence lengths through dynamic padding, where shorter sequences are padded to match the
146 batch's sampled sequence length by repeating the last frame. The model is trained with a batch size

147 of 4 using L1 loss between predicted and ground truth forces, exclusively on the seen group data,
148 with early stopping based on validation performance.

149 **Model Inference.** During inference, our model processes tactile image sequences to predict three-
150 axis force. The inference pipeline utilizes a modified data loading scheme where, unlike training,
151 we process the complete sequence length without random sampling. The dataloader maintains the
152 same image preprocessing pipeline (resizing to 256×256 and normalization with ImageNet
153 statistics). For both source and target domain evaluation, we load full sequences with a batch size
154 of 1 to ensure consistent temporal processing across all samples. The predictions undergo
155 denormalization using globally tracked minimum and maximum force values the same as in training
156 to restore the actual force scale. We evaluate the model's performance using multiple metrics: Mean
157 Absolute Error (MAE) for individual force components (F_x, F_y, F_z), MAE for total force
158 magnitude F_t , and R^2 values to assess prediction accuracy over the whole force range. Notably,
159 while our unsupervised method has shown impressive performance, a gap remains compared to
160 supervised learning approaches. Enhancing accuracy may involve compensating for additional
161 material properties such as Poisson's ratio, roughness, and viscosity. Alternatively, few-shot
162 finetuning using force labels from simple gauges, weighted objects, or calibrated tactile sensors
163 could help close this gap.

164 **Text 3. Trajectory for marker deformation simulation**

165 The trajectory shown Extended Data Fig. 1B covers a grid of contact locations with horizontal steps
166 Δx and Δy of 4 mm and vertical increments Δz of 0.3 mm, reaching a maximum indentation depth
167 z_{\max} of 1.5 mm. This approach yields 45 target contact locations (5 steps in depth \times 9 grid) per
168 indenter, resulting in 810 unique deformed meshes in total. For each movement to target location,
169 the indenter is initialized at a position where its bottom surface is parallel to and 10 mm above the
170 elastomer surface. To ensure we are obtaining smooth mesh, we set the world step time to 1×10^{-4}
171 s and the contact speed to -10 mm/s.

172 **Text 4. Fabrication of soft skins**

173 The fabrication process is demonstrated in Extended Data Fig. 2A. First, we mix XPA-565 silicone
174 base (B) with activator (A) using different ratios to control the softness. For homogeneous
175 translation and heterogeneous translation, we use a ratio of 15:1. In material compensation, we
176 employ seven different ratios ranging from 6:1 to 18:1, where higher ratios produce softer
177 elastomers. We pour the mixture into a mold for 4 mm thickness for 24-hour natural curing to obtain
178 transparent silicone elastomer. Next, we print designed markers (see Fig. 3A) on sticker paper using
179 an inkjet printer and transfer them onto the cured elastomer. We then prepare a coating mixture by
180 combining aluminum powder and silver bullet powder with solvent in a 1:1:2.5 ratio, then mix this
181 with silicone elastomer (15:1 ratio) to pour onto the elastomers with markers. The pigment mixture
182 ensures opaqueness while maintaining negligible increase in the elastomers' thickness. After
183 another 24 hours of curing, we cut the elastomer to $20 \text{ mm} \times 20 \text{ mm}$ dimensions for testing.
184 Notably, increasing the XPA-565 ratio extends the required curing time.

185 **Text 5. Parameters for data collection in real world**

186 For homogeneous and material compensation tests, we implement the following parameters to the
187 parameters defined in Extended Data Fig. 2B: horizontal moving distances $\Delta x = 3$ mm, $\Delta y = 4$ mm,

188 depth step $\Delta z = 0.3$ mm with maximum depth $z_{\max} = 1.2$ mm, moving angle $\theta = 30^\circ$, and shear
 189 distance $\Delta r = 1$ mm. This configuration yields $5 \times 4 \times 12 = 240$ target points with varying moving
 190 directions and locations. The heterogeneous translation employs a moving angle $\theta = 45^\circ$ with depth
 191 parameters of $\Delta z = 0.25$ mm and $z_{\max} = 1$ mm for GelSight and uSkin. The parameters for TacPalm
 192 are configured with $\Delta x = \Delta y = 6.5$ mm, $\Delta z = 1.125$ mm, $z_{\max} = 4.5$ mm, $\theta = 30^\circ$ and $\Delta r = 1.5$ mm.
 193 This configuration yields $5 \times 4 \times 8 = 160$ target points. This configuration enables image collection
 194 at 0.25 mm intervals for GelSight and uSkin to pair with TacPalm collected at 1.125 mm intervals,
 195 ensuring comparable force ranges collected from TacPalm.

