
1

SUPPLEMENTARY MATERIALS

Journal of Pharmacokinetics and Pharmacodynamics

Leveraging Large Language Models in Pharmacometrics: Evaluation

of NONMEM Output Interpretation and Simulation Capabilities

Hwa Jun Cha1,2, Kyuyeon Choe1,2, Euibeom Shin3, Murali Ramanathan3,

Sungpil Han1,2

1Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591,

Republic of Korea

2PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The

Catholic University of Korea, Seoul 06591, Republic of Korea

3 Artificial Intelligence & Pharmacometrics Laboratory, Department of Pharmaceutical Sciences,

University at Buffalo, The State University of New York, Buffalo, NY 14214-8033, USA

2

SUPPLEMENTARY TABLES

TABLE S1 Prompts used for the diagram generation task with Claude AI

DIAGRAM GENERATION TASK

Based on a NONMEM output file, generate a structural model diagram using Mermaid

flowchart topdown following guidelines:

The code must:

1. Start with 'flowchart TD’

- Add “” in every []

- Remove all descriptive comments

- Use square only for the compartment defined in $DES or $MODEL

2. Analyze the $MODEL, $DES, and $PK sections and identify:

- All compartments with names and numbers

- All connections between compartments using:

 - Rate equations exactly as written in $DES

 - Format: source -->|"complete rate equation"| target

- Only connect compartments that have relationships defined in the code

 - If compartments are not connected in the code, do not create artificial connections

 - Elimination pathways

 - Pharmacodynamics and pharmacokinetic domains and visualize the connections

 - Use solid lines (-->) for relationships within same domain (only PK-PK or only PD-

PD)

 - Use dashed lines (-.->) for relationships between different domains (PK-PD

interactions)

- Do not create self-loops within compartment (e.g., A -> A)

3. Apply appropriate styling:

 - Use classDef for visual differentiation

 - Group similar compartments in a subgraph box with the same styling (e.g., all PK compartments

in same color)

 - Use bidirectional arrows (<-->) for reversible flow between compartments

 - Set consistent arrow styles using linkStyle

 - Optimize arrow layout:

 - Minimize arrow crossings

 - Align arrows in parallel if possible

 - Group related flows together

 - Use appropriate spacing between components

- Color the subgraphs background in grey using `classDef subgraphStyle fill:#eeeeee`

4. Ensure consistency and accuracy:

- Exclude all covariates and parameter values

- Show only structural relationships between compartments

- Validate the diagram with the output file after generating the diagram

3

TABLE S2 Prompts used for the table generation task with Claude AI

TABLE GENERATION TASK

Generate a publication-ready parameter table from the NONMEM output file with the following

guidelines:

Table Format:

- Create a table with four columns: Parameter, Description, Estimates (CV%), and RSE

- Present parameters in the same order as specified in the NONMEM output file

- Add ‘(FIX)’ if the parameter is fixed to certain value in ‘Parameter’

- Provide a brief explanation of each parameter in ‘Description’ (e.g. CL for clearance)

- Make a table into 3 sections (Fixed effect, Random effect (Interindividual Variability) and

Random effect (Residual Variability)

- Parameter section:

 - Use Θ for THETA parameters ex) Θ1

 - Use ω for OMEGA parameters ex) ω1_Vc

 - Use σ for SIGMA parameters ex) σ1_prop or σ1_add

Parameter Processing:

 1. IMPORTANT: Only read parameter values from specific sections under "FINAL

PARAMETER ESTIMATE”

 - Fixed effects: Find section starting with "THETA - VECTOR OF FIXED EFFECTS

PARAMETERS"

 - Random effects: Find the section starting with "OMEGA - COV MATRIX FOR RANDOM

EFFECTS - ETAS"

 - Residual error: Find section starting with "SIGMA - COV MATRIX FOR RANDOM EFFECTS

 2. DO NOT read or use values from:

 - Any ITERATION sections

 - Initial estimates ($THETA, $OMEGA, $SIGMA sections)

 - Any other parts of the output file

3. Parameter Value Formatting:

 - Report ALL parameter values EXACTLY as they appear in the NONMEM output

 - Do not add additional decimal places beyond what is shown in the output

 - convert the parameter into decimal notation

4. For OMEGA parameters:

 - All values in the output file are ω^2 values

 - Calculate coefficient of variation (CV) only for OMEGA, and do not round any intermediate

values during calculation steps

 - Fill ω^2 values and present as "ω value (CV%)" in the table

 - If "SAME”, fill the table with identical value from the corresponding position above in the

matrix

5. For Error Model:

 - Check $THETA, $SIGMA and $ERROR sections

 - Check error structure type (additive/proportional/combined, etc.)

