

5
6
7

8 This PDF file includes:

- 9 Supplementary Notes 1
- 10 Captions for Supplementary Videos 1
- 11 Supplementary Figure 1 to 9
- 12 Supplementary Tables 1 to 2

13 Other Supplementary Materials for this manuscript include the following:

14 Supplementary Videos 1

15

16 **Supplementary Note 1 | Experimental paradigm for electrotactile data acquisition**
17 **in 30 participants.**

18 **I. Experiments with human subjects.** The experiments with human subjects were
19 performed in compliance with all the ethical regulations under a protocol that was
20 approved by Zhujiang Hospital of Southern Medical University. A total of 30 volunteers
21 participated in this experiment. All of the volunteers gave written informed consent
22 about the experimental procedure. All participants were trained to manipulate the
23 electrotactile system with the help of experimenters until they understood the sensation
24 of electrical stimulation.

25 **II. Body Composition Data Collection.** Participants initially measure their body
26 composition using a body fat scale. A body fat report is printed for each participant for
27 record-keeping purposes. It is important to note that these reports are confidential and
28 must not be disclosed or discussed in public settings.

29 **III. Perception and Pain Threshold Test.** Testing begins with a current amplitude
30 of 0.05mA, incrementally increased to find the perception threshold. The process
31 continues with gradual increases in current until the pain threshold is determined. For
32 subsequent tests, the experimental current is set at half the sum of the perception and
33 pain thresholds.

34 **IV. Testing with and without Inhibitory Electrodes.**

35 **Comparative Experiment Setup:**

36 **Pre-experiment Preparation:** Participants initially experience microcurrent
37 stimulation corresponding to simple line graphics (horizontal, vertical, left diagonal,
38 right diagonal) twice each. This helps participants familiarize themselves with the
39 experimental process and the sensory stimulation.

40 **With Inhibitory Electrodes Test:** Participants test five different graphic
41 arrangements using the four basic shapes. After receiving the corresponding
42 microcurrent stimulus for each pattern, participants report the perceived graphic, and
43 the system records the reaction time for perception. The arrangements, as shown in
44 Table 1, are tested sequentially, row by row, by the participants.

45 **Without Inhibitory Electrodes Test.** Participants repeat the same graphic

46 arrangements to evaluate the differences in stimulation effects when inhibitory
47 electrodes are absent. This part of the experiment aims to compare the clarity and
48 intensity of tactile feedback with and without the use of inhibitory electrodes.

49 **V. Testing Experiment with 10 Pattern Types.**

50 **Pre-experiment Preparation:** Participants experience microcurrent stimulation
51 for 10 different patterns, with each pattern experienced twice. The patterns are
52 categorized into three types: Simple lines (horizontal, vertical, left diagonal, right
53 diagonal), Geometric shapes (cross, X-shape, square, rectangle), and Complex figures
54 (smiley face, sad face).

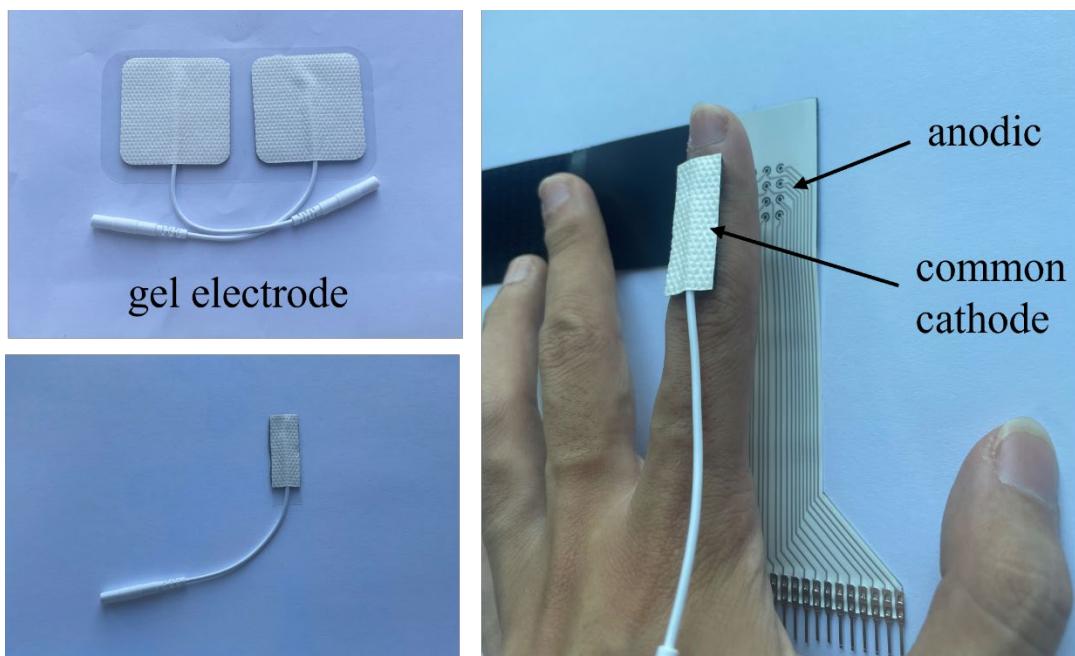
55 **Experiment Procedure:** At the start of the experiment, participants proceed
56 according to the sequence outlined in Table 2. The test involves five patterns per group,
57 with each pair of opposing patterns sequentially numbered from 1 to 10 in Table 2 for
58 the perception tests. Participants are required to choose between two options to identify
59 the pattern they perceive. The sequence and organization in Table 1 facilitate systematic
60 testing and structured response collection, ensuring each participant's response aligns
61 with the standardized experiment design.

