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Supplementary Note 1: Details of Bands along the x and y direction

Firstly, we illuminate that the coupling tc has negligible influences to the transport properties and the band
structures for a ribbon along the x direction. As shown in Figs. S1(a)-(b), The surface states’ chirality
holds for tc ̸= 0. Generally, it is attributed to the absent of the networks for the x-y and x-z surfaces states.
The quantized transport properties are robust against disorder and are independent of tc, as plotted in Figs.
S1(c)-(d).

As a comparison, the bands along the y direction are obviously tc-dependent. As shown in Fig. S4(g),
the backscattering free chiral modes can be gapped out by turning on tc, and the gaps are determined by
tc. These features are consistent with the transport properties in the main text. Generally, the gapped red
chiral modes along ky can be understood as follows:

(i) For tc = 0, the red and blue chiral modes are decoupled, where their Fermi surfaces satisfy the plots
in Fig. S4(d).

(ii) After turning on tc ̸= 0, the Fermi surfaces of the isolated front and back surfaces varies from the
solid lines to the dashed lines as plotted in Figs. S4(b)-(c). Nevertheless, the dashed and solid lines are both
topological nontrivial in the Brillouin zone. Since they both can not continuous deformed into a point, the
dashed and solid lines both traversal the entire ky/z ∈ [0, 2π]. It indicate that the number of chiral modes
along the y direction is tc independent for the isolated y-z surfaces. In other words, the chiral modes can
not be gapped out for the isolated y-z surfaces.

(iii) In real systems, the required isolated y-z surfaces are not available for the considered sample. For
example, the chiral turning on the top/bottom surfaces leads to an effective coupling between the front
and back surfaces. Putting the two Fermi-surfaces together (see Fig. S4(e)) and considering their effective
coupling, the intersection of the two Fermi surfaces should be released. Then, the Fermi surfaces in Fig.
S4(e) will modified into Fig. S4(f), where a closed and topologically trivial Fermi surfaces are obtained.

(vi) Considering the colored regions between the Fermi surfaces, these momentums are unavailable for the
chiral modes. Thus, for a particular Fermi energy E, the number of chiral modes along ky should decrease
accordingly.

(v) By increasing tc, the colored regions should increase. Therefore, the number of chiral modes
decreases by increasing tc. These features are consistent with the band structures in Fig. S4(g).

Supplementary Note 2: Robust and quantized G
(xz)
x +G

(xy)
y

We present more details of the robustness and the quantized G
(xz)
x +G

(xy)
y In theory, the quantized response

G
(xz)
x +G

(xy)
y = (Ly+Lz)e

2/h can be understood as follows.

First of all, when G
(xy)
y deviates from its ideal value Lze

2/h, there are (Lze
2/h−G

(xy)
y )/(e2/h) red

backscattering channels follow the localized trajectory in Fig. S3(b). Significantly, the localized trajectory is
available when the chiral surfaces states on both front, back and bottom surfaces are involved. Thus, these

trajectories will contribute the transport for surface conductance G
(xz)
x , as plotted in Fig. S3(c).

Notably, the contribution of these trajectories to G
(xz)
x can be quantitatively determined. Due to the

chirality of these states, their transport properties can be simplified as a standard channel matching problem
between the front/back and bottom surfaces in mesoscopic transport [1]. In specific, the N → ∞ blue chiral

channels on the bottom surface perfectly match with the (Lze
2/h−G

(xy)
y )h/e2 red chiral channels on the front

and back surfaces. Thus, the contribution of these backscattering routes to G
(xz)
x equals (Lze

2/h −G
(xy)
y ).

While G
(xy)
y decreases by (Lze

2/h − G
(xy)
y ), G

(xz)
x will increase by (Lze

2/h − G
(xy)
y ) accordingly, which

preserves the relation:

G(xz)
x +G(xy)

y =[Lye
2/h+(Lze

2/h−G(xy)
y )]+G(xy)

y =(Ly+Lz)e
2/h. (S1)

Here, Lye
2/h is the intrinsic contribution of G

(xz)
x , which already exists for tc = 0.

