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Materials and Methods

Development of the KaML-ESM models

Construction of the pretraining dataset. We used KaML-CBTreeS1 to predict the pK a

values of all proteins in the pkPDBS2 database (structures fixed using PDBFixer from

OpenMMS3) which are composed of proteins from the PDB. In total, 5,616,944 pK a val-

ues were predicted for 1,570,916 unique residues in 32,418 unique proteins. To reduce

computational cost, we created a subset as the model pretraining dataset. For each titrat-

able amino acid, we randomly sampled predicted pK a values at a ratio of 20:1 relative to

the number of entries in PKAD-3. In total, the pretraining set contains 35,080 pK a’s from

10,400 Asp, 11,580 Glu, 5,860 His, 2,503 Cys, 820 Tyr, and 3,917 Lys in 9,945 proteins.

Residues in the PKAD-3 database were excluded from the pretraining dataset to avoid

data leakage in later model training/testing.

To ensure a precise correspondence between the sequence and the protein studied by

experiment regardless of the residue-specific resolution, we extracted sequences directly

from the PDB files. This extraction process involved identifying resolved residues from

ATOM records while detecting unresolved segments through multiple methods: analyzing

discontinuities in residue numbering, identifying unusually large distances between adja-

cent backbone atoms, and incorporating segments explicitly annotated as missing in the

PDB metadata (REMARK 465). Non-standard amino acids were carefully mapped to their

closest canonical equivalents (e.g., selenomethionine [MSE] to methionine [M], methylly-

sine [MLY] to lysine [K], phosphoserine [SEP] to serine [S]), or otherwise represented as X

when no direct canonical mapping exists. This rigorous and automated sequence extrac-

tion procedure was implemented using the extract sequence.py script from PDB doctor,

an unpublished in-house software suite available at https://github.com/wayyne/pdb_

doctor.
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Training dataset and protocol for data splitting. Following pretraining, the PKAD-3

databaseS1 was used for model training (i.e., fine-tuning), validation, and testing. We

used the same data splitting protocol as in the development of KaML-CBTree and KaML-

GAT models.S1 Briefly, we labeled a unique residue as a unique combination of Uniprot

ID + the Uniprot residue ID (Uni resid). To account for mutants and multiple conforma-

tional states, we defined these proteins as ‘Uniprot ID-mutation or conformational state’.

For example, P0AEG4-H32L represents H32L mutation on DsbA (P0AEG4). For SNase

(P00644), which has multiple background constructs, e.g., WT, PHS, and ∆+PHS, we

used P00644-V66D, P00644-WT-V66D, and P00644-PHS-V66D to represent the ∆+PHS,

WT, and PHS constructs, respectively. Data splitting into training, validation, and test sets

was conducted using the ’StratifiedGroupKFold’ strategy adapted from the sklearn python

package.S4 Here group refers to a unique residue, and stratification was made based on

the experimental pK a values. The stratification bins were manually selected such that

they can separate residues with different pK a values, while at the same time each bin can

be further divided into training, validation, and test sets.

From the PKAD-3 database,S1 we first randomly sampled 10% as the unseen test set

with the ’StratifiedGroupKFold’ strategy. The remaining 90% of the data set was then split

into training and validation sets in 9:1 ratio with the same splitting protocol. This data

splitting protocol was repeated 20 times independently. For the pretraining dataset, we

used a 9:1 ratio for training and validation data with the same strategy.

Architecture of the KaML-ESM models. The KaML-ESM models were built and trained

using the PyTorch package.S5 A multilayer perceptron (MLP) with 3 hidden layers was built

as a task head on top of an ESM model. The number of neurons in KaML-ESM2 650M,

KaML-ESM2 15B, and KaML ESMC models was 1280-512-256-32-1, 5120-2048-1024-

256-1, and 2560-1024-512-64-1, respectively. The rectified linear unit (ReLU) activation

function is applied to each hidden layer to add non-linearity. The output of the last neuron
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is converted to the prediction through a linear activation function. Batch normalization is

applied to all layers except the last one. For model training, we used a learning rate of

0.0005 and a dropout rate of 0.2 with a batch size of 64 and a maximum epoch of 200.