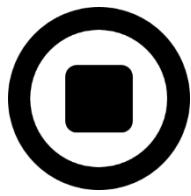
62 **Table 1.** Test Sequence for Simple Line Graphic Perception

	1	2	3	4
	—		/	\
	/		\	—
simple line		/	—	\
	\	—	/	
	—	/		\

Table 2. Pattern Perception Identification Test Sequence

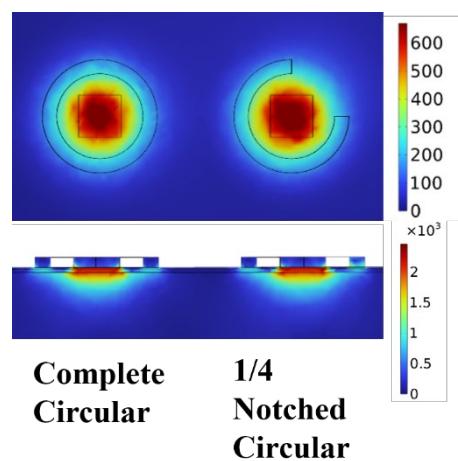
	1	2	3	4	5	6	7	8	9	10
—	—	—	—	—	—	—	—	—	—	—
/ \	\ /	/ \	\ /	\ /	/ \	/ \	/ \	/ \	\ /	/ \
× +	× ×	× ×	+	+	×	+	×	×	+	+
□ □	□ □	□ □	□ □	□ □	□ □	□ □	□ □	□ □	□ □	□ □
☺☺☺	☺	☺	☺	☺	☺	☺	☺	☺	☺	☺


66 **Supplementary Video 1 |**


67 In this demo, we show the Tactile Perception Evaluation Interactive System (TPEIS)
68 built on Unity for quantitative evaluation of tactile perception ability in a virtual
69 environment. The system scene is set in a virtual space station, where subjects perceive
70 virtual haptics by touching virtual patterned dots, thus enhancing the fun and immersion
71 of the assessment. At the beginning of the demonstration, a threshold selection interface
72 was shown, where subjects could select the appropriate microcurrent level (1mA, 2mA
73 or 4mA) before the experiment. Subjects wore a VR headset and touched the buttons
74 with their virtual hands to experience the stimulation of different current gears, so that
75 they could choose the most comfortable threshold setting for subsequent experiments.
76 Next, the pre-experimentation phase was demonstrated, in which subjects familiarised
77 themselves with the sensation of tactile perception by experiencing different patterns
78 of microcurrent stimulation. In this phase, a virtual finger generated by the Ultraleap
79 3Di technology in the VR glasses touched a pattern on the screen, which changed to a
80 lightning symbol when touched, signalling the onset of the microcurrent stimulation. In
81 the pattern recognition task, subjects clicked on an unknown question mark pattern in
82 a virtual box and judged its corresponding pattern type by tactile perception, and the
83 system recorded the result and reaction time of each judgement to further quantify the
84 tactile perception ability. Finally, a tactile perception evaluation report is shown, which
85 is generated based on the subject's judgement results, including the tactile perception
86 score, and provides corresponding suggestions based on the score. If the score is below
87 the lower limit of the standard deviation, the system will suggest to improve the tactile
88 perception ability through repetitive electrical stimulation training.