197 **Text 6. Parameters for marker conversion for uSkin**

198 Through grid search for the parameters shown in Extended Data Fig. 8A, we determine the optimal
 199 visualization parameters: $D_{\min} = 300$, $D_{\max} = 6000$, $\Delta X_{\max} = \Delta Y_{\max} = 0.6$, $S_D = 0.2$,
 200 $S_x = S_y = 0.002$. These parameters provide an optimal balance between sensitivity to subtle
 201 deformations and clear visualization of larger forces while preventing marker overlap or grid
 202 distortion.

203 **Text 7. Relationship of force and indentation depth**

204 According to contact mechanics, when a flat rigid indenter applies force F on an elastic specimen's
 205 surface⁶², the relationship between force F and penetration depth d_z is given by:

$$206 \quad F = \alpha E d_z \quad (6)$$

207 where α is a geometric constant specific to the indenter, and E represents the elastic modulus of
 208 the specimen. Based on Equation (6), we can compare the elastomers' softness among different
 209 sensors by measuring the relationship between applied force F and indentation depth d_z using a flat
 210 rigid indenter.

211 **Text 8. Parameters for data collection in force-depth curve**

212 For heterogeneous translation, we applied maximum depths d_{\max} of 1mm for GelSight and uSkin,
 213 while extending to 4.5mm for TacPalm due to its extremely soft property. For comparing the
 214 softness among heterogeneous sensors, we normalize their indentation depths to the range of 0 to 1
 215 (see Extended Data Fig. 8B). The $F - d_z$ curves are drawn by using the mean and variance values
 216 during three indentations.

217 **Text 9. Material compensation process**

218 As shown in Fig. 5E-i, the pipeline for material compensation is included in training the force
 219 prediction model by correcting the force label F^S to F^{SC} . When loading the force-image pair data,
 220 the contact depth d_z is used to index force f_z^S and f_z^T from the material priors of the source sensor
 221 S and the target sensor T respectively. The compensation ratio r can then be calculated by:

$$222 \quad r = \frac{f_z^T}{f_z^S} - 1 \quad (7)$$

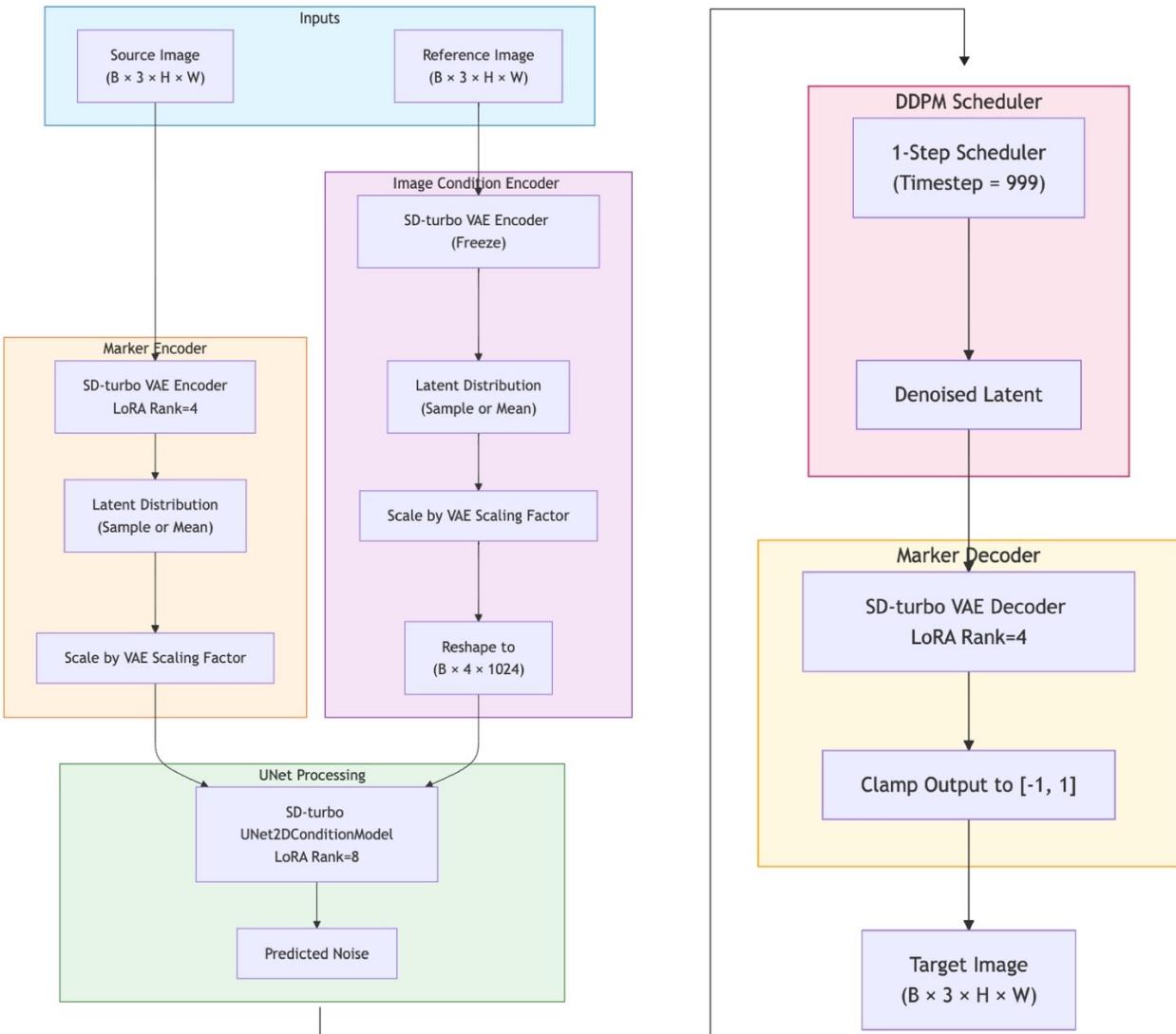
223 Then, the force label F^S can be corrected with either the ratio of r_L or r_U depending on the
 224 contact is in loading phase L or unloading phase U. Notably, we introduce two additional
 225 hyperparameters: starting depth d_0 ($0 < d_0 < d_{\max}$) and correction weight λ ($0 < \lambda < 1$). d_0 limits
 226 the compensation where the contact depth d_z exceeds its value. λ controls the compensation

227 magnitude. These parameters used in our paper are obtained via grid search (see Supplementary
228 Table 1 and Supplementary Table 2). Thus, the corrected force label F^{SC} can be derived as:

229
$$F^{SC} = F^S \cdot (1 + \lambda r) \quad (8)$$

230 where r is r_L or r_U indexed with the contact location d_z :