The Adam optimizer is used to minimize the mean squared error (MSE) loss. Early stop-

ping is applied to prevent overfitting: model training is terminated if the MSE loss does

not decrease within the next 10 epochs with a tolerance of 0.1.

The evolutionary scale models (ESMs) are protein large language models (pLLMs)

based on the BERTS6 style transformerS7 architecture. We used ESM2S8 and ESMC,S9

which are encoder-only transformers trained using masked learning of 50 million protein

sequences. ESM2 t33 650M UR50D (ESM 650M) model has 33 transformer layers (20

attention heads each) and 650 million parameters. ESM2 t48 15B UR50D (ESM2 15B)

has 48 transformer layers (40 attention heads each) and 15 billion parameters. ESMC-

6B-2024-12 (ESMC) has 80 transformer layers (40 attention heads each) and 6 billion

parameters. This model, which is focused on representation learning of the underlying

biology, is a parallel model to the generative model ESM3.S10 For titratable residues of

interest, the token embeddings were extracted from ESM2 650M, ESM2 15B, or ESMC,

which have dimensions of 1280, 5120, and 2560, respectively. Note, ESM2 650M can be

loaded to GPUs with ∼ 10 GB memory while the ESM2-15B requires a memory space

of ∼ 100 GB and ESMC embeddings can only be extracted using the forge-API (https:

//forge.evolutionaryscale.ai/) with daily token and speed limitations.

Training the ensemble KaML-ESM models. Due to the distinct physiochemical prop-

erties of acidic (Asp, Glu, Cys, and Tyr) and basic (His and Lys) residues, we trained acid

and base models separately. This strategy has been shown to enhance model perfor-

mance (main text). The models were trained on the pK a shifts relative to the solution pK a

values of model peptides CH3COGXGNH2
S11 or CH3COAAXAANH2.S12 Accordingly, the

solution pK a’s are 3.7/3.9 for Asp, 4.3/4.3 for Glu, 6.5/6.5 for His, 8.6/8.5 for Cys, 9.8/9.8
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for Tyr, and 10.4/10.3 for Lys. The pK a shifts are converted back to pK a values after the

model training or prediction. We pretrained our model using a synthetic dataset composed

of pK a predicted by the KaML-CBtree model (Fig. S1). The Glorot algorithmS13 is used

to initialize the model weights in the pre-training stage. In the model fine-tuning stage,

for each training/test data splitting, 10 models (with different random seeds) are indepen-

dently trained based on different 9:1 training:cross-validation splits. Thus, each prediction

is made by an ensemble model that gives the average predictions made by 10 models.

In the production stage, we retrained KaML-ESM (which comprises KaML-ESM2a and

KaML-ESMCb) using the entire PKAD-3 dataset. Here we performed 20 training:cross-

validation splits and for each split 10 models were trained. Therefore, the final KaML-ESM

is an ensemble of 200 models.

Implementation of the KaML platform

The KaML-ESM platform comprises multiple modular stages managed within a unified

Python framework, facilitating ease of use and reproducibility. Protein sequences or struc-

tures (specified via UniProt identifiers, PDB files, PDB IDs, or FASTA sequences) are ini-

tially retrieved through established web services (UniProt, RCSB) or processed directly

when provided by users. For sequences without structural information, computational

folding is performed using the remote ESM3-medium model accessible through the Forge

service.

Following retrieval and preprocessing, sequences and structures are parsed to identify

titratable residues. Embeddings are subsequently computed from these sequences using

a pLLM, specifically ESM2 (esm2 t33 650M UR50D)S8 or ESMC (esmc-6b-2024-12),S9

with model selection determined by residue type (acidic or basic). By default, embeddings

for acidic residues are extracted from ESM2 and processed using a multi-layer percep-

tron (MLP) configured as 1280→512→256→32→1 neurons with dropout regularization.

