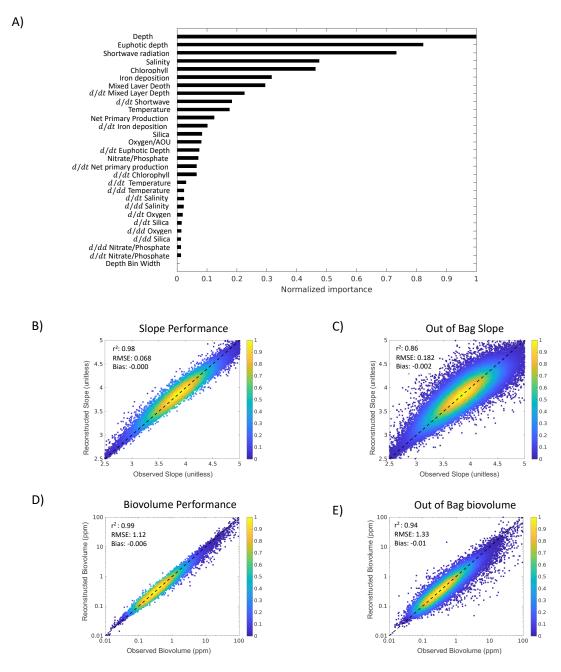
Extended data figures and tables


Table 1: Variables Used to Predict Particle Size Distribution Parameters, Dimensions used and Data Sources

Feature category	Feature	Dimensions	Sources		
Universal	Temperature	360x180x67x12	WOA 18 ⁷		
	Salinity	360x180x67x12	WOA 18 ³²		
	Silicate	360x180x67x12	WOA 18 ³³		
	Depth	360x180x67x12	WOA 18 ⁷		
	Shortwave radiation	360x180x12	ERA 5 ³⁴		
Oxygen	Oxygen	360x180x67x12	WOA 18 ³⁵		
	AOU	360x180x67x12	WOA 18 ³⁵		
Nutrients	Nitrate	360x180x67x12	WOA 18 ³³		
	Phosphate	360x180x67x12	WOA 18 ³³		
CHL	Merged Chlorophyll	360x180x12	GlobColour ³⁶ 4/16/25 9:50:00 AM		
	Modis Chlorophyll	360x180x12	NASA G.S.F.C ³⁷		
MLD	Mixed layer depth	360x180x12	MIMOC ³⁸		
	Mixed Layer Depth	360x180x12	de Boyer Montégut et al. (2004) ³⁹ 4/16/25 9:50:00 AM		
NPP	Eppley VGPM	360x180x12	Antoine and Morel (1996) 40		
	VGPM	360x180x12	Behrenfeld and Falkowski (1997) ⁴¹		
	СВРМ	360x180x12	Westberry et al. (2008) ⁴²		
	CAFE	360x180x12	Silsbe et al. (2016) ⁴³		
Euphotic Depth	Eppley VGPM Euphotic depth	360x180x12	Morel et al. (2007) ⁴⁴		