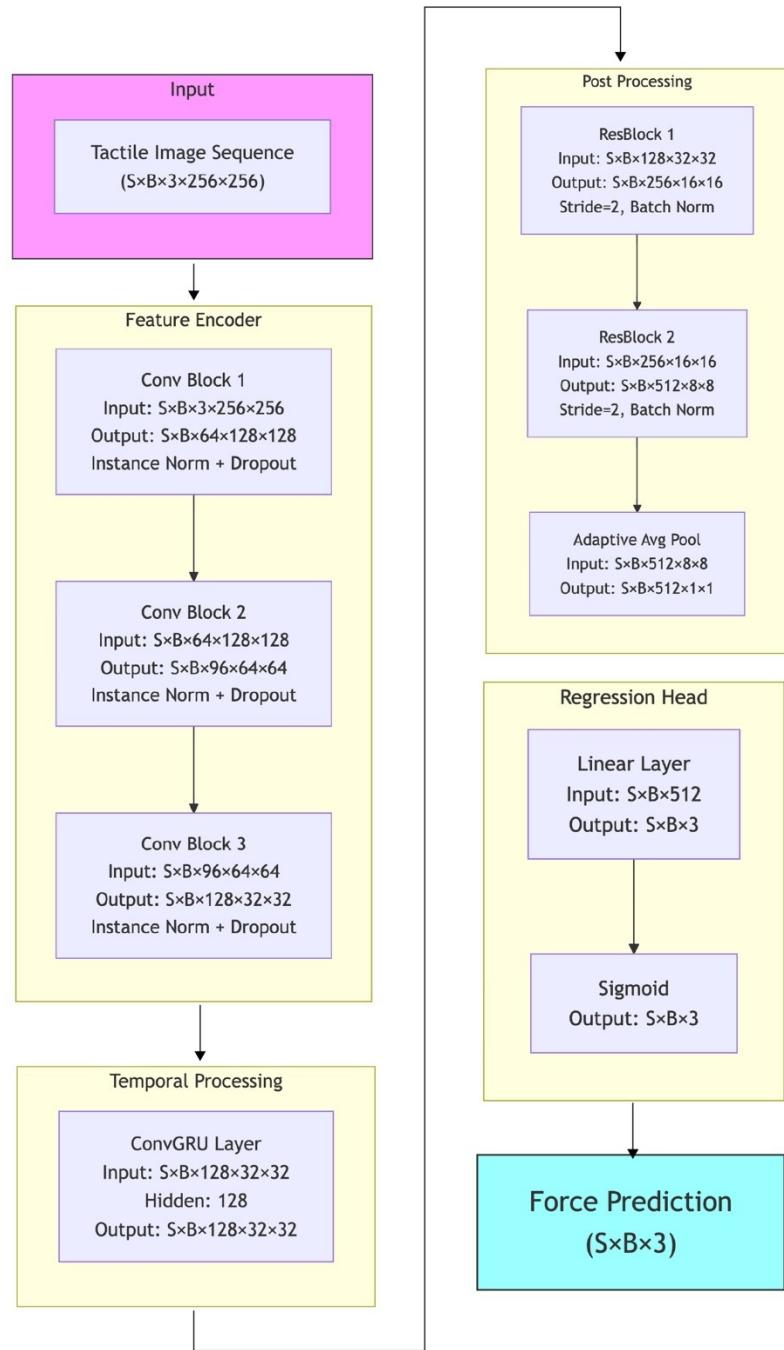
231
$$r = \begin{cases} r_L, & \text{if } d_z > d_0 \text{ and } d_z \in L \\ 0, & \text{if } d_z \leq d_0 \\ r_U, & \text{if } d_z > d_0 \text{ and } d_z \in U \end{cases} \quad (9)$$



232

233

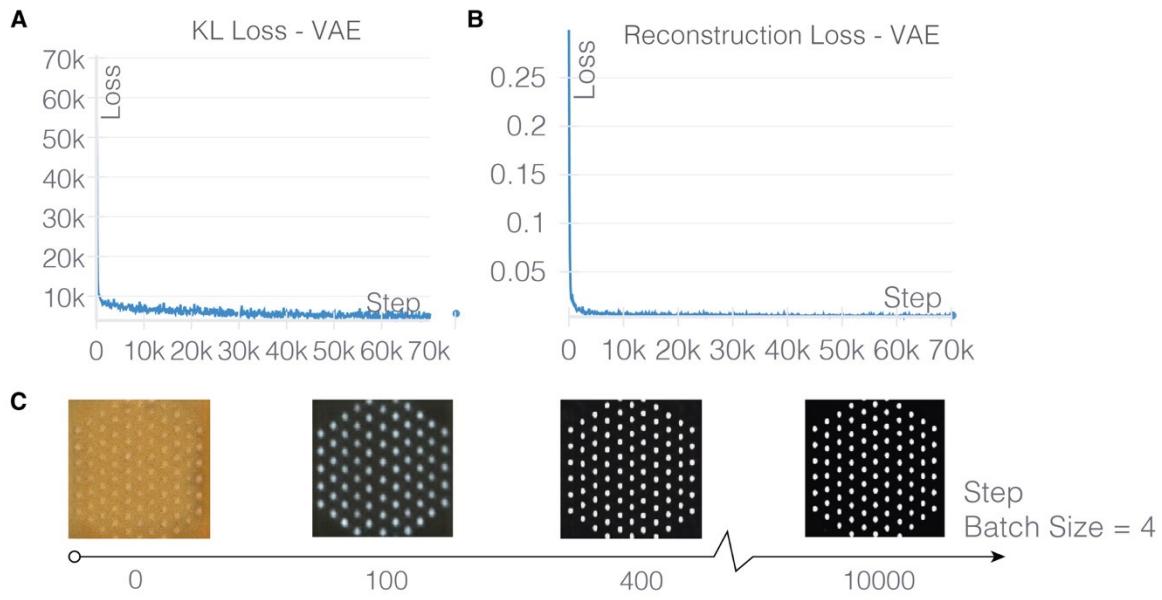
Supplementary Figure 1. Marker-to-marker translation model architecture.