Embeddings for basic residues are derived from ESMC and processed through a sep-
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arate MLP architecture of 2560→1024→512→64→1 neurons, similarly utilizing dropout

regularization. Details are given in paragraph Architecture of the KaML-ESM models.

Predictions from acidic and basic channels are generated via parallelized inference

using ensemble models, supported by statistical normalization strategies developed from

extensive training datasets. The acidic and basic channel predictions are consolidated

to yield the predicted pK a values, shifts, and standard error metrics. An additional, inde-

pendently operated modular conformer channel is integrated, allowing users to employ

alternative conformer-sensitive predictive models in cases where distinct conformations

significantly impact predicted pK a values. Currently, this channel employs the previously

validated KaMLs-CBTree model.S1 Predictions from the conformer channel are reported

independently in the final output.

The command-line KaML platform. The KaML platform (https://github.com/JanaShenLab/

KaML-ESM) is openly available, accompanied by pretrained MLP ensemble weights. Specif-

ically provided are pretrained weights for the acidic ESMC channel and for cysteine

residues using layer 33 of the ESM2 model. The platform is designed to offer users

flexibility in specifying foundational models independently for each prediction channel.

For example, users can override default settings to utilize ESMC for both acidic and ba-

sic channels when analyzing sequences exceeding the 1022-residue limit of ESM2, as

ESMC supports sequence lengths up to 2046 residues. In these scenarios, the platform

automatically utilizes ESMC for the acidic channel, emphasizing the practical benefit of

including these pretrained weights. Additionally, users may optionally select alternative

layers within ESM2, such as employing layer 33 specifically for cysteine residues, reflect-

ing enhanced performance demonstrated in the primary analysis. By default, however,

the platform utilizes layer 31.

Finally, predictions are integrated back into structural outputs by annotating the struc-

ture files with residue-specific predictions in the B-factor field, facilitating visualization and

S-7

https://github.com/JanaShenLab/KaML-ESM
https://github.com/JanaShenLab/KaML-ESM


downstream structural analysis. Prediction results, distinguishing between acidic/basic

channel outputs and independent conformer channel predictions, are documented in CSV

files, enhancing clarity and accessibility for further analysis.

The browser-based KaML application. We provide an easy-to-use online browser-

based GUI (https://kaml.computchem.org/) for non-commercial academic and research

purposes. Users can provide either the protein sequence, Uniprot ID, PDB ID, or PDB

files of interest. By clicking the ’Run pipeline’ button, the complete KaML-ESM model will

run on our web server. A PDB format file with the B-factor column filled with the predicted

pK a shifts and a CSV file with predicted pK a values for all titratable residues can be down-

loaded. Note, to use the KaML-ESMC models, users need to provide ESM forge API to-

kens, which is freely applicable at https://www.evolutionaryscale.ai/blog/esm-cambrian.

The screenshots of the web KaML application is given in Fig. S9.

Data for external evaluations

Newly curated experimental data. The recently published PKAD-3 database includes

1,167 pK a’s of 992 unique residues in 247 proteins (wild type or mutant).S1 Note, this

database only includes experimental pK a values published before April 2023. In order

to compile a dataset for external evaluation, we conducted a literature search for publi-

cations after April 2023 by applying the keyword ’pK a’ in the title and/or abstract on the

PubMed website. We then manually verified the pK a values in the publications. Further-

more, we found a few SNase mutant pK a’s based on NMR measurementsS14 that were

missed when we curated PKAD-3. In total, 55 pK a’s from 16 proteins were found. These

new entries were used in the external evaluation of the models and are now added to

the PKAD-3 database (http://database.computchem.org/pkad-3). Currently, only the

first 50 entries are displayed on the website, but the entire database is searchable and

downloadable.
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Data for proteome-wide pK a predictions. The activity-based protein profiling (ABPP)

a chemical proteomic technology for discovering covalently ligandable sites across the

proteome.S15 We collected an ABPP dataset from 10 publications.S16–S25 In total, the

