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Materials and Methods

Development of the KaML-ESM models

Construction of the pretraining dataset. We used KaML-CBTree®' to predict the pK,
values of all proteins in the pkPDB®? database (structures fixed using PDBFixer from
OpenMM*=?) which are composed of proteins from the PDB. In total, 5,616,944 pK, val-
ues were predicted for 1,570,916 unique residues in 32,418 unique proteins. To reduce
computational cost, we created a subset as the model pretraining dataset. For each titrat-
able amino acid, we randomly sampled predicted pK, values at a ratio of 20:1 relative to
the number of entries in PKAD-3. In total, the pretraining set contains 35,080 pKj,’s from
10,400 Asp, 11,580 Gilu, 5,860 His, 2,503 Cys, 820 Tyr, and 3,917 Lys in 9,945 proteins.
Residues in the PKAD-3 database were excluded from the pretraining dataset to avoid
data leakage in later model training/testing.

To ensure a precise correspondence between the sequence and the protein studied by
experiment regardless of the residue-specific resolution, we extracted sequences directly
from the PDB files. This extraction process involved identifying resolved residues from
ATOM records while detecting unresolved segments through multiple methods: analyzing
discontinuities in residue numbering, identifying unusually large distances between adja-
cent backbone atoms, and incorporating segments explicitly annotated as missing in the
PDB metadata (REMARK 465). Non-standard amino acids were carefully mapped to their
closest canonical equivalents (e.g., selenomethionine [MSE] to methionine [M], methylly-
sine [MLY] to lysine [K], phosphoserine [SEP] to serine [S]), or otherwise represented as X
when no direct canonical mapping exists. This rigorous and automated sequence extrac-
tion procedure was implemented using the extract_sequence. py script from PDB doctor,
an unpublished in-house software suite available at https://github.com/wayyne/pdb_

doctor.


https://github.com/wayyne/pdb_doctor
https://github.com/wayyne/pdb_doctor

Training dataset and protocol for data splitting. Following pretraining, the PKAD-3
database®' was used for model training (i.e., fine-tuning), validation, and testing. We
used the same data splitting protocol as in the development of KaML-CBTree and KaML-
GAT models.®' Briefly, we labeled a unique residue as a unique combination of Uniprot
ID + the Uniprot residue ID (Uni_resid). To account for mutants and multiple conforma-
tional states, we defined these proteins as ‘Uniprot ID-mutation or conformational state’.
For example, POAEG4-H32L represents H32L mutation on DsbA (POAEG4). For SNase
(P00644), which has multiple background constructs, e.g., WT, PHS, and A+PHS, we
used P00644-V66D, P00644-WT-V66D, and P00644-PHS-V66D to represent the A+PHS,
WT, and PHS constructs, respectively. Data splitting into training, validation, and test sets
was conducted using the *StratifiedGroupKFold’ strategy adapted from the sklearn python
package.* Here group refers to a unique residue, and stratification was made based on
the experimental pK, values. The stratification bins were manually selected such that
they can separate residues with different pK, values, while at the same time each bin can
be further divided into training, validation, and test sets.

From the PKAD-3 database, ' we first randomly sampled 10% as the unseen test set
with the *StratifiedGroupKFold’ strategy. The remaining 90% of the data set was then split
into training and validation sets in 9:1 ratio with the same splitting protocol. This data
splitting protocol was repeated 20 times independently. For the pretraining dataset, we

used a 9:1 ratio for training and validation data with the same strategy.

Architecture of the KaML-ESM models. The KaML-ESM models were built and trained
using the PyTorch package.°> A multilayer perceptron (MLP) with 3 hidden layers was built
as a task head on top of an ESM model. The number of neurons in KaML-ESM2_650M,
KaML-ESM2_15B, and KaML_ESMC models was 1280-512-256-32-1, 5120-2048-1024-
256-1, and 2560-1024-512-64-1, respectively. The rectified linear unit (ReLU) activation

function is applied to each hidden layer to add non-linearity. The output of the last neuron
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is converted to the prediction through a linear activation function. Batch normalization is
applied to all layers except the last one. For model training, we used a learning rate of
0.0005 and a dropout rate of 0.2 with a batch size of 64 and a maximum epoch of 200.
The Adam optimizer is used to minimize the mean squared error (MSE) loss. Early stop-
ping is applied to prevent overfitting: model training is terminated if the MSE loss does
not decrease within the next 10 epochs with a tolerance of 0.1.