The disorder only tend to enhance the scattering between the chiral networks, which simply modifies the
effective coupling tc.
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Supplementary Note 3: Kirchhoff’s equation of Hall bar setups

current along y direction

In this section, we present the Kirchhoff’s equation Iy = TV of the Hall bar setup in Fig. S2(a). The sample
sizes has been marked in the figure. For the six-terminal devices, the Kirchhoff’s equation Iy = TV can be
rewritten as [1]: 

T1 −T12 −T13 −T14 −T15 −T16

−T21 T2 −T23 −T24 −T25 −T26

−T31 −T32 T3 −T34 −T35 −T36

−T41 −T42 −T43 T4 −T45 −T46

−T51 −T52 −T53 −T54 T5 −T56

−T61 −T62 −T63 −T64 −T65 T6




V
V2

V3

−V
V5

V6

 =


Iy
0
0

−Iy
0
0

 . (S2)

V and −V are the voltage potentials on the lead-1 and lead-4. Vn are the voltage potentials on the lead-n
with n ∈ [2, 3, 5, 6]. Iy = I is the current between the lead-1 and lead-4 along the y direction. Here, one
sets Tn =

∑
m̸=n Tn,m with Tnm = Tr[ΓnG

rΓmGa] and n,m ∈ [1, 2, 3, 4, 5, 6]. The retarded Green’s function

satisfies Gr = [E + iη − H −
∑

n∈[1−6] Σn]
−1 for the six-terminal systems. Σn is the same as those in the

two-terminal cases.
Noticing the transmission coefficient in Fig. S2(c), the Kirchhoff’s equation for the quantized energy

region with E ∈ [−0.5t,−0.1t] can be simplified as:
T1 −T12 0 0 0 0
0 T2 −T23 0 0 −T26

0 0 T3 −T34 −T35 0
0 0 0 T4 −T45 0
0 0 −T53 0 T5 −T56

−T61 −T62 0 0 0 T6




V
V2

V3

−V
V5

V6

 =


Iα
0
0

−Iα
0
0

 . (S3)

Transmission coefficients marked in blue solid lines are set as zero since they are much smaller than the
transmission coefficients marked in pink and cyan solid lines in Fig. S2(c).

Based on the chirality of the surface states, one should also notice the following relations should holds
for the Chern vector protected quantized Hall conductances:

T62 = T26 = T35 = T53 ≈ G
(xz)
x h/e2,

T61 = T12 = T23 = T34 = T45 = T56 ≈ G
(xy)
y h/e2.

(S4)

Here, Gxy
x (Gyz

y ) is the two terminal conductance along x (y) directions contributed by the chiral surface

states located on the x-z (x-y) boundaries. Considering G
(xz)
x +G

(xy)
y = (mLy+nLz)e

2/h, it illuminates the
quantized T6 =

∑
j ̸=6 T6,j ≈ T61 + T62 = mLy + nLz, as shown in Fig. S2(b). Considering the restriction of

the transmission coefficients, equation (S3) gives rise to

Gyx = I/(V2 − V6) = −(T61 + T62)e
2/h = −[G(xz)

x +G(xy)
y ] = −(mLy + nLz)e

2/h. (S5)

current along x direction

Generally, similar analysis for currents along the x direction as shown in Fig. S5. The Kirchhoff’s equation
Ix = TV of Hall bar setup in Fig. S5(a) can be roughly simplified as:

T1 0 0 −T14 0 −T16

−T21 T2 0 0 0 0
0 −T32 T3 0 0 0

−T41 0 −T43 T4 0 0
0 0 0 −T54 T5 0
0 0 0 0 −T65 T6




V
V2

V3

−V
V5

V6

 =


Ix
0
0

−Ix
0
0

 . (S6)
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Transmission coefficients marked in blue solid lines are set as zero since they are much smaller than the
transmission coefficients marked in pink and cyan solid lines in Fig. S5(c) while sample size Ly → ∞ and
Lz → ∞.

Based on the chirality of the surface states, one should also notice the following relations should holds
for the Chern vector protected quantized Hall conductances:

T14 = T41 ≈ G
(xz)
x h/e2,

T16 = T21 = T32 = T43 = T54 = T65 ≈ G
(xy)
x h/e2.