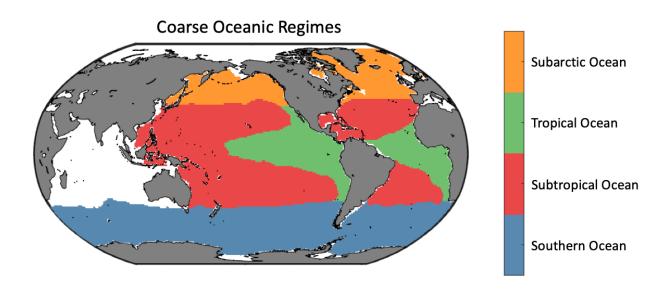
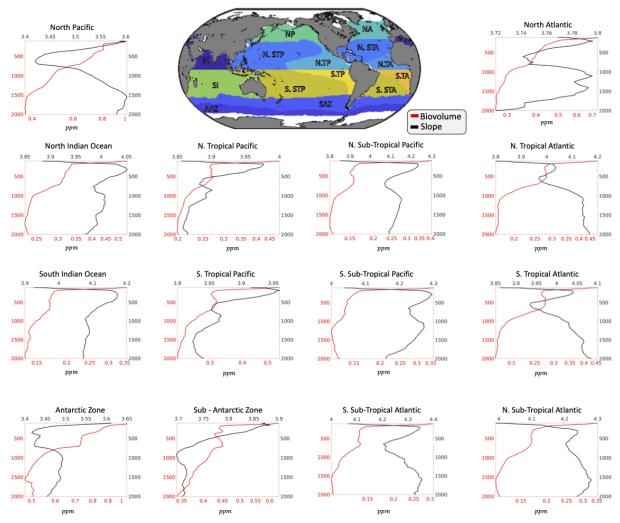
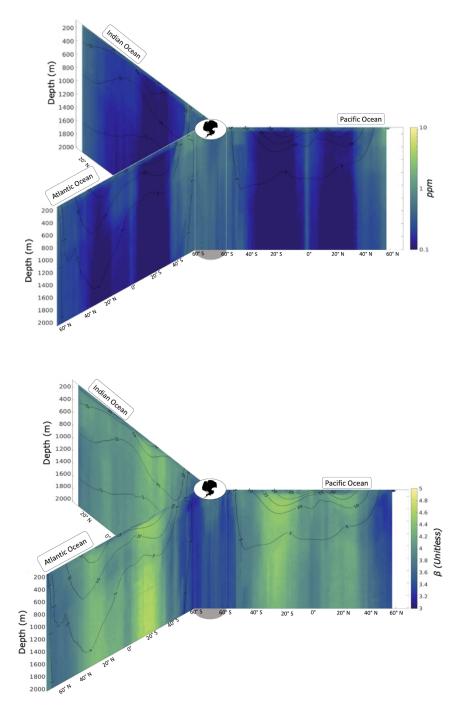
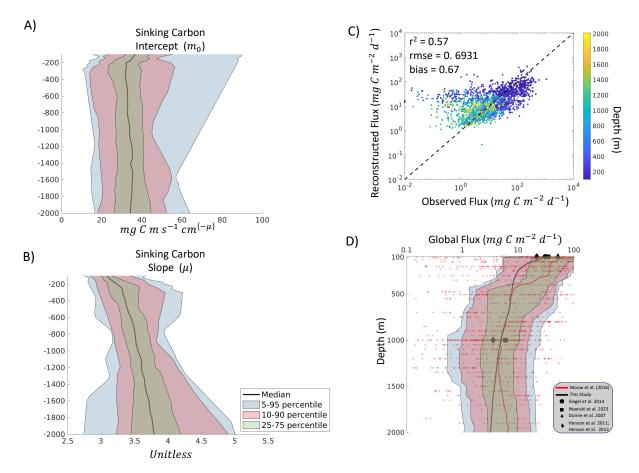
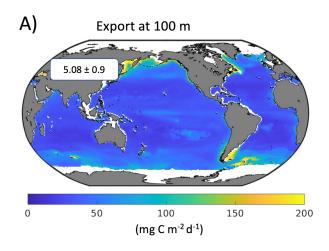

	VGPM depth	Euphotic	360x180x12	Morel et al. (2007) ⁴⁴
	CBPM depth	Euphotic	360x180x12	Morel et al. (2007) ⁴⁴
Iron deposition	Labile fraction		360x180x12	Myriokefalitakis et al. (2018) ⁴⁵
	Soluble Fraction		360x180x12	Hamilton et al. (2019) ⁴⁶

Table 2: Summary table of optimizations for fitting the two-component biological pump.