234

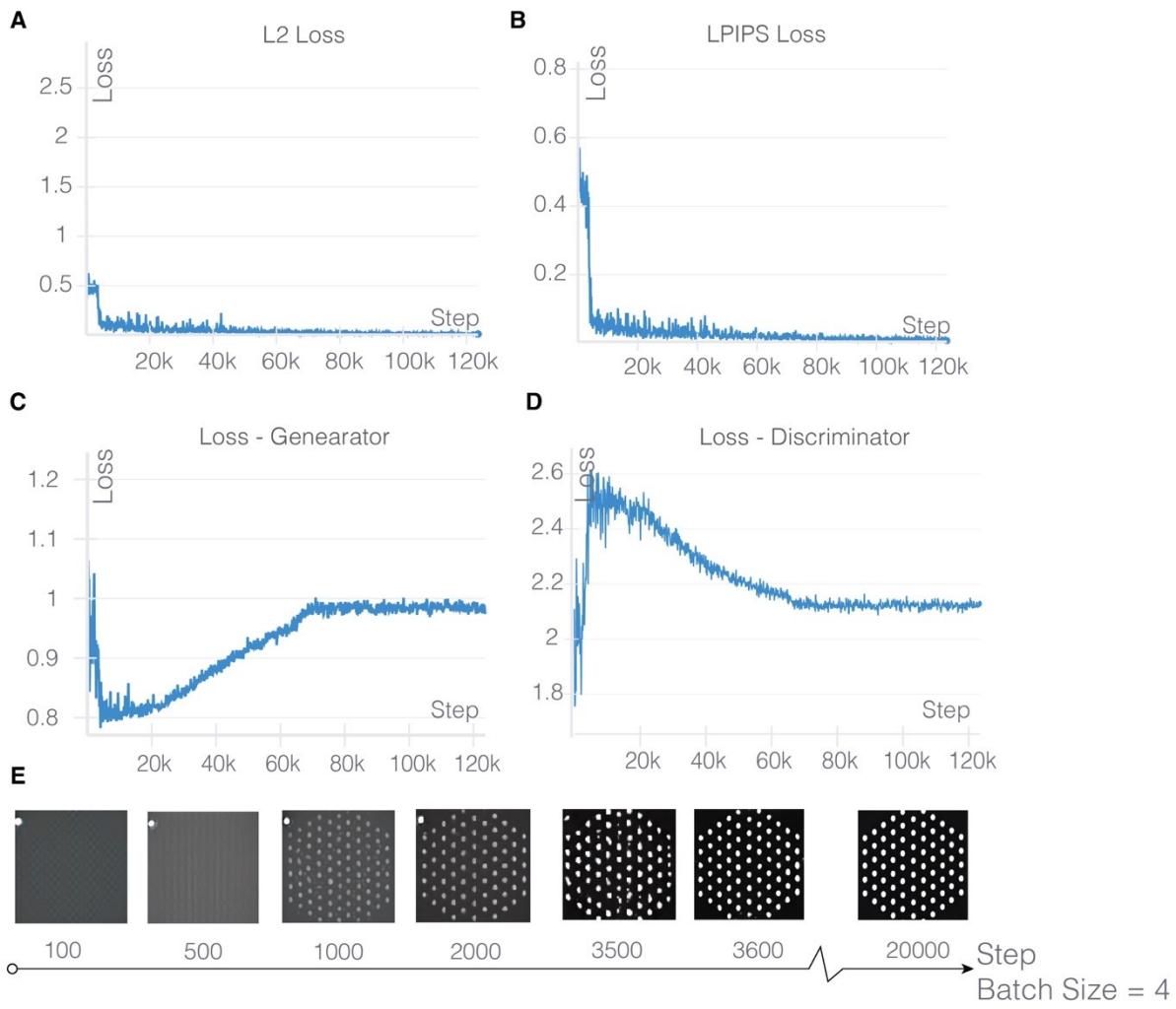
235

Supplementary Figure 2. Spatiotemporal force prediction model architecture.