89

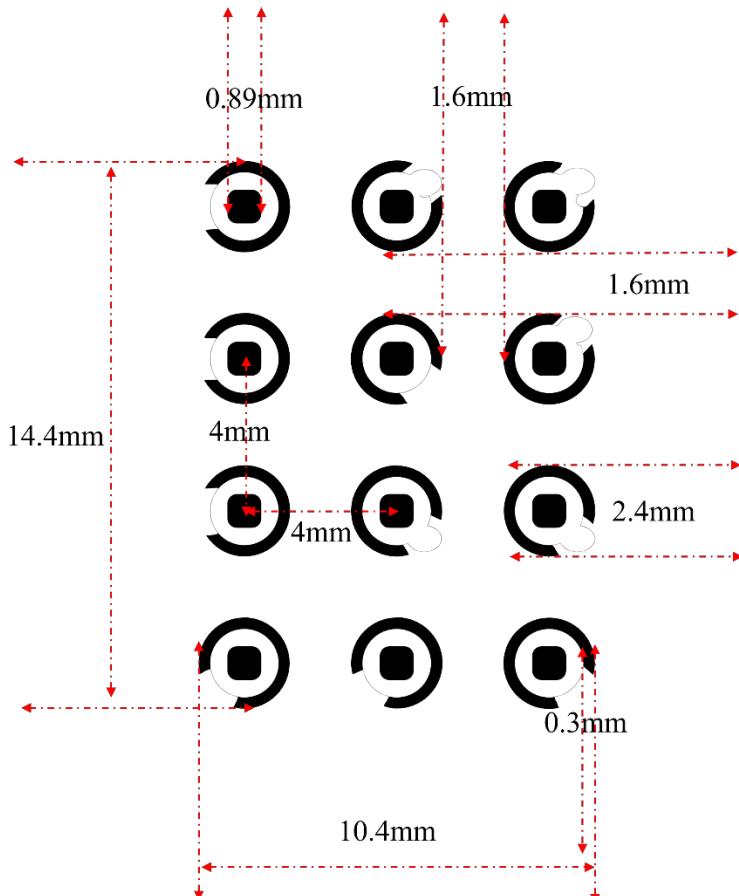
90
91 **Supplementary Fig. 1 | Model 3800 MultiStim: 8-Channel Stimulator.** The Model
92 3800 MultiStim is a high-performance electrophysiological device primarily used in
93 the medical field for electrophysiological research and treatment. It is capable of
94 providing various stimulation modes, including single pulse, dual pulse, and continuous
95 stimulation, and offers adjustable parameters such as frequency and amplitude. The
96 generator has four isolators for converting the pulsed signal into the required stimulus
97 and suppression currents. This versatile device is widely used in fields such as
98 neuromuscular electrophysiological examinations, rehabilitation therapy, and
99 acupuncture. Its features make it highly suitable for electro-tactile feedback
100 applications.
101
102



108

109 **Supplementary Fig. 3 | Surround-Inhibitory Electrode Structure.** The outer ring
110 electrode serves as the inhibitory electrode, while the central square electrode functions
111 as the stimulating electrode.