Parameter / metric	Meaning	Unit	Southern	Subtropics	Tropics	Subpolar	Global
R _{mig}	Ratio of migrant to gravitational export	unitless	0.18	0.11	0.18	0.13	0.16
b _{grav}	Martin exponent for gravitational pump	unitless	1.04	1.67	1.53	1.09	1.4
b _{mig}	Martin exponent for migrant pump	unitless	0.45	0.50	0.61	0.65	0.52
Z _{mig}	Central depth of migrant pump particle injection	m	426	387	350	390	344
H _{mig}	Gaussian width for migrant pump particle injection	m	135	98	109	105	109
r2-statistic	Model-data fit	unitless	0.99	0.98	0.98	0.99	0.99


Figure 1: (A) Recursive feature elimination results, showing the rank of predictor importance. (B, D) Performance of the Random Forest reconstruction, shown as density scatter plots of predicted versus observed slope (β) and biovolume (BV), where colors indicate the normalized density of observations at each point. (C, E) same as panel (B, D), but using out-of-bag (OOB) reconstructions, that is, reconstructions vs. observations withheld from training. Annotations in each panel show the coefficient of determination (r^2), the root mean square error (RMSE), and the global mean bias.


Figure 2: Coarse oceanic regions⁴⁷ used to calculate the global mean profiles shown in Figures 1-2; using the same color coding.


Figure 3: Regional mean depth sections for the PSD biovolume (red) and slope (black) for the different sub-regions shown in the map.

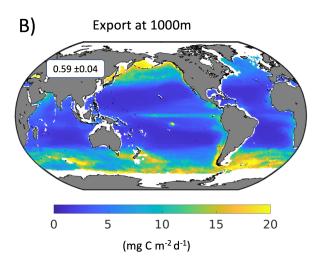


Figure 4: Reconstructed depth sections of (A) PSD biovolume and (B) slope for the three major ocean basins. Solid black contours show isotherms at 5 °C intervals. Sections are shown along 155°W in the Pacific, 25°W in the Atlantic, and 63°E in the Indian Ocean.

