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Supplementary Note 1: Details of Bands along the x and y direction

Firstly, we illuminate that the coupling . has negligible influences to the transport properties and the band
structures for a ribbon along the z direction. As shown in Figs. S1(a)-(b), The surface states’ chirality
holds for t. # 0. Generally, it is attributed to the absent of the networks for the z-y and z-z surfaces states.
The quantized transport properties are robust against disorder and are independent of t., as plotted in Figs.
S1(c)-(d).

As a comparison, the bands along the y direction are obviously t.-dependent. As shown in Fig. S4(g),
the backscattering free chiral modes can be gapped out by turning on t., and the gaps are determined by
t.. These features are consistent with the transport properties in the main text. Generally, the gapped red
chiral modes along k, can be understood as follows:

(i) For t. = 0, the red and blue chiral modes are decoupled, where their Fermi surfaces satisfy the plots
in Fig. S4(d).

(ii) After turning on ¢, # 0, the Fermi surfaces of the isolated front and back surfaces varies from the
solid lines to the dashed lines as plotted in Figs. S4(b)-(c). Nevertheless, the dashed and solid lines are both
topological nontrivial in the Brillouin zone. Since they both can not continuous deformed into a point, the
dashed and solid lines both traversal the entire k,,. € [0,27]. It indicate that the number of chiral modes
along the y direction is t. independent for the isolated y-z surfaces. In other words, the chiral modes can
not be gapped out for the isolated y-z surfaces.

(iii) In real systems, the required isolated y-z surfaces are not available for the considered sample. For
example, the chiral turning on the top/bottom surfaces leads to an effective coupling between the front
and back surfaces. Putting the two Fermi-surfaces together (see Fig. S4(e)) and considering their effective
coupling, the intersection of the two Fermi surfaces should be released. Then, the Fermi surfaces in Fig.
S4(e) will modified into Fig. S4(f), where a closed and topologically trivial Fermi surfaces are obtained.

(vi) Considering the colored regions between the Fermi surfaces, these momentums are unavailable for the
chiral modes. Thus, for a particular Fermi energy F, the number of chiral modes along &, should decrease
accordingly.

(v) By increasing t., the colored regions should increase. Therefore, the number of chiral modes
decreases by increasing t.. These features are consistent with the band structures in Fig. S4(g).

Supplementary Note 2: Robust and quantized G(xxz)—l—ngy)

We present more details of the robustness and the quantized G§f")+G§“’) In theory, the quantized response
G(fz)—FGg(fy) = (Ly+L.)e?/h can be understood as follows.

First of all, when Gz(fy) deviates from its ideal value L.e?/h, there are (Lze2/h—G§fcy))/(62/h) red
backscattering channels follow the localized trajectory in Fig. S3(b). Significantly, the localized trajectory is
available when the chiral surfaces states on both front, back and bottom surfaces are involved. Thus, these
trajectories will contribute the transport for surface conductance Géxz), as plotted in Fig. S3(c).

Notably, the contribution of these trajectories to G;m) can be quantitatively determined. Due to the
chirality of these states, their transport properties can be simplified as a standard channel matching problem
between the front/back and bottom surfaces in mesoscopic transport [1]. In specific, the N — oo blue chiral

channels on the bottom surface perfectly match with the (L,e?/ h—Gz(fy))h /€? red chiral channels on the front
and back surfaces. Thus, the contribution of these backscattering routes to G equals (L.e*/h — Gémy)).
While Gg(,wy) decreases by (L,e?/h — G@(fy)), G will increase by (L,e?/h — Gg(fy)) accordingly, which
preserves the relation:

G +G™) = [Lye? /h+(L.e* /h—G{) ]+ G5 = (Ly+ L.)e? /h. (S1)
Here, L,e?/h is the intrinsic contribution of GECM), which already exists for ¢, = 0.

