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Characteristics and ecological risk assessment of antibiotic pollution in lake water of typical urban landscape under epidemic situation
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Text S1. Positive matrix factorization model (PMF).
The Positive Matrix Factorization (PMF) model is a proficient tool for multivariate factor analysis, commonly employed to identify the sources of pollutants (Yu et al. 2016). PMF is capable of handling the inherent uncertainty present in environmental measurements (Wu et al. 2020, Zanotti et al. 2019). The PMF model works by the fact that the user needs to provide documentati on of the concentration and uncertainty of the sample species as well as the number of sources. The model calculates the source profile, the source contribution, and the source profile uncertainty. The results of the PMF model are constrained to ensure positive source contributions and to minimize uncertaintie-weighted differences between observed and predicted species concentrations. This method breakdown the sample concentration data matrixes (X) into a factor contribution matrix (G) and a factor profile matrix (F) while adhering to non-negative constraints. It can be mathematically expressed as follows:
 
where xij is the concentration matrix of antibiotic j in sample i, gik is the contribution matrix of source k to sample i, fkj is the source profile of antibiotic j for source k, and eij is the residual error matrix of antibiotic j in sample i. It is necessary to find the minimum objective function (Q) to control the residual matrix (E), and PMF can obtain the source contribution through Q:

where uij is the uncertainty of the concentration of antibiotic j in sample i, which is determined according to the concentration of antibiotic (Cij), the relative standard deviation (Error fraction), and the instrumental detection limit (IDL) as follows:


The PMF model was executed using the PMF 5.0 software, adhering to the guidelines provided in the PMF 5.0 Fundamentals and User Guide (US EPA, 2014). The application of PMF 5.0 modeling relies on a trial-and-error method. During the trials, the number of factors was varied between 3 and 7 to determine the optimal number based on the results of DISP, BS, Bootstrap Summary, and the comparison of mapped and unmapped data.
The signal-to-noise ratio (S/N) is an analytical method used to screen data in the running of PMF models, which indicates whether the variability observed in the measurement represents a genuine signal or is merely within the noise of the data. A higher S/N ratio suggests that the variability is more likely to be real and meaningful, while a lower S/N ratio indicates that the observed variation may be attributed to the inherent noise present in the data. S/N can be calculated as:

Where xi, si represent concentration and uncertainty respectively.
Species with concentrations consistently lower than their uncertainty are assigned an S/N of 0, while species with concentrations twice of the uncertainty value are assigned an S/N of 1. S/N greater than 1 often suggests a species with a “good” signal, though this depends on how uncertainties were determined. Using the provided statistics and understanding of analytical and PMF user's guidelines, we categorize S/N < 0.5 as “bad”. A categorization of “Bad” excludes the compound from the rest of the analysis. 
By utilizing the provided statistical data, we classify species as "Strong," "Weak," or "Bad" by selecting them in the input data statistics table. We have pinpointed sources of antibiotics in the regional and watershed scales. After several trials, we found that a model with a total of 4 factors performed more effectively in the EPA PMF 5.0 software.
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Figure S1. Principal components analysis of concentrations in the study area.


Table S1 The antibiotics properties, toxicity data, and usage pattern of the 19 target antibiotics.
	Antibiotic Class
	Antibiotics
	Abb.
	CAS
	MW
	Supplier