The evolutionary scale models (ESMs) are protein large language models (pLLMs)
based on the BERT° style transformer®’ architecture. We used ESM2°¢ and ESMC, *°
which are encoder-only transformers trained using masked learning of 50 million protein
sequences. ESM2 133 650M_UR50D (ESM_650M) model has 33 transformer layers (20
attention heads each) and 650 million parameters. ESM2 148 15B_URS50D (ESM2_15B)
has 48 transformer layers (40 attention heads each) and 15 billion parameters. ESMC-
6B-2024-12 (ESMC) has 80 transformer layers (40 attention heads each) and 6 billion
parameters. This model, which is focused on representation learning of the underlying
biology, is a parallel model to the generative model ESM3.5' For titratable residues of
interest, the token embeddings were extracted from ESM2_650M, ESM2_15B, or ESMC,
which have dimensions of 1280, 5120, and 2560, respectively. Note, ESM2_650M can be
loaded to GPUs with ~ 10 GB memory while the ESM2-15B requires a memory space
of ~ 100 GB and ESMC embeddings can only be extracted using the forge-API (https:

//forge.evolutionaryscale.ai/) with daily token and speed limitations.

Training the ensemble KaML-ESM models. Due to the distinct physiochemical prop-
erties of acidic (Asp, Glu, Cys, and Tyr) and basic (His and Lys) residues, we trained acid
and base models separately. This strategy has been shown to enhance model perfor-
mance (main text). The models were trained on the pK, shifts relative to the solution pKj,
values of model peptides CH;COGXGNH, "' or CH,COAAXAANH,.5'? Accordingly, the
solution pK,’s are 3.7/3.9 for Asp, 4.3/4.3 for Glu, 6.5/6.5 for His, 8.6/8.5 for Cys, 9.8/9.8
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for Tyr, and 10.4/10.3 for Lys. The pK, shifts are converted back to pK, values after the
model training or prediction. We pretrained our model using a synthetic dataset composed
of pK, predicted by the KaML-CBtree model (Fig. S1). The Glorot algorithm®'? is used
to initialize the model weights in the pre-training stage. In the model fine-tuning stage,
for each training/test data splitting, 10 models (with different random seeds) are indepen-
dently trained based on different 9:1 training:cross-validation splits. Thus, each prediction
is made by an ensemble model that gives the average predictions made by 10 models.
In the production stage, we retrained KaML-ESM (which comprises KaML-ESM2a and
KaML-ESMCb) using the entire PKAD-3 dataset. Here we performed 20 training:cross-
validation splits and for each split 10 models were trained. Therefore, the final KaML-ESM

is an ensemble of 200 models.

Implementation of the KaML platform

The KaML-ESM platform comprises multiple modular stages managed within a unified
Python framework, facilitating ease of use and reproducibility. Protein sequences or struc-
tures (specified via UniProt identifiers, PDB files, PDB IDs, or FASTA sequences) are ini-
tially retrieved through established web services (UniProt, RCSB) or processed directly
when provided by users. For sequences without structural information, computational
folding is performed using the remote ESM3-medium model accessible through the Forge
service.

Following retrieval and preprocessing, sequences and structures are parsed to identify
titratable residues. Embeddings are subsequently computed from these sequences using
a pLLM, specifically ESM2 (esm2_t33.650M_UR50D)*¢ or ESMC (esmc-6b-2024-12),°
with model selection determined by residue type (acidic or basic). By default, embeddings
for acidic residues are extracted from ESM2 and processed using a multi-layer percep-
tron (MLP) configured as 1280—512—256—32—1 neurons with dropout regularization.