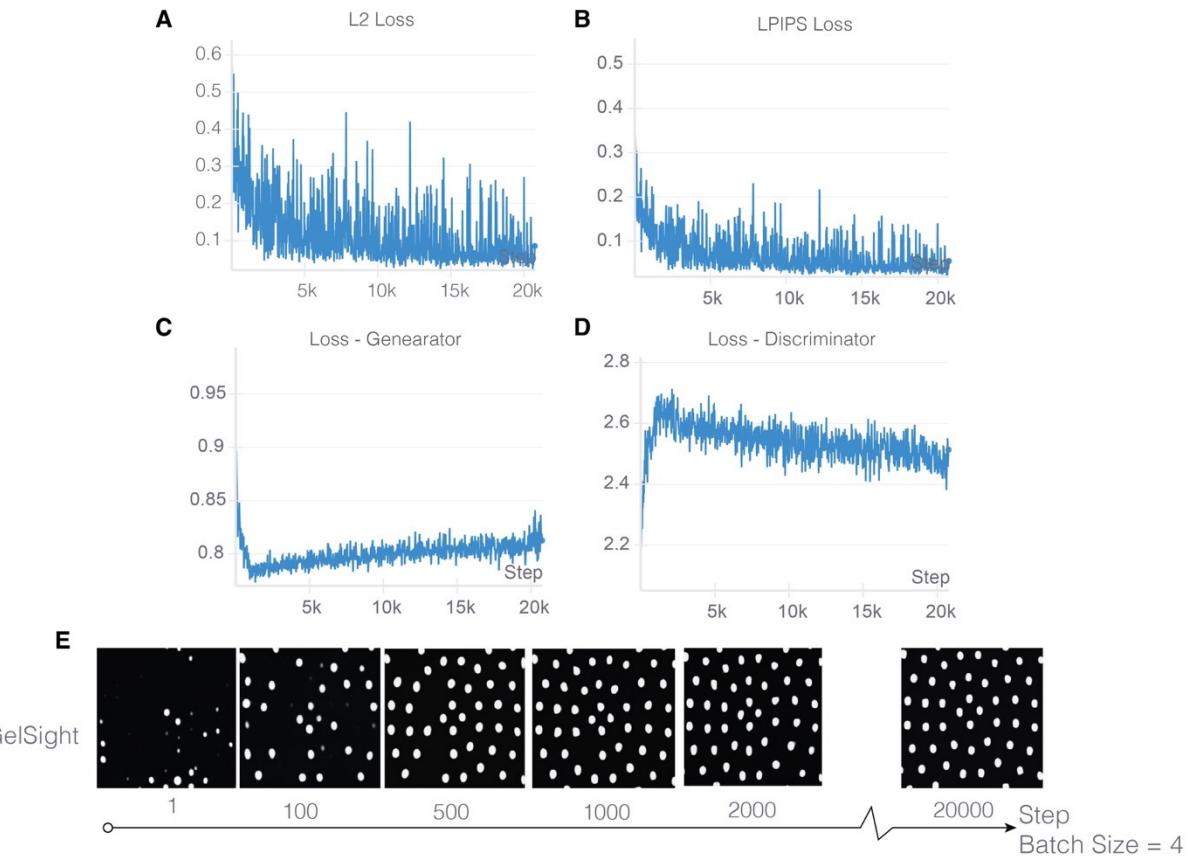
236

237 **Supplementary Figure 3. Training process for the marker encoder-decoder. (A) KL Loss. (B)**
 238 **Reconstruction Loss. (C) The development process of decoded images.**