ABPP dataset contains 98,921 Asp, 147,092 Glu, 48,705 His, 41,634 Cys, 51,825 Tyr,

and 121,660 Lys (sum up to 509,837 unique residues) from 3,892 unique genes, most of

which do not have available crystal structures.
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Supplemental Tables

Table S1: Effect of pretraining and separating acid and base models on the pK a prediction
errors of KaML-ESM2

All Asp Glu Cys Tyr His Lys
No PT + No AB 0.93± 0.04 0.95± 0.09 0.71± 0.04 1.03± 0.11 1.54± 0.19 0.96± 0.05 0.99± 0.09
PT only 0.89± 0.03 0.93± 0.08 0.73± 0.04 1.05± 0.11 1.44± 0.17 0.82± 0.04 0.88± 0.10
AB only 0.76± 0.02 0.71± 0.05 0.70± 0.04 1.00± 0.09 1.74± 0.19 0.79± 0.12 0.59± 0.05
PT + AB 0.73± 0.03 0.72± 0.06 0.67± 0.04 1.01± 0.09 1.65± 0.17 0.67± 0.03 0.55± 0.04

Overall and amino acid-specific RMSE±standard error of the pK a predictions by the KaML-ESM2 model
using 20 20 hold-out tests (same as in our previous workS1). PT: pretraining, AB: training acidic and
basic models separately. Residue embeddings were extracted from ESM2 650M layer 33.

Table S2: pK a prediction errors of the models trained with the embeddings from different
layers of ESM 650M

All Asp Glu Cys Tyr His Lys
Without pretraining

layer33 0.76± 0.02 0.71± 0.05 0.70± 0.04 1.00± 0.09 1.74± 0.19 0.79± 0.04 0.59± 0.05
layer32 0.77± 0.02 0.70± 0.04 0.69± 0.04 1.04± 0.09 1.75± 0.20 0.84± 0.04 0.61± 0.05
layer31 0.75± 0.02 0.68± 0.04 0.62± 0.03 1.23± 0.11 1.58± 0.17 0.81± 0.05 0.71± 0.07
layer30 0.79± 0.02 0.71± 0.04 0.74± 0.03 1.15± 0.10 1.43± 0.18 0.85± 0.04 0.65± 0.05
layer29 0.82± 0.02 0.74± 0.03 0.74± 0.04 1.30± 0.14 1.50± 0.20 0.92± 0.05 0.62± 0.06
layer28 0.81± 0.02 0.73± 0.04 0.75± 0.04 1.23± 0.11 1.49± 0.22 0.89± 0.05 0.61± 0.06
layer27 0.81± 0.02 0.74± 0.04 0.74± 0.04 1.25± 0.11 1.56± 0.22 0.89± 0.05 0.64± 0.06
layer26 0.86± 0.03 0.78± 0.04 0.79± 0.04 1.36± 0.13 1.66± 0.25 0.90± 0.04 0.70± 0.07
layer25 0.87± 0.03 0.81± 0.04 0.79± 0.04 1.48± 0.13 1.71± 0.26 0.91± 0.04 0.68± 0.06
layer24 0.87± 0.03 0.83± 0.04 0.81± 0.04 1.36± 0.13 1.58± 0.24 0.91± 0.04 0.68± 0.07
layer23 0.89± 0.03 0.85± 0.04 0.82± 0.04 1.42± 0.13 1.57± 0.23 0.90± 0.04 0.71± 0.07
layer22 0.89± 0.03 0.84± 0.04 0.81± 0.04 1.45± 0.14 1.49± 0.23 0.91± 0.04 0.72± 0.07
layer21 0.87± 0.02 0.84± 0.03 0.76± 0.04 1.43± 0.12 1.49± 0.20 0.92± 0.04 0.74± 0.08
layer20 0.89± 0.03 0.0.83± 0.04 0.80± 0.04 1.45± 0.16 1.64± 0.21 0.91± 0.04 0.79± 0.07
layer19 0.88± 0.03 0.83± 0.04 0.77± 0.04 1.41± 0.16 1.76± 0.25 0.92± 0.04 0.79± 0.07
layer18 0.87± 0.03 0.84± 0.04 0.77± 0.04 1.43± 0.14 1.60± 0.22 0.88± 0.04 0.80± 0.08
layer17 0.87± 0.03 0.85± 0.04 0.76± 0.04 1.58± 0.12 1.51± 0.22 0.89± 0.04 0.79± 0.07