(S7)

Here, G
(xz)
x (G

(xy)
x ) is the two terminal conductance along x (x) directions contributed by the surface states

located on the x-y (x-z) boundaries. Considering G
(xy)
x + G

(xz)
x = mLy + nLz, it illuminate the quantized

T1 =
∑

j ̸=1 T1,j ≈ T16 + T14 = mLy + nLz, as shown in Fig. S5(b). Considering the restriction of the
transmission coefficients, equation (S6) give rise to the quantized

Gxy = I/(V2 − V6) = (T16 + T14)e
2/h = G(xy)

x +G(xz)
x = (mLy + nLz)e

2/h. (S8)

Supplementary Note 4: Disorder effects on the quantized Hall
conductance

Fig. S6 shows the quantized Hall conductance versus the disorder strength [2]. The Anderson disorder
Hw = εnc

†
ncn with εn ∈ [−W/2,W/2] is considered, and W is the disorder strength. The Chern vector

protected quantized Hall conductance and the proposed relationships are robust against disorder, as plotted
in Figs. S6(a)-(c). Further, the quantized Gyx is independent of the quantization of T61 or T62. T61 and T62

for the Hall bar setups could deviate from their quantized values with T61 + T62 still preserves its quantized
value. These features are consistent with the proposed scheme for Gyx.
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Supplementary Figure 1
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Figure S1: Band structures and conductances. (a)-(b) The band structures along the kx. The sample
sizes are Ly = Lz = 10 (c) and (d) The corresponding two-terminal conductances versus Fermi energy E and
disorder strength W ,respectively. The sample sizes are fixed at Lx = Ly = Lz = 10, N = 0 with tc = 0.1t.
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Supplementary Figure 2
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Figure S2: Transmission coefficients of a Hall bar along the y-direction. (a) The schematic plot
of the Hall bar setup. The red and blue solid line with arrows represent the chiral surface states. The
definition of sample sizes has been marked in the figure. The distances between different leads are set as
N = 40. (b) The Hall Gyx = I/(V2 − V6) (blue solid line), T6 =

∑
j ̸=6 T6,j (red solid line) and longitudinal

resistance (V2 − V3)/I (green solid line). (c) The transmission coefficients between different leads. The pink

solid lines roughly present Tj,j+1 = T61 ∼ G
(xy)
y . The cyan solid lines roughly present T62 ≈ G

(xz)
x . The

extra transmission coefficients can be neglected for E ∈ (−0.5t,−0.1t). In our calculation, we set tc = 0.1t.
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Supplementary Figure 3
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Figure S3: Illustration of chiral modes and transport processes. (a) Schematic distribution of the
chiral surface states with Chern vector C = (0, 1, 1). The sample sizes has been marked in the figure. (b)
and (c) present the influences of chiral networks for different leads.
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Supplementary Figure 4
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Figure S4: Coupling between different chiral modes in momentum space. (a) The schematic plot
of the sample and the chiral surface states. (b)-(f) The schematic plot of the Fermi surfaces of the chiral
surface states in the front and back (y-z) surfaces under different conditions. The blue and red solid lines
are the Fermi surfaces for the red and blue chiral modes with tc = 0. The arrows roughly mark the group
velocity of the states. (g) The band structures E versus ky for different tc.
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Supplementary Figure 5
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Figure S5: Transmission coefficients of a Hall bar along the x-direction. (a) The schematic plot
of the Hall bar setup. The red and blue solid line with arrows represent the chiral surface states. The
definition of sample sizes has been marked in the figure. The distances between different leads are set as
N = 40. (b) The Hall Gxy = I/(V2 − V6) (blue solid line), T1 =

∑
j ̸=6 T1,j (red solid line) and longitudinal

resistance (V2 − V3)/I (green solid line). (c) The transmission coefficients between different leads. The pink

solid lines roughly present Tj+1,j = T16 ∼ G
(xy)
x . The cyan solid lines roughly present T14 ∼ G

(xz)
x . The

extra transmission coefficients can be neglected for E ∈ [−0.4t,−0.1t]. In our calculation, we set tc = 0.1t.
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Supplementary Figure 6

0 1 2 3 4 5
0

20

40

60

80
(e

2 /h
)

W/t

(a)

0 1 2 3 4 5
0

20

40

60

0 1 2 3 4 5

10

30

50
-Gyx
T61 +T62

T61

T62

-Gyx

T61 +T62

T61

T62

Gxy
T1

tc=0.1t tc=0.2ttc=0.1t

(b) (c)

Figure S6: Robustness of Hall conductance under disorder. (a) and (b) The Hall conductance (blue
solid line) and the response function (blue solid line) versus disorder strength W . The sample sizes are
Lx = Ly = Lz = 10, N = 40 and E = −0.2t.
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