Embeddings for basic residues are derived from ESMC and processed through a sep-
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arate MLP architecture of 2560—1024—512—64—1 neurons, similarly utilizing dropout
regularization. Details are given in paragraph Architecture of the KaML-ESM models.
Predictions from acidic and basic channels are generated via parallelized inference
using ensemble models, supported by statistical normalization strategies developed from
extensive training datasets. The acidic and basic channel predictions are consolidated
to yield the predicted pKj, values, shifts, and standard error metrics. An additional, inde-
pendently operated modular conformer channel is integrated, allowing users to employ
alternative conformer-sensitive predictive models in cases where distinct conformations
significantly impact predicted pKj, values. Currently, this channel employs the previously
validated KaMLs-CBTree model.®" Predictions from the conformer channel are reported

independently in the final output.

The command-line KaML platform. The KaML platform (https://github.com/JanaShenLab/
KaML-ESM) is openly available, accompanied by pretrained MLP ensemble weights. Specif-
ically provided are pretrained weights for the acidic ESMC channel and for cysteine
residues using layer 33 of the ESM2 model. The platform is designed to offer users
flexibility in specifying foundational models independently for each prediction channel.
For example, users can override default settings to utilize ESMC for both acidic and ba-
sic channels when analyzing sequences exceeding the 1022-residue limit of ESM2, as
ESMC supports sequence lengths up to 2046 residues. In these scenarios, the platform
automatically utilizes ESMC for the acidic channel, emphasizing the practical benefit of
including these pretrained weights. Additionally, users may optionally select alternative
layers within ESM2, such as employing layer 33 specifically for cysteine residues, reflect-
ing enhanced performance demonstrated in the primary analysis. By default, however,
the platform utilizes layer 31.

Finally, predictions are integrated back into structural outputs by annotating the struc-

ture files with residue-specific predictions in the B-factor field, facilitating visualization and
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downstream structural analysis. Prediction results, distinguishing between acidic/basic
channel outputs and independent conformer channel predictions, are documented in CSV

files, enhancing clarity and accessibility for further analysis.

The browser-based KaML application. We provide an easy-to-use online browser-
based GUI (https://kaml.computchem. org/) for non-commercial academic and research
purposes. Users can provide either the protein sequence, Uniprot ID, PDB ID, or PDB
files of interest. By clicking the 'Run pipeline’ button, the complete KaML-ESM model will
run on our web server. A PDB format file with the B-factor column filled with the predicted
pK, shifts and a CSV file with predicted pK, values for all titratable residues can be down-
loaded. Note, to use the KaML-ESMC models, users need to provide ESM forge API to-
kens, which is freely applicable at https://www.evolutionaryscale.ai/blog/esm-cambrian.

The screenshots of the web KaML application is given in Fig. S9.

Data for external evaluations

Newly curated experimental data. The recently published PKAD-3 database includes
1,167 pKa's of 992 unique residues in 247 proteins (wild type or mutant).®' Note, this
database only includes experimental pK, values published before April 2023. In order
to compile a dataset for external evaluation, we conducted a literature search for publi-
cations after April 2023 by applying the keyword 'pK3’ in the title and/or abstract on the
PubMed website. We then manually verified the pK, values in the publications. Further-
more, we found a few SNase mutant pK,'s based on NMR measurements®'# that were
missed when we curated PKAD-3. In total, 55 pK3’s from 16 proteins were found. These
new entries were used in the external evaluation of the models and are now added to
the PKAD-3 database (http://database.computchem.org/pkad-3). Currently, only the
first 50 entries are displayed on the website, but the entire database is searchable and

downloadable.


https://kaml.computchem.org/
https://www.evolutionaryscale.ai/blog/esm-cambrian
http://database.computchem.org/pkad-3

Data for proteome-wide pK, predictions. The activity-based protein profiling (ABPP)
a chemical proteomic technology for discovering covalently ligandable sites across the
proteome.®'> We collected an ABPP dataset from 10 publications.®'=52° In total, the
ABPP dataset contains 98,921 Asp, 147,092 Glu, 48,705 His, 41,634 Cys, 51,825 Tyr,
and 121,660 Lys (sum up to 509,837 unique residues) from 3,892 unique genes, most of

which do not have available crystal structures.