	Sulfonamides
	Sulfadiazine
	SDZ
	68-35-9
	250.28
	Dr. Ehrenstorfer

	
	Sulfamethoxypyridazine
	SMP
	201-272-5
	280.30
	

	
	Sulfamethoxazole
	SMX
	723-46-6
	253.28
	

	
	Sulfisoxazole
	SIZ
	127-69-5
	267.30
	

	
	Sulfaquinoxaline
	SQX
	59-40-5
	300.34
	

	
	Sulfadimethoxine
	SMM
	122-11-2
	310.33
	

	
	sulfadoxine
	SDX
	2447-57-6
	310.33
	

	
	Sulfaphenazolum
	SPZ
	526-08-9
	314.36
	

	Quinolones
	Ciprofloxacin
	CIP
	85721-33-1
	331.34
	Sigma-Aldrich

	
	Ofloxacin
	OFL
	82419-36-1
	361.37
	

	
	Danofloxacin
	DAN
	112398-08-0
	357.38
	

	
	Lomefloxacin
	LOM
	98079-51-7
	351.35
	

	
	Sarafloxacin
	SAR
	98105-99-8
	385.36
	

	Macrolides
	Erythromycin
	ERY
	114-07-8
	733.93
	Dr. Ehrenstorfer

	
	Azithromycin
	ATM
	83905-01-5
	748.98
	

	
	Clarithromycin
	CTM
	81103-11-9
	747.95
	

	
	Roxithromycin
	ROX
	80214-83-1
	837.05
	Sigma-Aldrich

	Lincosamides
	Lincomycin
	LIN
	154-21-2
	406.54
	Dr. Ehrenstorfer

	Tetracyclines
	Doxycycline
	DXC
	564-25-0
	444.43
	Dr. Ehrenstorfer




[bookmark: _Toc118612550]Table S2 The conditions for the mobile phase gradient elution of positive electrospray ionization mode.
	Time (min)
	Acetonitrile (%)
	0.1% Formic Acid (%) +
methanol/ acetonitrile (1:1)

	2.0
	30.0
	70.0

	5.0
	40.0
	60.0

	7.0
	95.0
	5.0

	8.5
	95.0
	5.0

	8.51
	15.0
	85.0
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	Positive
	Negative

	DL temp (℃)
	250
	250

	Atomizing gas flow (l/min)
	3
	3

	Heating gas flow (l/min)
	10
	10

	Sheath gas heater (℃)
	300
	300

	Interface voltage (V)
	4000
	4000

	DUIS corona voltage (V)
	4500
	4500





[bookmark: _Toc118612552]Table S4. Parameters of selecting ions and conditions of mass spectrometry in in positive electrospray ionization mode for the determination of pharmaceuticals.
	Antibiotics
	Parent ion (Da)
	Fragment ion (Da)
	[bookmark: OLE_LINK10]Retention time (min)
	CE (V)
	Polarity

	[bookmark: _Hlk193987998]SDZ
	251.0
	156.0
	1.074
	15
	Positive

	
	
	92.1
	
	25
	

	SMP
	281.0
	156.0
	1.938
	17
	Positive

	
	
	92.1
	
	30
	

	SMX
	254.0
	156.0
	2.575
	16
	Positive

	
	
	92.0
	
	28
	

	SIZ
	268.0
	156.0
	1.937
	13
	Positive

	
	
	92.1
	
	27
	

	SQX
	301.0
	156.0
	4.714
	17
	Positive

	
	
	92.1
	
	30
	

	SMM
	281.0
	156.0
	2.243
	18
	Positive

	
	
	108.0
	
	18
	

	SDX
	311.0
	156.0
	4.286
	26
	Positive

	
	
	108.0
	
	30
	

	SPZ
	315.10
	158.1
	3.769
	28
	Positive

	
	
	156.1
	
	21
	

	OFL
	362.0
	318.1
	2.204
	18
	Positive

	
	
	261.1
	
	28
	

	CIP
	332.2
	288.1
	2.501
	17
	Positive

	
	
	314.1
	
	16
	

	DAN
	358.2
	340.1
	2.694
	20
	Positive

	
	
	255.0
	
	42
	

	LOM
	352.2
	265.0
	2.704
	22
	Positive

	
	
	308.2
	
	16
	

	SAR
	386.2
	368.1
	2.990
	20
	Positive

	
	
	342.1
	
	21
	

	ERY
	750.0
	87.5
	4.604
	35
	Positive

	
	
	592.4
	
	30
	

	ATM
	748.5
	158.2
	6.832
	29
	Positive

	
	
	590.4
	
	21
	

	CTM
	734.3
	158.2
	6.595
	35
	Positive

	
	
	576.4
	
	20
	

	ROX
	837.5
	158.2
	6.853
	40
	Positive

	
	
	679.4
	
	25
	

	LIN
	407.3
	126.1
	1.573
	40
	Positive

	
	
	359.3
	
	20
	

	DXC
	445.2
	428.2
	2.223
	16
	Positive

	
	
	154.1
	
	34
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	Antibiotics Type  
	IDL (ng/mL)
	IQL (ng/mL)
	Recovery (%)
	Linearity

	
	
	
	