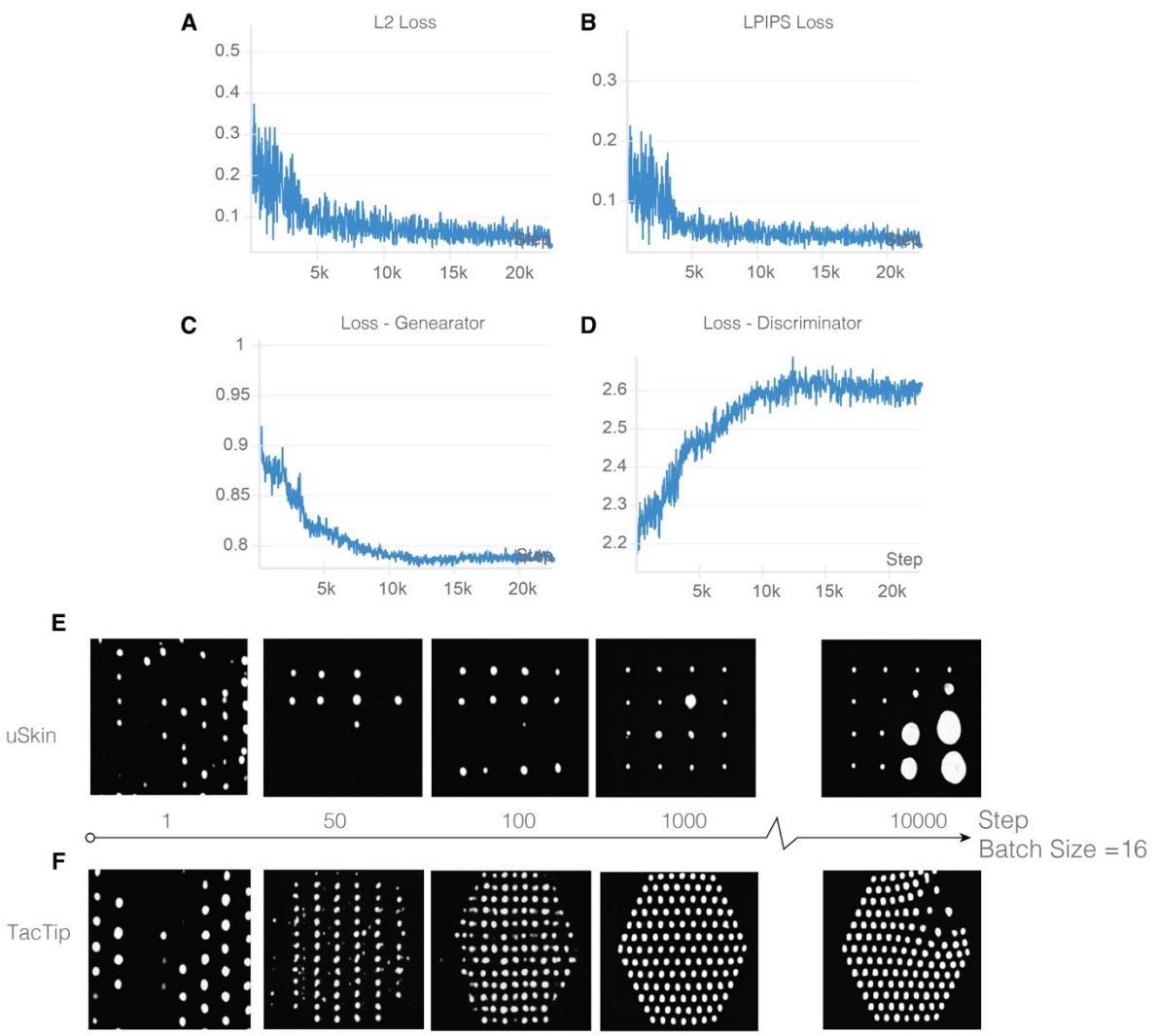
239

240 **Supplementary Figure 4. Training Process for M2M model with simulated data. (A)** L2 loss.
241 **(B)** LPIPS loss. **(C)** Generator loss. **(D)** Discriminator loss. **(E)** The development process of
242 generated images with simulated data.



243

244 **Supplementary Figure 5. Training Process for M2M model with homogeneous sensors. (A)**
 245 **(B)** L2 loss. **(C)** LPIPS loss. **(D)** Generator loss. **(E)** Discriminator loss. **(E)** The development process
 246 of generated images from homogeneous GelSight sensors.



247

248 **Supplementary Figure 6. Training Process for M2M model with heterogeneous sensors. (A)**
249 **(B)** L2 loss. **(C)** LPIPS loss. **(D)** Generator loss. **(E)** Discriminator loss. **(E)** The development process
250 of generated images from uSkin. **(F)** The development process of generated images from TacPalm.

251 **Supplementary Table 1. Hyperparameters used in material compensation**
 252 **in study of *material softness effect***

Source \ Target	r6	r8	r10	r12	r14	r16	r18
Source	r6	r8	r10	r12	r14	r16	r18
r6		0/0.5	0.4/1	0/0.5	0/0.75	0/0.75	0/0.75
r8	0/1		0.8/1	0/0.75	0/0.75	0/0.75	0/0.75
r10	0/0.5	0/0.75		0.4/0.25	0/0.5	0/0.5	0/0.5
r12	0.8/0.75	0.8/0.25	0.8/0.25		0/0.75	0/0.75	0/0.5
r14	0.8/0.5	0/1	0.8/0.25	0/1		0/1	0/0.75
r16	0.8/0.5	0/1	0/1	0/1	0/1		0/0.5
r18	0.4/0.25	0/1	0/1	0.8/0.5	0.8/0.25	0.4/0.25	

253 *Demonstrate starting depth d_0 (mm) and correction weights λ as d_0 / λ in each cell)

