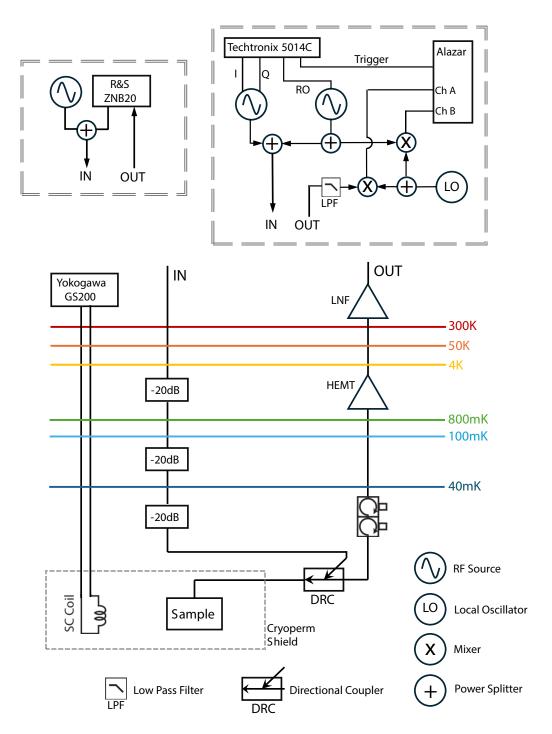
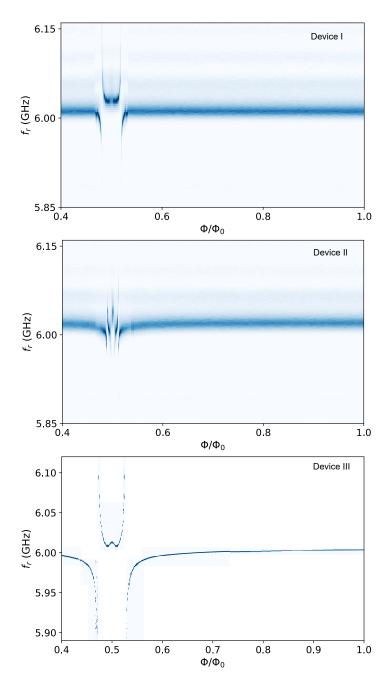
Supplementary Information for strongly-anharmonic gateless gatemon qubits based on InAs/Al 2D heterostructure

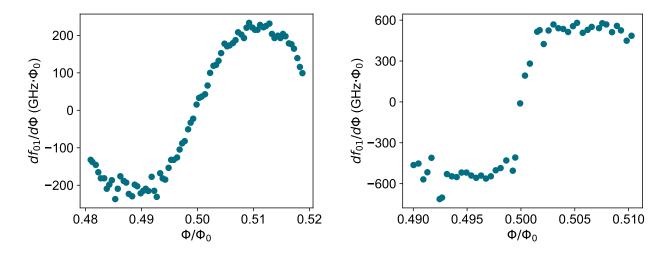

Shukai Liu 1, Arunav Bordoloi 1, Jacob Issokson 2, Ido Levy 2, Maxim Vavilov 3, Javad Shabani 2, and Vladimir Manucharyan 1,4

¹Department of Physics, Joint Quantum Institute, and Quantum Materials Center, University of Maryland, College Park, MD, USA

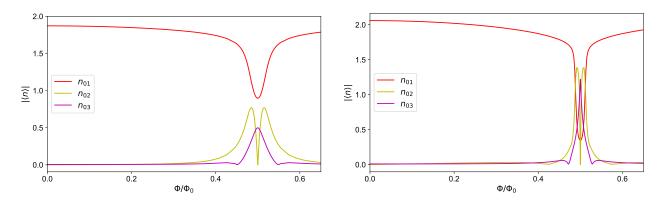
²Center for Quantum Information Physics, Department of Physics, New York University, New York, NY, USA


³Department of Physics, University of Wisconsin-Madison, Madison, WI, USA ⁴Institute of Physics, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