With pretraining
layer33 0.73± 0.03 0.72± 0.06 0.67± 0.04 1.01± 0.09 1.65± 0.17 0.67± 0.03 0.55± 0.04
layer32 0.71± 0.03 0.69± 0.05 0.65± 0.04 1.14± 0.10 1.47± 0.14 0.67± 0.03 0.61± 0.04
layer31 0.68± 0.02 0.61± 0.04 0.58± 0.04 1.11± 0.09 1.54± 0.16 0.68± 0.03 0.69± 0.07
layer30 0.75± 0.02 0.71± 0.04 0.75± 0.04 1.18± 0.11 1.34± 0.16 0.65± 0.04 0.62± 0.06
layer29 0.75± 0.02 0.70± 0.04 0.72± 0.04 1.32± 0.12 1.35± 0.18 0.69± 0.03 0.55± 0.05
layer28 0.74± 0.02 0.70± 0.04 0.72± 0.04 1.15± 0.08 1.39± 0.19 0.73± 0.03 0.50± 0.04

Overall and amino acid-specific RMSE±standard error of the pK a predictions by the KaML-ESM2 model
using 20 hold-out tests (same as in our previous workS1). Residue embeddings were extracted from the
last 6 layers of ESM2 650M. Layer 31 gives the lowest overall RMSE, while the lowest RMSEs (red) for
Cys, Tyr, His, and Lys pK a predictions are from other layers. Pre-training was performed for all models.
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Table S3: pK a prediction errors of the models trained with the embeddings from different
layers of ESM2 15B (no pretraining)

All Asp Glu Cys Tyr His Lys
layer48 0.74± 0.03 0.70± 0.05 0.60± 0.03 1.16± 0.08 1.70± 0.20 0.84± 0.04 0.61± 0.05
layer47 0.73± 0.02 0.68± 0.04 0.60± 0.02 1.07± 0.08 1.73± 0.20 0.85± 0.04 0.64± 0.06
layer46 0.74± 0.02 0.69± 0.04 0.61± 0.03 1.09± 0.09 1.62± 0.20 0.85± 0.04 0.62± 0.06
layer45 0.74± 0.03 0.70± 0.04 0.62± 0.04 1.07± 0.10 1.51± 0.20 0.85± 0.04 0.63± 0.05
layer44 0.76± 0.03 0.68± 0.04 0.66± 0.04 1.11± 0.10 1.53± 0.21 0.87± 0.04 0.65± 0.06
layer43 0.76± 0.03 0.70± 0.04 0.66± 0.04 1.10± 0.11 1.48± 0.22 0.87± 0.04 0.65± 0.06
layer42 0.77± 0.03 0.70± 0.04 0.66± 0.04 1.10± 0.12 1.47± 0.23 0.90± 0.04 0.64± 0.06

Overall and amino acid-specific RMSE±standard error of the pK a predictions by the KaML-ESM2 model
using 20 hold-out tests (same as in our previous workS1). The layer that gives the lowest overall RMSE
is highlighted in bold font. The lowest amino acid-specific RMSE is highlighted in red.