112

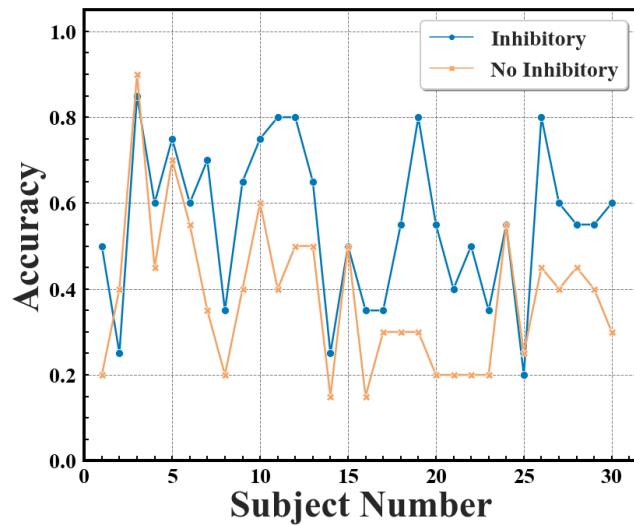

113

114

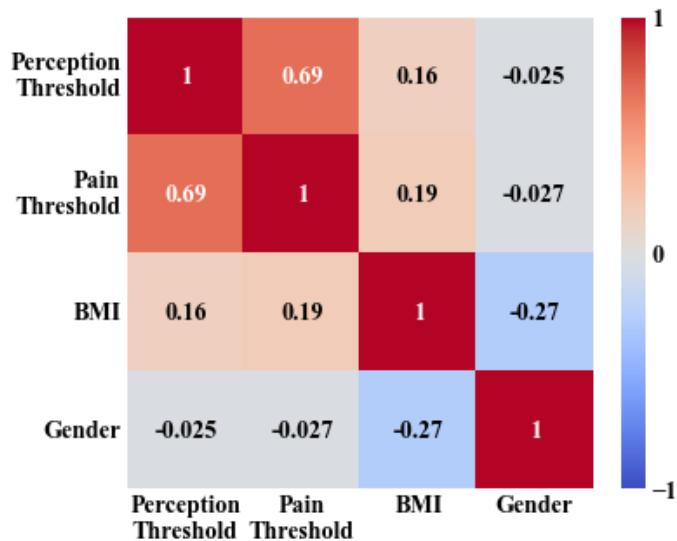
115 **Supplementary Fig. 4 | Simulation results of current density distribution with and without**
116 **a 1/4 gap in the ring-shaped electrode.**

117

118

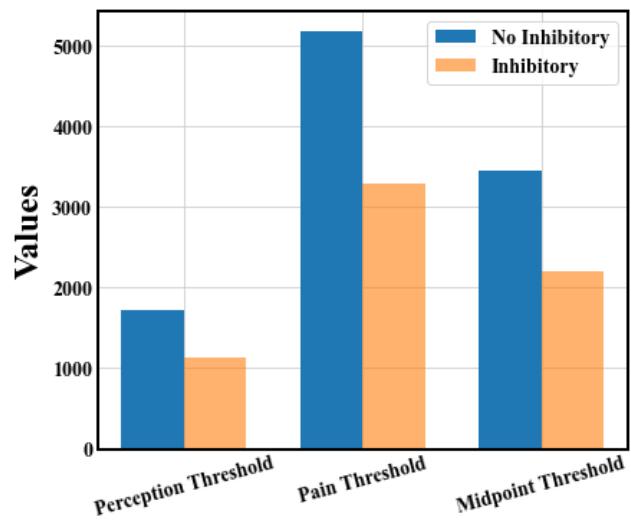

119 **Supplementary Fig. 5 | Dimensions and Spacing of the Electrode Array.** The
 120 electrode array consists of 12 electrodes with a surrounding inhibitory structure. Each
 121 surrounding inhibitory electrode is designed as a ring with a diameter of 2.4 mm, where
 122 the width of the inhibitory electrode ring is 0.3 mm, and the central stimulating
 123 electrode is a square structure with a side length of 0.89 mm. The spacing between the
 124 surrounding inhibitory electrodes is 1.6 mm, while the distance between the centers of
 125 two stimulating electrodes is 4 mm, which aligns with the typical two-point tactile
 126 threshold range for human fingertips (2-4 mm). The total size of the electrode array is
 127 14.4 mm \times 10.4 mm, which sufficiently covers the average tactile sensitive area of the
 128 general population (approximately 1-1.5 cm²).
 129

130


131 **Supplementary Fig. 6 | Physical Image of the Multi-channel Gate Electrode for**
132 **Temporal Gating.** The multi-channel gate electrode, which controls the activation of
133 electrodes, is controlled by STM32. By sending control information to the STM32 via
134 Bluetooth, virtual tactile pattern stimuli can be generated on the electrode array. The
135 gating circuit is based on a microcontroller (MCU) that controls the 74HC595 shift
136 register via an SPI interface to achieve multi-channel expansion and selection
137 functionality. By incorporating the ULN2803 Darlington array, the output driving
138 capability of the chip is enhanced, enabling precise control of the electrode array
139 through solid-state relays. The system is designed with modularity, using multiple
140 cascaded 74HC595 modules to expand the number of channels. The output signals from
141 the 74HC595 are amplified by the ULN2803 and used to drive the solid-state relays,
142 which control the switching of the electrode array, thus completing the transmission of
143 the selection signal. This design features high scalability, strong driving capability, and
144 high reliability, with the standard header interface allowing for convenient expansion
145 and connection of the electrode array. The overall design ensures the stability and
146 accuracy of the microcurrent tactile feedback system, providing robust hardware
147 support for virtual tactile experiences.

148

149


150 **Supplementary Fig. 7 | Comparative line plots of recognition accuracy of each of**
151 **the 30 participants for simple line patterns with and without inhibitory electrodes.**

152

153 **Supplementary Fig. 8 | Correlation confusion matrix analysis of perception**
 154 **threshold, pain threshold, BMI, and gender.**

155

156

157 **Supplementary Fig. 9 | Comparative analysis of thresholds with and without**
158 **inhibitory electrodes.**

159

160