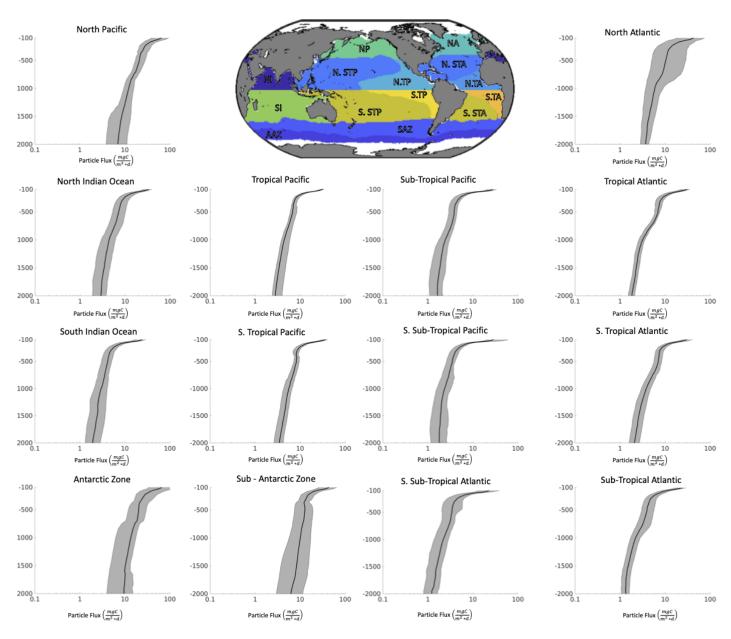
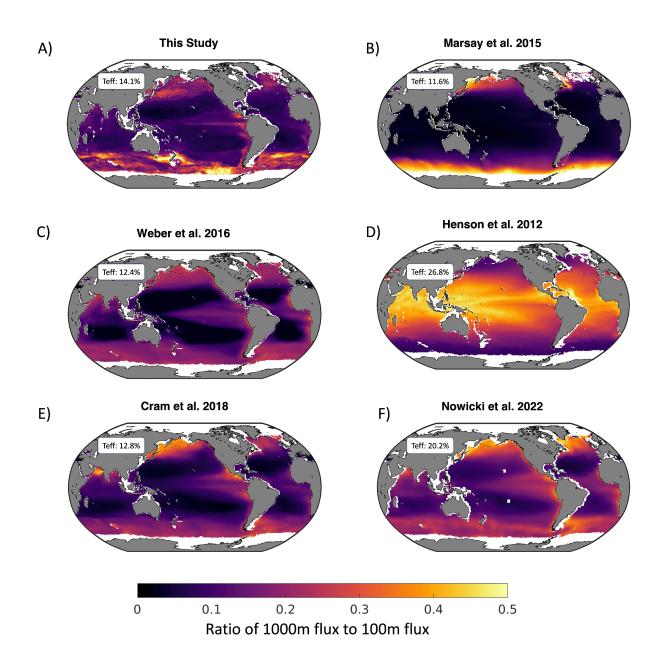
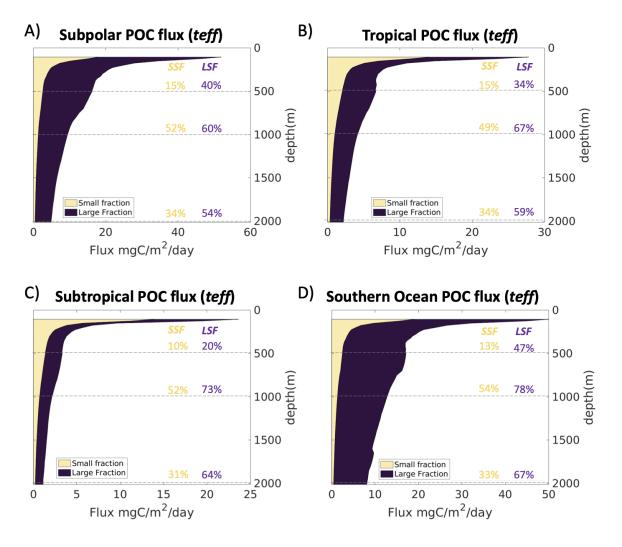
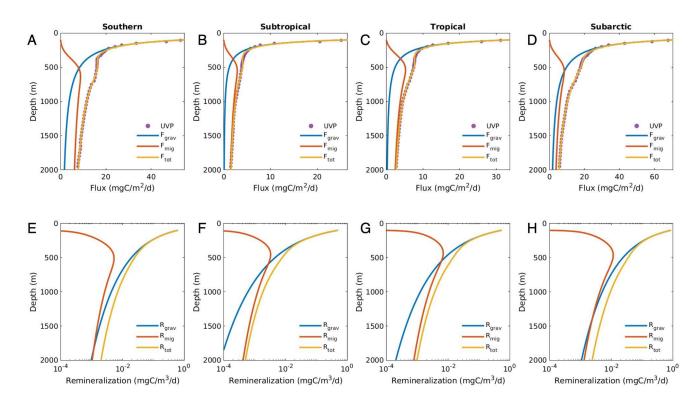
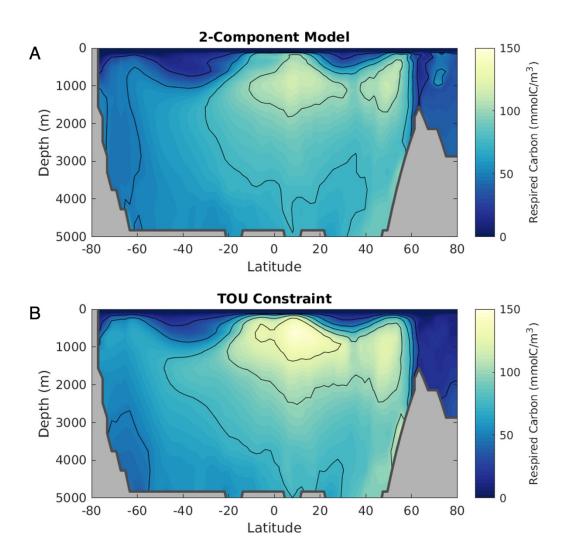


Figure 5: Optimized profiles of the global mean sinking carbon parameters m_0 and μ in Equation 7, and the resulting mean global profile of carbon export. Shadings show ranges from 50 independent optimizations with variable shapes of the profiles of m_0 and μ .