Table S4: pK a prediction errors of the the models trained with the embeddings from dif-
ferent layers of KaML-ESMC (no pretraining)

All Asp Glu Cys Tyr His Lys
layer80 0.70± 0.03 0.64± 0.04 0.61± 0.03 1.22± 0.13 1.46± 0.17 0.74± 0.04 0.53± 0.04
layer79 0.74± 0.03 0.68± 0.05 0.64± 0.03 1.47± 0.12 1.41± 0.16 0.74± 0.04 0.58± 0.04
layer78 0.73± 0.03 0.67± 0.05 0.62± 0.03 1.30± 0.12 1.58± 0.21 0.77± 0.04 0.57± 0.04
layer77 0.76± 0.03 0.69± 0.05 0.64± 0.03 1.31± 0.15 1.73± 0.26 0.79± 0.04 0.58± 0.04
layer76 0.75± 0.03 0.67± 0.05 0.64± 0.03 1.35± 0.14 1.75± 0.25 0.76± 0.04 0.60± 0.04
layer75 0.75± 0.03 0.67± 0.05 0.66± 0.04 1.36± 0.15 1.71± 0.25 0.78± 0.04 0.59± 0.04
layer74 0.77± 0.03 0.69± 0.05 0.65± 0.04 1.39± 0.14 1.68± 0.25 0.83± 0.04 0.57± 0.04
layer73 0.78± 0.03 0.70± 0.06 0.68± 0.04 1.42± 0.12 1.61± 0.23 0.84± 0.04 0.57± 0.05
layer72 0.78± 0.03 0.70± 0.06 0.70± 0.04 1.33± 0.13 1.55± 0.24 0.84± 0.03 0.58± 0.06
layer71 0.78± 0.03 0.70± 0.05 0.69± 0.04 1.36± 0.11 1.52± 0.24 0.83± 0.03 0.60± 0.05
layer70 0.79± 0.03 0.70± 0.05 0.71± 0.04 1.40± 0.12 1.59± 0.23 0.83± 0.04 0.63± 0.06
layer69 0.80± 0.03 0.72± 0.06 0.71± 0.04 1.47± 0.11 1.53± 0.22 0.84± 0.03 0.64± 0.06
layer68 0.80± 0.03 0.72± 0.06 0.72± 0.04 1.44± 0.12 1.47± 0.22 0.84± 0.04 0.66± 0.06
layer67 0.81± 0.03 0.73± 0.06 0.73± 0.04 1.46± 0.13 1.49± 0.23 0.85± 0.04 0.66± 0.07
layer66 0.81± 0.03 0.74± 0.05 0.73± 0.04 1.46± 0.14 1.44± 0.23 0.85± 0.03 0.67± 0.06
layer65 0.81± 0.03 0.73± 0.05 0.74± 0.04 1.44± 0.13 1.47± 0.24 0.85± 0.04 0.67± 0.06
layer64 0.82± 0.03 0.75± 0.06 0.74± 0.04 1.46± 0.12 1.49± 0.24 0.86± 0.04 0.67± 0.06
layer63 0.82± 0.03 0.75± 0.06 0.74± 0.04 1.45± 0.12 1.55± 0.24 0.85± 0.04 0.69± 0.06
layer62 0.82± 0.03 0.76± 0.06 0.74± 0.04 1.49± 0.13 1.52± 0.23 0.85± 0.04 0.69± 0.06
layer61 0.83± 0.03 0.77± 0.06 0.73± 0.04 1.48± 0.12 1.47± 0.21 0.86± 0.04 0.71± 0.06
layer60 0.83± 0.03 0.76± 0.06 0.74± 0.04 1.46± 0.11 1.49± 0.23 0.87± 0.04 0.71± 0.06

Overall and amino acid-specific RMSE±standard error of the pK a predictions by the KaML-ESM2 model
using 20 hold-out tests (same as in our previous workS1). The layer that gives the lowest overall RMSE
is highlighted in bold font. The lowest amino acid-specific RMSE is highlighted in red.
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Table S5: Overall performance of KaML-ESMs for predicting protein pK a’s and protona-
tion states and comparison to the structure-based KaML-CBTree and popular empirical
PROPKA3 modelsa