 - If the error model is structured with Theta (with $SIGMA fixed to 1), include the Theta value in

the 'Random Error (Residual Variability)' section and remove the Sigma value '1 FIXED' in the

table

 - Do not calculate CV

6. For BLOCK structures identify correlated parameters:

 - In $OMEGA BLOCK

 - For diagonal section, read "OMEGA - COV MATRIX FOR RANDOM EFFECTS -

4

 ETAS" section, calculate CV and present "ω value (CV%)"

 - For non-diagonal section, read “OMEGA - CORR MATRIX FOR RANDOM

 EFFECTS - ETAS” sections

 - Do not calculate CV, and present (eg"ρ Vc/F-CL/F") in Parameter’ section

 - In $SIGMA BLOCK

 - For diagonal section, read "SIGMA - COV MATRIX FOR RANDOM EFFECTS -

EPSILONS" section

 - For non-diagonal section, read “SIGMA - CORR MATRIX FOR RANDOM EFFECTS

EPSILONS” sections

 - Present (eg "ρ Add/Prop") in Parameter’ section

7. For RSE (Relative Standard Error):

 - Include only if $COVARIANCE block and standard error matrix exist

 - Otherwise, fill with "N/A"

8. Calculations:

 - Coefficient of Variations (CV): CV = 100*sqrt(exp(ω^2)-1)

 - Relative Standard Error (RSE): RSE = (standard error/parameter estimate) *100

Output validation:

 - Create a clear, well-formatted table using an artifact

 - Include all parameters using decimal notation in the table

 - Do not round any intermediate values during calculation steps

 - Convert all values into decimal notation

5

TABLE S3 Prompts used for the analysis report generation task with Claude AI

ANALYSIS REPORT GENERATION TASK

Generate NONMEM Analysis Report

Report format:

1. HTML syntax

 - Use $PROBLEM section as report title if possible

 - Make the report as tidy as possible

Report Components:

1. Model Characteristics:

- Model description

 - Model type

 - NONMEM SUBROUTINE

 - PK, PD, PK/PD, etc.

 - Kinetics type (Linear, non-linear, etc.)

 - Covariate descriptions and structure with the parameter (e.g. CL = (CRCL/70)**THETA(12))

 - Estimation Method

 - Add comments if there are any notable or unique characteristics of the model

2. Model Structure:

 - Number and names of compartments

 - Include previously generated Mermaid diagram showing model structure

 - Include the following code before the mermaid diagram:

<script src="https://cdnjs.cloudflare.com/ajax/libs/mermaid/10.6.1/mermaid.min.js"></script>

<script>mermaid.initialize({startOnLoad:true});</script>

3. Parameter Table:

 - Include previously generated parameter table and convert into HTML syntax

 - Columns: Parameter, Description, Estimate (CV%), RSE

 - Maintain original formatting and content

 - Include all parameters in the table

Output Verification:

- Check all required components

- Check diagram and table rendering

- Correct the HTML syntax if there is an error

6

TABLE S4 Prompts used for the simulation task with ChatGPT

SIMULATION TASK

1. Based on the NONMEM output file, generate the parameter tables? Final parameter estimates are

under THETA - VECTOR OF FIXED EFFECTS PARAMETER, OMEGA - COV MATRIX FOR

RANDOM EFFECTS, SIGMA - COV MATRIX FOR RANDOM EFFECTS sections

2. Analyze the model structure and check the covariates

3. Can you conduct a simulation based on the dosing scenario, covariates, and PK sampling times

that will be provided? Do not simulate until all the conditions were provided

4. The simulation condition is as follows:

 Dose:

Covariate:

PK sampling time:

5. Use python code for PK model simulation using differential equations (dadt) with

scipy.integrate.solve_ivp (ex. da1_dt = -k10*a1)

Number of Simulation:

Conduct a simulation using the mode, its parameter and simulation condition identified earlier.

Generate the output into .csv file with columns with ID, TIME, CONC.