Figure 6: Reconstructed annual mean sinking POC flux at the surface (100 m; A), and at the base of the mesopelagic zone (1000 m; B). Annotations show the globally integrated annual sinking POC flux in Pg C/yr.


Figure 7: Regional mean depth sections for the POC flux (solid black line), with the seasonal cycle (gray shading) for the different sub-regions shown in the map.


Figure 8: Comparison of our results (A, see also Fig. 3) with prior estimates (B-F) of the transfer efficiency $T_{\text{eff}}(100 \rightarrow 1000)$ through the mesopelagic zone, defined as the ratio of POC flux at 1000 m to that at 100 m. Annotations in each panel show the mean transfer efficiency (calculated as the spatial mean of all values) for each estimate.

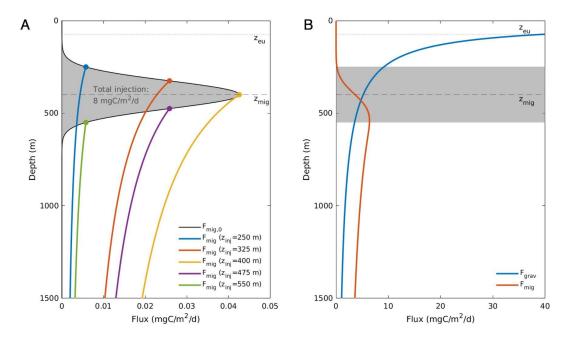

Figure 9. The size dependent flux through key ocean regions for the small size fraction (SSF; 35 μ m - 418 μ m) and the large size fraction (LSF; 418 μ m - 5 mm). Annotations in each panel show transfer efficiencies though different layers, calculated as the ratio of the export at the deeper horizon to that at the shallow horizon bounding each layer, also separated by size.

Figure 10. (A-D) Two-component flux model fit to the regional UVP5-based reconstructions, and separated into gravitational and migrant components. (E-H) The resulting remineralization rates (R) for each biological pump component.

Figure 11. (A) Total respired carbon distribution predicted by our two-component model (i.e., the sum for Fig. 4D and 4E). (B) An observation-based estimate of the respired carbon distribution, generated by stoichiometrically converting total oxygen utilization (TOU) to carbon units (see Methods). We note that this constraint also includes the signature of other biological pump components (e.g. dissolved organic matter remineralization, respiration of fauna) so has a larger magnitude than the estimates based on POC remineralization alone (A).

Figure 12. Demonstration of construction of the migrant-sourced particle flux in the two-component flux model for scenario with parameters $F_{grav,0} = 40$ mg C m⁻² d⁻¹, $R_{mig} = 0.2$, $Z_{mig} = 400$ m, $H_{mig} = 75$ m, $b_{grav} = 1.2$, $b_{mig} = 0.6$. (A) Particle injection rate by migrating organisms as a function of depth (shaded grey area, which integrates to R_{mig} $F_{grav,0} = 8$ mg m⁻² d⁻¹), and individual power-law flux profiles for particles injected at a range of different depths. (B) The total migrant-sourced flux (F_{mig}) is the sum of the individual flux profiles originating at every migration depth. It reaches its maximum flux towards the base of the migrant injection feature (grey shading represents Z_{mig} +/- $2H_{mig}$), whereas the flux component exported gravitationally from the euphotic zone (F_{grav}) reaches its maximum flux at Z_{eu} .