Supplemental Tables

Table S1: Effect of pretraining and separating acid and base models on the pK, prediction
errors of KaML-ESM2

All Asp Glu Cys Tyr His Lys
No PT + NoAB | 0.934+0.04 0.954+0.09 0.714+0.04 1.03+0.11 1.544+0.19 0.96+0.05 0.99+0.09
PT only 0.89+0.03 093+£0.08 0.73+0.04 1.054+0.11 1.44+0.17 0.82+0.04 0.88+0.10
AB only 0.76 £0.02 0.71+£0.05 0.70£0.04 1.00+£0.09 1.74+£0.19 0.79+0.12 0.59 £0.05
PT + AB 0.73+0.03 0.72+£0.06 0.67+0.04 1.014+0.09 1.65+0.17 0.67+£0.03 0.554+0.04

Overall and amino acid-specific RMSE+standard error of the pK, predictions by the KaML-ESM2 model
using 20 20 hold-out tests (same as in our previous work®"). PT: pretraining, AB: training acidic and
basic models separately. Residue embeddings were extracted from ESM2_650M layer 33.

Table S2: pK, prediction errors of the models trained with the embeddings from different
layers of ESM_650M

All Asp Glu Cys Tyr His Lys
Without pretraining

layer33 | 0.76 +£0.02 0.71+0.05 0.70+0.04 1.004+0.09 1.74+£0.19 0.79+0.04 0.59 4+ 0.05
layer32 | 0.77£0.02 0.70+0.04 0.69+0.04 1.04£0.09 1.754+0.20 0.84+£0.04 0.61=+0.05
layer31 | 0.75+£0.02 0.684+0.04 0.62+0.03 1.23+0.11 1.58+0.17 0.81+£0.05 0.7140.07
layer30 | 0.79+0.02 0.71+0.04 0.74+0.03 1.154+0.10 1.43+0.18 0.85+0.04 0.65=40.05
layer29 | 0.82+0.02 0.74+0.03 0.74+0.04 1.30+£0.14 1.50£0.20 0.92+0.05 0.62=+0.06
layer28 | 0.81+0.02 0.73+0.04 0.75+0.04 1.234+0.11 1.49+0.22 0.89+0.05 0.61+0.06
layer27 | 0.81+0.02 0.74+0.04 0.74+0.04 1.254+0.11 1.56+0.22 0.89+0.05 0.64 4+ 0.06
layer26 | 0.86 £0.03 0.78+0.04 0.79+0.04 1.36+0.13 1.66+0.25 0.90+0.04 0.70 4+ 0.07
layer25 | 0.87+£0.03 0.814+0.04 0.79+0.04 1.48+0.13 1.714+0.26 0.91+£0.04 0.68+0.06
layer24 | 0.87 £0.03 0.83+0.04 0.81+0.04 1.36+0.13 1.58+0.24 0.91+£0.04 0.68+0.07
layer23 | 0.89 £0.03 0.854+0.04 0.82+0.04 1.42+0.13 1.57+0.23 0.90+0.04 0.7140.07
layer22 | 0.89+0.03 0.84+0.04 0.81+0.04 1454+0.14 1.49+0.23 0.91+£0.04 0.724+0.07
layer21 | 0.87£0.02 0.84+0.03 0.76+0.04 1.43+£0.12 1.494+0.20 0.92+0.04 0.74+0.08
layer20 | 0.89 £0.03 0.0.83+0.04 0.80+0.04 1.45+0.16 1.64+0.21 0.91+0.04 0.7940.07
layer19 | 0.88 £0.03 0.83+0.04 0.77+£0.04 1.41+£0.16 1.76+0.25 0.92+0.04 0.79+0.07
layer18 | 0.87£0.03 0.84+0.04 0.77+0.04 143+0.14 1.60+£0.22 0.88+0.04 0.80=+0.08
layer17 | 0.87£0.03 0.854+0.04 0.76+0.04 1.58+0.12 1.51+0.22 0.89+0.04 0.79+0.07
With pretraining