254 *Grid search in range of [0,1] with a step of 0.4 for d_0 and 0.25 for λ

255
 256
 257
 258 **Supplementary Table 2. Hyperparameters used in material compensation**
 259 **in study of *heterogeneous translation***

Source \ Target	uSkin	GelSight	TacPalm
Source	uSkin	GelSight	TacPalm
uSkin		0.5/1	0/0.5
GelSight	0/1		0/0.75
TacPalm	0.75/0.5	0/0.5	

260 *Demonstrate starting depth d_0 (mm) and correction weights λ as d_0 / λ in each cell)

261 *Grid search in range of [0,1] with a step of 0.25 for d_0 and 0.25 for λ

262 **Supplementary Caption for Video 1. Marker-to-marker translation with simulated data.** The
263 examples showcase the marker-to-marker translation results with sequential image translations
264 when $A1$, $C2$, and $D3$ are used as the source domains, respectively. The generated images preserve
265 similar deformations to the source domains while adopting the image styles of the target domains.

266 **Supplementary Caption for Video 2. Marker-to-marker translation in homogeneous**
267 **translation.** The examples showcase the marker-to-marker translation results with sequential
268 image translations when A - I , C - I , D - I , A - II , and C - II are used as the source domains, respectively.
269 The generated images exhibit similar deformations to the source domains while adopting the image
270 styles of the target domains. We observed a few failure cases involving a flickering effect when
271 transferring from A - II and C - II to A - I . This issue is caused by the shift of the elastomer in A - I during
272 data collection, leading to continuous changes in the reference marker patterns. These continuous
273 changes result in inconsistency between image conditions and reference images for A - I , producing
274 a small number of generated images with noise.

275 **Supplementary Caption for Video 3. Marker-to-marker translation in heterogeneous**
276 **translation.** The examples showcase the marker-to-marker translation results with sequential
277 image translations when uSkin, TacPalm, and GelSight are used as the source domains,
278 respectively. The generated images exhibit similar deformations to the source domains while
279 adopting the image styles of the target domains.

280 **Supplementary Caption for Video 4. Real-time force prediction for homogeneous translation.**
281 The examples showcase the force prediction performance before (source-only) and after applying
282 the GenForce model when transferring from A - I , A - II , C - I , and D - I to C - II . Prior to using the
283 GenForce model, significant force prediction errors are observed across all four combinations. After
284 implementing the GenForce model, the force prediction accuracy is greatly improved, resulting in
285 significantly reduced errors.

286 **Supplementary Caption for Video 5. Material compensation performance.** The examples
287 showcase the force prediction performance before and after applying material compensation on the
288 GenForce model when transferring from sensor with hard skin to sensor with soft skin ($r6_r16$),
289 and from sensor with soft skin to sensor with hard skin ($r16_r6$). Noticeable error reduction is
290 observed, particularly in the normal force, after applying material compensation.

291 **Supplementary Caption for Video 6. Real-time force prediction for heterogeneous translation**
292 **to uSkin.** The examples showcase the force prediction performance before (source-only) and after
293 applying the GenForce model when transferring from GelSight and TacPalm to uSkin. Significant
294 force prediction errors are observed in both combinations prior to using the GenForce model. After
295 applying the GenForce model, force prediction accuracy is significantly improved, with greatly
296 reduced errors across the entire tested force range. Notably, lower force errors are observed in the
297 lower force range.

298 **Supplementary Caption for Video 7. Real-time force prediction for heterogeneous translation**
299 **to TacPalm.** The examples showcase the force prediction performance before (source-only) and
300 after applying the GenForce model when transferring from uSkin and GelSight to TacPalm.
301 Significant force prediction errors are observed in both combinations prior to using the GenForce
302 model. After applying the GenForce model, force prediction accuracy is significantly improved,
303 with greatly reduced errors across the entire tested force range. Notably, lower force errors are
304 observed in the lower force range.

305 **Supplementary Caption for Video 8. Real-time force prediction for heterogeneous translation**
306 **to GelSight.** The examples showcase the force prediction performance before (source-only) and
307 after applying the GenForce model when transferring from uSkin and TacPalm to GelSight.
308 Significant force prediction errors are observed in both combinations prior to using the GenForce
309 model. After applying the GenForce model, force prediction accuracy is significantly improved,
310 with greatly reduced errors across the entire tested force range. Notably, lower force errors are
311 observed in the lower force range.