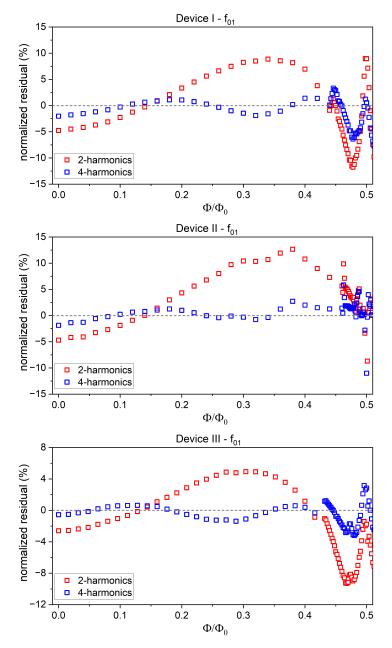
Supplementary Information 1: Experimental setup


Supplementary Figure 1: Schematics of the experimental setup use for measuring the flux-tunable gatemon qubit.

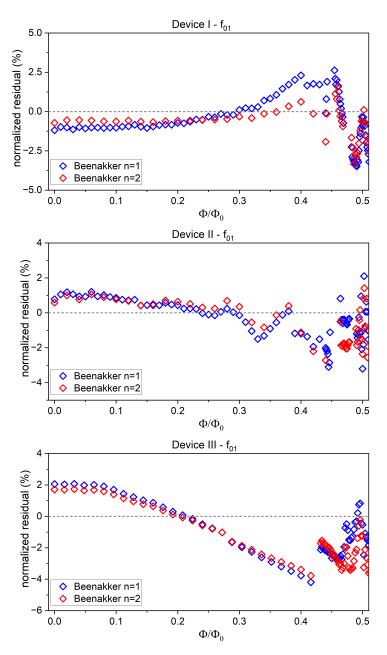
Supplementary Information 2: One-Tone Spectroscopy


Supplementary Figure 2: One-tone spectroscopy showing $|S_{11}|$ as a function of the resonator drive frequency $f_{\rm r}$ and the applied external magnetic flux Φ/Φ_0 for device I, II and III, respectively. The resonator response exhibits a vacuum Rabi splitting with a cavity-qubit coupling strength of $g=122\,{\rm MHz}$ for device I, $g=101\,{\rm MHz}$ for device II and $g=170\,{\rm MHz}$ for device III, respectively.

Supplementary Information 3: First-order flux insensitivity at $\Phi = 0.5 \Phi_0$


Supplementary Figure 3: Derivative of the $|0\rangle - |1\rangle$ transition qubit frequency $df_{01}/d\Phi$ as a function of the applied external magnetic flux Φ/Φ_0 for device I (left) and device II (right), indicating a first-order insensitivity to flux at the half-flux quanta $\Phi = 0.5 \Phi_0$.

Supplementary Information 4: Charge-matrix elements


Supplementary Figure 4: Charge matrix elements vs flux Φ/Φ_0 for device I (left) and device II (right).

Supplementary Information 5: Higher-harmonic model comparison

Supplementary Figure 5: Normalized residual $(f_{\text{model}} - f_{\text{meas}})/f_{\text{meas}}$ as a function of Φ/Φ_0 for the $|0\rangle - |1\rangle$ qubit transition using the higher-harmonic model for device I, II and III, respectively. Here, k refers to the number of leading Fourier harmonic terms used to approximate the Josephson potential energy in $U = \sum_k E_{\text{J}}^k \cos{(k\varphi)}$.

Supplementary Information 6: Multi-transparency model

Supplementary Figure 6: Normalized residual $(f_{\text{model}} - f_{\text{meas}})/f_{\text{meas}}$ as a function of Φ/Φ_0 for the $|0\rangle - |1\rangle$ qubit transition using the single and multiple transparency model for device I, II and III, respectively. Here, n refers to the number of characteristic channel transparencies for each Josephson junction. We observe that increasing n from a single (n=1) characteristic channel transparency to two (n=2) channel transparencies does not lead to any significant reduction in the residuals.

Supplementary Information 7: T_1 flux dependence

Supplementary Figure 7: **a.** T_1 as a function of the $|0\rangle - |1\rangle$ transition qubit frequency f_{01} in the vicinity of half-flux quanta $\Phi = 0.5 \, \Phi_0$. **b.** The effective dielectric loss tangent $\tan \delta_{\rm c}$ vs the qubit frequency f_{01} extracted from (**a**) using $\tan \delta_{\rm c} = \frac{1}{T_1 \omega_{01}}$, where $\omega_{01} = 2\pi f_{01}$.