layer33 | 0.73£0.03 0.724+0.06 0.67+0.04 1.01+£0.09 1.65+0.17 0.67+0.03 0.55=+0.04
layer32 | 0.71£0.03 0.694+0.05 0.65+0.04 1.14+0.10 1.474+0.14 0.67+0.03 0.61+0.04
layer31 | 0.68 £0.02 0.614+0.04 0.58+0.04 1.11+£0.09 1.54+0.16 0.68+£0.03 0.69+0.07
layer30 | 0.75+£0.02 0.71+0.04 0.75+0.04 1.18+£0.11 1.34£0.16 0.65+0.04 0.62=+0.06
layer29 | 0.75+0.02 0.70+0.04 0.724+0.04 1.32+£0.12 1.354+0.18 0.69+£0.03 0.55+0.05
layer28 | 0.74+0.02 0.70+0.04 0.72+0.04 1.154+0.08 1.39+0.19 0.73+£0.03 0.50 4 0.04

Overall and amino acid-specific RMSE+standard error of the pK, predictions by the KaML-ESM2 model
using 20 hold-out tests (same as in our previous work °'). Residue embeddings were extracted from the
last 6 layers of ESM2_650M. Layer 31 gives the lowest overall RMSE, while the lowest RMSEs (red) for
Cys, Tyr, His, and Lys pK, predictions are from other layers. Pre-training was performed for all models.
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Table S3: pK, prediction errors of the models trained with the embeddings from different

layers of ESM2_15B (no pretraining)

All

Asp

Glu

Cys

Tyr

His

Lys

layer48
layer4d7
layer46
layer45
layerd4
layer43
layer42

0.74£0.03
0.73£0.02
0.74£0.02
0.74£0.03
0.76 £ 0.03
0.76 £0.03
0.77+0.03

0.70 £0.05
0.68 £0.04
0.69 £ 0.04
0.70 £0.04
0.68 £0.04
0.70 £0.04
0.70 £0.04

0.60 £0.03
0.60 £ 0.02
0.61 £0.03
0.62 +£0.04
0.66 + 0.04
0.66 = 0.04
0.66 = 0.04

1.16 £ 0.08
1.07£0.08
1.09 £ 0.09
1.07 £ 0.10
1.11+£0.10
1.10£0.11
1.10£0.12

1.70 £0.20
1.73£0.20
1.62 £0.20
1.51£0.20
1.53+0.21
1.48 £0.22
1.47+0.23

0.84 +£0.04
0.85+0.04
0.85 +0.04
0.85+0.04
0.87 +£0.04
0.87£0.04
0.90 £ 0.04

0.61 £0.05
0.64 £0.06
0.62 £ 0.06
0.63 £0.05
0.65 £ 0.06
0.65 £ 0.06
0.64 £ 0.06

Overall and amino acid-specific RMSE+standard error of the pK, predictions by the KaML-ESM2 model
using 20 hold-out tests (same as in our previous work®'). The layer that gives the lowest overall RMSE
is highlighted in bold font. The lowest amino acid-specific RMSE is highlighted in red.

Table S4: pK, prediction errors of the the models trained with the embeddings from dif-

ferent layers of KaML-ESMC (no pretraining)

All

Asp

Glu

Cys

Tyr

His

Lys

layer80
layer79
layer78
layer77
layer76
layer75
layer74
layer73
layer72
layer71

layer70
layer69
layer68
layer67
layer66
layer65
layer64
layer63
layer62
layer61

layer60

0.70 £ 0.03
0.74£0.03
0.73+£0.03
0.76 £0.03
0.75£0.03
0.75£0.03
0.77£0.03
0.78 £0.03
0.78 £ 0.03
0.78 £0.03
0.79+£0.03
0.80 £0.03
0.80 £ 0.03
0.81£0.03
0.81£0.03
0.81 £0.03
0.82+£0.03
0.82£0.03
0.82+£0.03
0.83 £0.03
0.83£0.03