Simulate using theta & omega and do not include sigma in this simulation.

7

SUPPLEMENTARY FIGURES

FIGURE S1 Claude result of the diagram generation

8

FIGURE S2 Claude result of the parameter table generation

9

FIGURE S3 Claude result of the NONMEM analysis report generation

10

FIGURE S4 Mermaid code generated by Claude

flowchart TD

 subgraph PK ["Pharmacokinetics"]

 A["Central (1)"]

 B["ELF (2)"]

 C["Peripheral (3)"]

 end

 %% Connections between compartments

 A <-->|"Q2/V1, Q2/V2"| B

 A <-->|"Q3/V1, Q3/V3"| C

 A -->|"CL/V1"| E[("Elimination")]

 classDef default fill:#f9f9f9,stroke:#333,stroke-width:2px

 classDef subgraphStyle fill:#eeeeee,stroke:#666,stroke-width:2px

 class PK subgraphStyle

11

FIGURE S5 Python simulation code generated by ChatGPT

import numpy as np

import pandas as pd

from scipy.integrate import solve_ivp

Define model parameters

theta = [7.94, 0.722, 13.6, 0.949, 6.73, 4.08, 8.22, 10.1, 1.04, 249] # Fixed Effects (THETA)

omega = np.array([[0.126, 0, 0, 0], [0, 0.14, 0, 0], [0, 0, 1.76, 0], [0, 0, 0, 0.187]]) # IIV

Matrix

Define covariates

WT = 85 # kg

GFR = 177 # mL/min

Dosing information

dose = 1000 # mg (1 g)

infusion_rate = 2000 # mg/h (2 g/h)

infusion_duration = dose / infusion_rate # 0.5 hours

Sampling times

sampling_times = [0, 0.5, 1, 3, 4, 5, 6]

Number of simulations

num_simulations = 500

Define PK model equations (3-compartment model)

def pk_model(t, y, CL, V1, Q2, V2, Q3, V3):

 a1, a2, a3 = y

 k10 = CL / V1

 k12 = Q2 / V1

12

 k21 = Q2 / V2

 k13 = Q3 / V1

 k31 = Q3 / V3

 da1_dt = -k10 * a1 - k12 * a1 + k21 * a2 - k13 * a1 + k31 * a3

 da2_dt = k12 * a1 - k21 * a2

 da3_dt = k13 * a1 - k31 * a3

 return [da1_dt, da2_dt, da3_dt]

Simulation storage

simulation_results = []

Perform simulations

for sim_id in range(1, num_simulations + 1):

 # Generate individual parameters with variability

 eta = np.random.multivariate_normal([0, 0, 0, 0], omega)

 CL = theta[0] * (GFR / 65) ** theta[1] * np.exp(eta[0])

 V1 = theta[2] * (WT / 75) ** theta[3] * np.exp(eta[1])

 Q2 = theta[4]

 V2 = theta[5] * (WT / 75) ** theta[8] * np.exp(eta[2])

 Q3 = theta[6]

 V3 = theta[7]

 # Infusion duration handling

 def infusion_rate_func(t):

 return infusion_rate if t <= infusion_duration else 0

 # Initial conditions

 y0 = [0, 0, 0]

13

 # Solve differential equations

 def model_with_infusion(t, y):

 a1, a2, a3 = y

 infusion = infusion_rate_func(t)

 da1_dt = infusion / V1 - (CL / V1) * a1 - (Q2 / V1) * a1 + (Q2 / V2) * a2 - (Q3 /

V1) * a1 + (Q3 / V3) * a3

 da2_dt = (Q2 / V1) * a1 - (Q2 / V2) * a2

 da3_dt = (Q3 / V1) * a1 - (Q3 / V3) * a3

 return [da1_dt, da2_dt, da3_dt]

 sol = solve_ivp(

 model_with_infusion,

 [0, max(sampling_times)],

 y0,

 t_eval=sampling_times,

 method="LSODA"

)

 # Store results

 for t, conc in zip(sol.t, sol.y[0]):

 simulation_results.append([sim_id, t, conc])

Convert to DataFrame and save to CSV

simulation_df = pd.DataFrame(simulation_results, columns=["ID", "TIME", "CONC"])

output_path = "/mnt/data/simulation_output.csv"

simulation_df.to_csv(output_path, index=False)

output_path