The disorder only tend to enhance the scattering between the chiral networks, which simply modifies the
effective coupling t..
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Supplementary Note 3: Kirchhoff’s equation of Hall bar setups

current along y direction

In this section, we present the Kirchhoff’s equation I, = TV of the Hall bar setup in Fig. S2(a). The sample
sizes has been marked in the figure. For the six-terminal devices, the Kirchhoff’s equation I, = TV can be
rewritten as [1]:

Ty -T2 Tz —-Tw -Ti5 —Tis Vv 1,
Ty Ty —Taz —Toy —Tos —To6 Vo 0
—T31 —T32 T3 T34 —T35 —Tz6 Vs | _ 0 ($2)
Ty Ty —Tus Ty —Tus —Tius -V -1,
—T51 —Tso —Ts3 —Tsqa T5 —Ts6 Vs 0
—Te1 —Te2 —To3 —Tea —To5 Ts Ve 0

V and —V are the voltage potentials on the lead-1 and lead-4. V,, are the voltage potentials on the lead-n
with n € [2,3,5,6]. I, = I is the current between the lead-1 and lead-4 along the y direction. Here, one
sets T), = Zm;ﬁn Ty,m with Ty, = Tr[[,G"T,,,G%] and n,m € [1,2,3,4,5,6]. The retarded Green’s function
satisfies G" = [E 4+ in — H — Zne[l—s] En]*l for the six-terminal systems. 3, is the same as those in the
two-terminal cases.

Noticing the transmission coefficient in Fig. S2(c), the Kirchhoff’s equation for the quantized energy
region with E € [—0.5¢, —0.1¢] can be simplified as:

T —=Tia 0 0 0 0 v I,
0 T,  —Ths 0 0 —T Vs 0
0 0 T3 T34 T35 0 Vs _ 0 (S3)
0 0 0 Ty 15 0 -V —I,
0 0 —T53 0 Ts  —Tse Vs 0
—Ts1 —To2 0 0 0 Ts Ve 0

Transmission coefficients marked in blue solid lines are set as zero since they are much smaller than the
transmission coefficients marked in pink and cyan solid lines in Fig. S2(c).

Based on the chirality of the surface states, one should also notice the following relations should holds
for the Chern vector protected quantized Hall conductances:

Too = Tog = T35 = T3 = G(xm)h/€2,

. (S4)
Te1 = Tia = Toz = Tsy = Tis = Tsg ~ GV h/e2.

Here, G3Y (GY?) is the two terminal conductance along z (y) directions contributed by the chiral surface

states located on the 2-z (2-y) boundaries. Considering G;m) + Gg(fy) = (mLy+nL,)e?/h, it illuminates the
quantized Ty = Zj;é(i Ts,; = Te1 + Te2 = mLy +nL., as shown in Fig. S2(b). Considering the restriction of
the transmission coefficients, equation (S3) gives rise to

Gyo =1/ (Vo = Vi) = —(Ts1 + Tea)e? /h = =[G + G| = —(mLy +nL.)e? /h. (S5)

current along z direction

Generally, similar analysis for currents along the = direction as shown in Fig. S5. The Kirchhoff’s equation
I, = TV of Hall bar setup in Fig. S5(a) can be roughly simplified as:

T, 0 0 -Tu 0 —Tg 1% I,
Ty T» 0 0 0 0 Vo 0

0 T T3 0 0 0 Vi | _ 0 (56)
—T41 0 —T43 T4 0 0 -V —LE

0 0 0 -Tys Ts O Vs 0

0 0 0 0  —Tss To Ve 0
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Transmission coefficients marked in blue solid lines are set as zero since they are much smaller than the
transmission coefficients marked in pink and cyan solid lines in Fig. S5(c) while sample size L, — oo and
L, — oc.

Based on the chirality of the surface states, one should also notice the following relations should holds
for the Chern vector protected quantized Hall conductances:

Ty =Tu ~ G n/e?,

S7
Tie =To1 =T39 = Tyz = Ty = T = chxy)h/BQ- 50

Here, G (G{™) is the two terminal conductance along z (z) directions contributed by the surface states

located on the z-y (z-z) boundaries. Considering Gl L gle2) — mL, + nL,, it illuminate the quantized
T = Zj# Ty ; =~ Ti¢ + Tia = mL, +nL,, as shown in Fig. S5(b). Considering the restriction of the
transmission coefficients, equation (S6) give rise to the quantized

Guy = I)/(Va — V) = (T1s + T1a)e? /h = G + G2 = (mL, + nL.)e?/h. (S8)