0.64 £ 0.04
0.68 £0.05
0.67 £0.05
0.69 £ 0.05
0.67 £ 0.05
0.67 £ 0.05
0.69 £ 0.05
0.70 £ 0.06
0.70 £ 0.06
0.70 £0.05
0.70 £0.05
0.72 £ 0.06
0.72 £ 0.06
0.73 £0.06
0.74 £0.05
0.73 £0.05
0.75 £ 0.06
0.75 £ 0.06
0.76 £ 0.06
0.77 £0.06
0.76 £ 0.06

0.61 £0.03
0.64 £ 0.03
0.62 +0.03
0.64 £ 0.03
0.64 +0.03
0.66 + 0.04
0.65 + 0.04
0.68 £ 0.04
0.70 £ 0.04
0.69 £+ 0.04
0.71+0.04
0.71+£0.04
0.72+0.04
0.73+£0.04
0.73+£0.04
0.74+0.04
0.74 +£0.04
0.74+0.04
0.74 +£0.04
0.73+£0.04
0.74 +£0.04

1.22£0.13
1.47+£0.12
1.30 £ 0.12
1.31£0.15
1.35£0.14
1.36 £0.15
1.39£0.14
1.42+0.12
1.33£0.13
1.36 £0.11
1.40 £0.12
1.47£0.11
1.44+0.12
1.46 £0.13
1.46 £0.14
1.44£+0.13
1.46 £0.12
1.45+0.12
1.49£0.13
1.48+£0.12
1.46 £0.11

1.46 £0.17
1.41£0.16
1.58 £0.21
1.73£0.26
1.75£0.25
1.71£0.25
1.68 £0.25
1.61 £0.23
1.55£0.24
1.52+0.24
1.59 £0.23
1.53£0.22
1.47£0.22
1.49 +0.23
1.44 £0.23
1.47+0.24
1.49 £0.24
1.55+£0.24
1.52£0.23
1.47+0.21
1.49 £0.23

0.74 £0.04
0.74 £0.04
0.77+£0.04
0.79+£0.04
0.76 £ 0.04
0.78 £0.04
0.83 £0.04
0.84 £0.04
0.84 £0.03
0.83 £0.03
0.83 £0.04
0.84 £0.03
0.84 £0.04
0.85+£0.04
0.85+0.03
0.85+0.04
0.86 £+ 0.04
0.85+0.04
0.85+0.04
0.86 +£0.04
0.87+£0.04

0.53 £ 0.04
0.58 £ 0.04
0.57+0.04
0.58 £ 0.04
0.60 + 0.04
0.59 £ 0.04
0.57+0.04
0.57 £0.05
0.58 + 0.06
0.60 £ 0.05
0.63 + 0.06
0.64 £ 0.06
0.66 + 0.06
0.66 £+ 0.07
0.67 £ 0.06
0.67 £ 0.06
0.67 £ 0.06
0.69 £ 0.06
0.69 + 0.06
0.71 £ 0.06
0.71 £ 0.06

Overall and amino acid-specific RMSE+standard error of the pK, predictions by the KaML-ESM2 model
using 20 hold-out tests (same as in our previous workS'). The layer that gives the lowest overall RMSE
is highlighted in bold font. The lowest amino acid-specific RMSE is highlighted in red.
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Table S5: Overall performance of KaML-ESMs for predicting protein pK,’s and protona-
tion states and comparison to the structure-based KaML-CBTree and popular empirical
PROPKA3 models®

KaML-ESM2 | KaML-ESMC | KaML-CBTree | PROPKA3
RMSE 0.68 £ 0.02 0.68 £0.03 0.77 +0.02 1.20 +0.03
PCC 0.96 +0.01 0.96 + 0.01 0.95+0.01 |0.87+0.01
MAXE 3.07+£0.15 3.254+0.23 3.40 £0.10 5.04 £0.10

Classification of protonation states at pH 7°

Pre (prot) 0.97 0.97 0.97 0.85
Rec (prot) 0.96 0.93 0.93 0.86
Pre (dep) 0.99 0.98 0.99 0.97
Rec (dep) 0.99 0.99 0.98 0.97
CERe 33/2607 43/2653 46/2635 143/2673