KaML-ESM2 KaML-ESMC KaML-CBTree PROPKA3
RMSE 0.68± 0.02 0.68± 0.03 0.77± 0.02 1.20± 0.03
PCC 0.96± 0.01 0.96± 0.01 0.95± 0.01 0.87± 0.01
MAXE 3.07± 0.15 3.25± 0.23 3.40± 0.10 5.04± 0.10

Classification of protonation states at pH 7b

Pre (prot) 0.97 0.97 0.97 0.85
Rec (prot) 0.96 0.93 0.93 0.86
Pre (dep) 0.99 0.98 0.99 0.97
Rec (dep) 0.99 0.99 0.98 0.97
CERc 33/2607 43/2653 46/2635 143/2673

aThe metrics of KaML-CBTreeS1 and PROPKA3S26 are taken from Ref.S1 bPrediction is based on the
probability of protonation given a predicted pK a (see main text). cCritical error rate (CER) refers to the
percentage of predictions misclassifying protonated as deprotonated or vice versa. Precision (Pre) and
recall (Rec) were calculated for protonated (prot) and deprotonated (dep) states after accumulating the
predictions from all 20 holdout test sets.
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Supplemental Figures
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Figure S1: Train-validation split for the pretraining dataset. Histograms of the KaML-
CBTree calculated pK a values for pre-training. The dashed bins represent the validation
dataset
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Figure S2: Train-validation-test split. The binning scheme used in this study for each
residue type. The colored bins represent the overall dataset, gray bins represent the val-
idation dataset, and the white bins represent the test dataset. The data splitting protocol
is repeated 20 times independently and the first spiting is shown here as an illustration.
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Figure S4: Experimental vs predicted pK a’s in all 20 hold-out tests. The RMSE and PCC is 0.65 and
0.96, respectively. Solid line is the identity and the dotted line is a linear fit. Data points are color-coded
by amino acid. The white regions indicate correct protonation state classifications. The dark gray regions
highlight the critical errors. The light gray regions indicate titrating pK a’s which were excluded from the
classification analysis.
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Figure S5: Evaluation of KaML-ESM2 and KaML-ESMC for predicting pK a’s and protonation state
for different titratable residues. A. Regression metrics for the KaML-ESM2 model (color-coded), KaML-
ESMC model (light color-coded), and KaML-CBtree model (grey) in terms of PCC (left) and RMSE (right).
The mean value of the 20 splits is given. B. The precision (solid) and recall (stripe) for the protonated
and deprotonated residues under pH 7 derived from the predictions from the KaML-ESM2 (color-coded),
KaML-ESMC model (light color-coded), and KaML-CBtree model (grey)) models. The metrics for Tyr are
not shown due to the small test dataset.
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Figure S6: External evaluation of KaML-ESM against KaML-CBTree, and PROPKA3 Amino acids are
represented as shapes: His (•), Cys (▲), and Lys (x). The overall RMSE is given for each model. Following
our previous work,S1 we divided the pK a range into different regions to illustrate whether a predicted pK a
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state predictions; gray regions indicate critical errors (i.e., protonated predicted as deprotonated or vice
versa); and light gray regions indicate that the predicted pK a belongs in titration range.
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Figure S7: KaML-ESM2 predicted vs. experimental pK a’s in all 20 hold-out tests.
Predicted vs. experimental pK a values for all test splits. The dashed line is a linear fit.
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Figure S8: Comparison of KaML-ESMC predicted and experimental pK a’s in all 20
hold-out tests. Predicted vs. experimental pK a values for all test splits. The dashed line
is a linear fit.
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Figure S9: Screenshot of the browser-based KaML GUI. An end-to-end web applica-
tion which takes either the protein sequence, Uniprot ID, PDB ID, or a PDB file as input,
along with the end-user’s ESM forge API token, to make predictions. Available online for
non-commerical use (kaml.computchem.org).
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