Supplementary Note 4: Disorder effects on the quantized Hall

conductance

Fig. S6 shows the quantized Hall conductance versus the disorder strength [2]. The Anderson disorder
H, = enclc, with g, € [-W/2,W/2] is considered, and W is the disorder strength. The Chern vector
protected quantized Hall conductance and the proposed relationships are robust against disorder, as plotted
in Figs. S6(a)-(c). Further, the quantized G, is independent of the quantization of Ts; or Tge. Ts1 and Teo

for the Hall bar setups could deviate from their quantized values with Tgy + Ty still preserves its quantized
value. These features are consistent with the proposed scheme for G,
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Supplementary Figure 1
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Figure S1: Band structures and conductances. (a)-(b) The band structures along the k,. The sample
sizes are L, = L, = 10 (c) and (d) The corresponding two-terminal conductances versus Fermi energy E and
disorder strength W respectively. The sample sizes are fixed at L, = L, = L, =10, N = 0 with ¢, = 0.1¢.
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Supplementary Figure 2
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Figure S2: Transmission coefficients of a Hall bar along the y-direction. (a) The schematic plot
of the Hall bar setup. The red and blue solid line with arrows represent the chiral surface states. The
definition of sample sizes has been marked in the figure. The distances between different leads are set as
N =40. (b) The Hall Gy, = I/(V2 — Vg) (blue solid line), Ts = >, . T6,; (red solid line) and longitudinal
resistance (Vo — V3)/I (green solid line). (c¢) The transmission coefficients between different leads. The pink
solid lines roughly present T} ;11 = Ts1 ~ G?(fy). The cyan solid lines roughly present Tgo ~ G;(fz). The
extra transmission coefficients can be neglected for E € (—0.5¢, —0.1¢). In our calculation, we set ¢, = 0.1t.
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Supplementary Figure 3
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Figure S3: Illustration of chiral modes and transport processes. (a) Schematic distribution of the
chiral surface states with Chern vector C = (0,1,1). The sample sizes has been marked in the figure. (b)
and (c) present the influences of chiral networks for different leads.
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Supplementary Figure 4

(2)

(b)

t.#£0

isolated back surface

(c)

tF£0

isolated front surface

1 —4 1 =
| a |
& T
S8
I T“ I'
z 1 T '
Y 4.
-1 “o— _
%} I o 5|
(d) t=0 () 0 (0 £40
back+front surface isolated back+front surface back-+front surface
| — — pu = |} p— s o | | p— —
| L L L
R 1. Gi¢ l R i .’-_ku‘.
N ! —
I\ T 1 N o - /l
'Q ‘ > ‘ : T L _T_ . T 3 _T_ |
-1 — N | —" b gLl == -
1 - g - ! 1 -1
ky/m
(g) tc=0 tc=0.025t tc=0.05t tc=0.075t tc=0.1t
02l |l 1l
2
S
> T
0 1 20 1 20 20 1 20 1

Figure S4: Coupling between different chiral modes in momentum space. (a) The schematic plot
of the sample and the chiral surface states. (b)-(f) The schematic plot of the Fermi surfaces of the chiral
surface states in the front and back (y-z) surfaces under different conditions. The blue and red solid lines
are the Fermi surfaces for the red and blue chiral modes with ¢, = 0. The arrows roughly mark the group
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velocity of the states. (g) The band structures E versus k, for different ¢..
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Supplementary Figure 5
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Figure S5: Transmission coefficients of a Hall bar along the z-direction. (a) The schematic plot
of the Hall bar setup. The red and blue solid line with arrows represent the chiral surface states. The
definition of sample sizes has been marked in the figure. The distances between different leads are set as
N =40. (b) The Hall G, = I/(V2 — Vg) (blue solid line), Ty = 3, T ; (red solid line) and longitudinal
resistance (Vo — V3)/I (green solid line). (¢) The transmission coefficients between different leads. The pink
solid lines roughly present Tj41 ; = Tig ~ GS”-”). The cyan solid lines roughly present T74 ~ Ggfz). The
extra transmission coefficients can be neglected for E € [—0.4¢, —0.1¢]. In our calculation, we set t, = 0.1¢.
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Supplementary Figure 6
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Figure S6: Robustness of Hall conductance under disorder. (a) and (b) The Hall conductance (blue
solid line) and the response function (blue solid line) versus disorder strength W. The sample sizes are
L,=L,=L,=10, N=40and F = —0.2¢.
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