2The metrics of KaML-CBTree®' and PROPKA3°2¢ are taken from Ref.®! ®Prediction is based on the
probability of protonation given a predicted pK, (see main text). “Critical error rate (CER) refers to the
percentage of predictions misclassifying protonated as deprotonated or vice versa. Precision (Pre) and
recall (Rec) were calculated for protonated (prot) and deprotonated (dep) states after accumulating the
predictions from all 20 holdout test sets.
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Figure S1: Train-validation split for the pretraining dataset. Histograms of the KaML-
CBTree calculated pK, values for pre-training. The dashed bins represent the validation
dataset
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Figure S2: Train-validation-test split. The binning scheme used in this study for each
residue type. The colored bins represent the overall dataset, gray bins represent the val-
idation dataset, and the white bins represent the test dataset. The data splitting protocol
is repeated 20 times independently and the first spiting is shown here as an illustration.
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Figure S3: t-SNE analysis of the residue embeddings from ESMC. t-SNE visualization of the residue

embeddings (2560-digit) extracted from layer 80 of the ESMC model. Residues with up-shifted and down-
shifted pKy’s are colored red and blue, respectively.
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Figure S4: Experimental vs predicted pK,’s in all 20 hold-out tests. The RMSE and PCC is 0.65 and
0.96, respectively. Solid line is the identity and the dotted line is a linear fit. Data points are color-coded
by amino acid. The white regions indicate correct protonation state classifications. The dark gray regions
highlight the critical errors. The light gray regions indicate titrating pKj3’s which were excluded from the
classification analysis.

S-16



1.0

0.8

0.6

0.4

0.2

0.0

RMSE

1.0
[e)}
. Bos B
O i) co n
1 ™ o a=
~N N Q oL o
s - 00.5 = =
i o 0
LN o
“‘u'\? —to 8\—12 E I
5° Igg S5 Bgs I
o
0.0
Asp Glu Cys Tyr His Lys Asp  Glu Cys His Lys
Hl Precision EX1 Recall
M U TH L ’
f / /
/ I I ’ /
¢ f 4 f
f / 4 !
AR 1
AN ' |7
i / / /
/ / Pl
4 f f /
Asp? Asp- Glu® Glu Cys® Cys His* His® Lys* LysO

Figure S5: Evaluation of KaML-ESM2 and KaML-ESMC for predicting pK,’s and protonation state
for different titratable residues. A. Regression metrics for the KaML-ESM2 model (color-coded), KaML-
ESMC model (light color-coded), and KaML-CBtree model (grey) in terms of PCC (left) and RMSE (right).
The mean value of the 20 splits is given. B. The precision (solid) and recall (stripe) for the protonated
and deprotonated residues under pH 7 derived from the predictions from the KaML-ESM2 (color-coded),
KaML-ESMC model (light color-coded), and KaML-CBtree model (grey)) models. The metrics for Tyr are
not shown due to the small test dataset.
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Figure S6: External evaluation of KaML-ESM against KaML-CBTree, and PROPKA3 Amino acids are
represented as shapes: His (e), Cys (4), and Lys (x). The overall RMSE is given for each model. Following
our previous work, ' we divided the pK, range into different regions to illustrate whether a predicted pK,
corresponds to a correct protonation state prediction at pH 7. White regions indicate correct protonation
state predictions; gray regions indicate critical errors (i.e., protonated predicted as deprotonated or vice
versa); and light gray regions indicate that the predicted pK, belongs in titration range.
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Figure S7: KaML-ESM2 predicted vs. experimental pK,’s in all 20 hold-out tests.
Predicted vs. experimental pK, values for all test splits. The dashed line is a linear fit.
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Figure S8: Comparison of KaML-ESMC predicted and experimental pK,’s in all 20
hold-out tests. Predicted vs. experimental pK, values for all test splits. The dashed line
is a linear fit.
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Figure S9: Screenshot of the browser-based KaML GUI. An end-to-end web applica-
tion which takes either the protein sequence, Uniprot ID, PDB ID, or a PDB file as input,
along with the end-user’'s ESM forge API token, to make predictions. Available online for
non-commerical use (kaml .computchem.org).
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