	R2

	SDZ
	0.2
	0.67
	97.2
	0.9993

	SMP
	0.2
	0.67
	86.3
	0.9993

	SMX
	0.2
	0.67
	98.4
	0.9998

	SIZ
	0.2
	0.67
	91.3
	0.9997

	SQX
	0.2
	0.67
	77.4
	0.9999

	SMM
	0.2
	0.67
	87.5
	0.9995

	SDX
	0.2
	0.67
	89.1
	0.9994

	SPZ 
	0.2
	0.67
	90.6
	0.9993

	OFL
	1.0
	3.33
	90.2
	0.9997

	CIP
	1.0
	3.33
	82.4
	0.9993

	DAN
	1.0
	3.33
	93.3
	0.9995

	LOM
	1.0
	3.33
	76.8
	0.9997

	SAR
	1.0
	3.33
	83.1
	0.9998

	ATM
	0.5
	1.67
	83.8
	0.9994

	CTM
	0.5
	1.67
	84.1
	0.9995

	ERY
	1.0
	3.33
	64.6
	0.9996

	ROX
	0.5
	1.67
	85.7
	0.9995

	LIN
	0.5
	1.67
	75.0
	0.9995

	DXC
	1.0
	3.33
	65.9
	0.9995


IDL: instrumental detection limit 
IQL: instrumental quantification limit


Table S6 Risk quotients (RQs) for the aquatic organisms as calculated from measured environmental concentrations (MECs) and predicted no effect concentrations (PNECs).
	Antibiotics
	Taxonomic group
	E(L)C50
	N(L)OEC
	AF
	PNEC
(ng/L)

	SDZ
	Algae
	28.99
	
	[bookmark: OLE_LINK17]1000
	28990

	
	Crustacean
	0.1
	
	1000
	100

	
	Fish
	23.83
	
	1000
	23830

	SMX
	Algae
	0.027
	
	1000
	27

	
	Crustacean
	
	0.25
	10
	25000

	
	Fish
	
	8
	10
	800000

	SIZ
	Algae
	18.98
	
	1000
	18980

	SMM
	Algae
	1.277
	
	1000
	1277

	
	Crustacean
	14.9
	
	1000
	14900

	SQX
	Algae
	0.246
	
	1000
	246

	OFL
	Algae
	0.021
	
	1000
	21

	
	Crustacean
	
	10
	50
	200000

	
	Fish
	
	10
	10
	1000000

	
	Invertebrates
	17.41
	
	1000
	17410

	
	Plants
	0.126
	
	1000
	126

	CIP
	Algae
	0.017
	
	1000
	17

	
	Crustacean
	
	1.8
	10
	180000

	
	Fish
	
	100
	10
	10000000

	
	Plants
	0.203
	
	1000
	203

	LOM
	Algae
	0.186
	
	1000
	186

	ATM
	Algae
	1.87
	
	1000
	1870

	
	Crustacean
	0.29
	
	1000
	290

	
	Fish
	18.82
	
	1000
	18820

	CTM
	Algae
	0.76
	
	1000
	760

	
	Crustacean
	0.31
	
	1000
	310

	
	Fish
	0.93
	
	1000
	930

	ERY
	Algae
	0.02
	
	1000
	20

	
	Crustacean
	9
	
	1000
	9000

	
	Fish
	6.8
	
	1000
	68000

	
	Invertebrates
	0.94
	
	1000
	940

	
	Plants
	1
	
	1000
	1000

	ROX
	[bookmark: OLE_LINK18]Algae
	0.0043
	
	1000
	4.3

	
	Crustacean
	0.6
	
	1000
	600

	
	Fish
	2.3
	
	1000
	2300

	
	Invertebrates
	7.1
	
	1000
	7100

	
	Plants
	10
	
	1000
	10000

	LIN
	Algae
	1.44
	
	
	1440

	
	Invertebrates
	50
	
	100
	500000

	DXC
	Algae
	2.2
	
	1000
	2200


Note: PNE and EC50 data were cited from previous reports (Fan et al. 2025, Han et al. 2023, Huang et al. 2019, Ling et al. 2023, Liu et al. 2025, Sonkar et al. 2024, Wei et al. 2024).


Table S7. Total variance explained by principal components.
	Principal component
	Charactor value
	Percentage of 
Variance (%)
	Cumulative variance contribution rate (%)

	1
	10.075
	53.025
	53.025

	2
	3.967
	20.877
	73.902

	3
	3.538
	18.620
	92.522

	4
	1.026
	5.398
	97.920

	5
	0.395
	2.080
	100

	6
	1.679E-31
	8.834E-31
	100
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