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Table S1. Temperature dependent unit cell parameter, atomic positions, site occupancies, thermal 16 

displacement factors and reliable factors of PZO collected in argon 17 

Parameter RT 300 oC 500 oC 700 oC 900 oC 

Space group 𝐹𝑚3̅𝑚 𝐹𝑚3̅𝑚 𝐹𝑚3̅𝑚 𝐹𝑚3̅𝑚 𝐹𝑚3̅𝑚 

a (Å) 5.43 5.48 5.50 5.52 5.55 

V (Å3) 160.34 164.57 166.38 168.19 170.95 

 Pr/Zr (0, 0, 0)   

100 x Uiso (Å
2) 1.31 1.51 1.91 2.23 2.57 

focc 0.75/0.25 0.75/0.25 0.75/0.25 0.75/0.25 0.75/0.25 

 O (¼, ¼, ¼)    

100 x Uiso (Å
2) 4.31 4.83 5.60 6.21 6.54 

focc 0.915 0.910 0.880 0.870 0.860 

Reliability Factors    

Rwp (%) 4.02 4.09 3.97 3.89 3.46 

Rp (%) 3.12 3.21 2.93 2.76 2.69 

RBrgg (%) 3.73 3.69 3.65 3.62 3.54 

c2 1.93 1.77 1.74 1.68 1.53 
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20 

Figure S1. VTND Rietveld refinement profiles of PZO vs. temperatures in argon. 21 
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 24 

Figure S2. The 2D (a) and 3D (b) intensity contour plots of VTND during heating and cooling in 25 

air and (c) the refined crystal structure at room temperature. 26 

 27 
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Figure S3. VTND Rietveld refinement profiles of PZO vs. temperatures in air. 31 
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Table S2. Temperature dependent unit cell parameter, atomic positions, site occupancies, thermal 33 

displacement factors and reliable factors of PZO collected in air. 34 

Parameter RT 300 oC 500 oC 700 oC 900 oC 

Space group Fm-3m Fm-3m Fm-3m Fm-3m Fm-3m 

a (Å) 5.43 5.45 5.47 5.50 5.51 

V (Å3) 160.34 161.92 163.98 165.93 167.72 

 Pr/Zr (0, 0, 0)   

100 x Uiso (Å
2) 1.213 1.49 1.86 2.21 2.60 

focc 0.75/0.25 0.75/0.25 0.75/0.25 0.75/0.25 0.75/0.25 

 O (¼, ¼, ¼)    

100 x Uiso (Å
2) 4.31 4.83 5.60 6.21 6.54 

focc 0.915 0.91 0.90 0.89 0.87 

Reliability Factors    

Rwp (%) 4.20 4.19 4.07 3.66 3.55 

Rp (%) 3.32 3.23 3.17 2.87 2.73 

RBrgg (%) 3.96 4.03 3.99 3.52 3.76 

c2 2.06 4.10 3.50 2.58 2.01 
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Figure S4. XPS spectrum of the pristine PZO measured at RT. 39 
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Figure S5. Temperature-dependent TGA profiles measured in air and argon. 43 
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 45 

Figure S6. Oxygen yields under (a) different T-window and 20%H2O (b) different H2O content 46 
and 900-400oC window. 47 
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 49 

Table S3. Performance comparison of PZO with other RAO materials.  50 

materials synthes

is 

method 

cycles T(oC) 

red./ ox.  

H2O 

(%vol) 

Gas 

red./ox. 

O2 yield 

(umol/g) 

H2 yield 

(umol/g) 

ref 

PZO sol-gel 10 900/400 20.0 Ar/wet 

Ar 

415.8 85.3 This 

work 

CeO2 comme

rcial 

1 1500/1000 82.0 Ar/wet 

Ar 

49.5 33.8 1 

CeO2-Fe2O3 comme

rcial 

1 1500/1000 82.0 Ar/wet 

Ar 

150.2 86.6 1 

CeO2-CuO comme

rcial 

1 1500/1000 82.0 Ar/wet 

Ar 

69.4 43.5 1 

LaMnO3-d Pechini 3 1350/1000 84.0 N2/wet 

N2 

112.8 68.1 2 

BaCe0.25Mn0.75O3-d Pechini 3 1350/1000 40.0 Ar/wet 

Ar 

82.0 140.0 3 

Sr0.75Ce0.25MnO3-d Pechini 3 1350/800 40.0 Ar/wet 

Ar 

68.0 98.0 4 

La0.6Sr0.4FeO3-d comme

rcial 

5 1400/1400 45.0 N2/wet 

N2 

327.2 124.0 5 

BaFeO3-d sol-gel 9 900/900 30.0 Ar/wet 

Ar 

Reduced 

by H2 

216.9 6 
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 54 

Figure S7. Comparison of XRD patterns of PZO before and after exposure to 4%H2-Ar at 900oC 55 
for 2 hours. 56 
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Pristine PZO 

PZO after exposure to 900oC, 4%H2-Ar for 2 hours 
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 68 

Figure S8. Top and side views of the PZO (100) (a), PZO (110) (b), and PZO (111) (c) surface 69 

models along with the surface formation energies. O, Pr, and Zr atoms are represented by red, 70 

green, and blue small balls, respectively. Atoms of the top layer are represented by small balls, 71 

while remaining atoms are represented by sticks. 72 
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 74 

Figure S9. The PZO Unit cell (a); top and side views of the cleaved PZO (111) unit cell (b); top 75 

and side views of a 2×1×1 PZO (111) supercell (c). O, Pr, and Zr atoms are represented by red, 76 

green, and blue small balls, respectively. Atoms of the top layer are represented by small balls, 77 

while remaining atoms are represented by sticks. 78 

 79 
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 88 

Figure S10. Top and side views of oxygen vacancies at various concentrations on the clean PZO 89 

(111) surface, along with the vacancy formation energies. The red balls represent oxygen atoms 90 

moving from the subsurface to the surface. 91 
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Figure S11. Schematic diagram of oxygen molecule desorption before (a) and after (b). 107 
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Figure S12. Experimental setup for TC performance evaluation. 125 
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