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16 Table S1. Temperature dependent unit cell parameter, atomic positions, site occupancies, thermal

17 displacement factors and reliable factors of PZO collected in argon
Parameter RT 300 °C 500 °C 700 °C 900 °C
Space group Fm3m Fm3m Fm3m Fm3m Fm3m
a(A) 5.43 5.48 5.50 5.52 5.55
V(A% 160.34 164.57 166.38 168.19 170.95
Pr/Zr (0, 0, 0)
100 x Uio (A% 1.31 1.51 1.91 2.23 2.57
foce 0.75/0.25  0.75/0.25 0.75/0.25 0.75/0.25 0.75/0.25
O (Y4, Y4, Va)
100 x Uio (A% 4.31 4.83 5.60 6.21 6.54
foce 0.915 0.910 0.880 0.870 0.860
Reliability Factors
Rywp (%) 4.02 4.09 3.97 3.89 3.46
R, (%) 3.12 3.21 2.93 2.76 2.69
RBigg (%) 3.73 3.69 3.65 3.62 3.54
c? 1.93 1.77 1.74 1.68 1.53
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21 Figure S1. VTND Rietveld refinement profiles of PZO vs. temperatures in argon.
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Figure S2. The 2D (a) and 3D (b) intensity contour plots of VIND during heating and cooling in

air and (c) the refined crystal structure at room temperature.
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31  Figure S3. VIND Rietveld refinement profiles of PZO vs. temperatures in air.
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33  Table S2. Temperature dependent unit cell parameter, atomic positions, site occupancies, thermal

34 displacement factors and reliable factors of PZO collected in air.
Parameter RT 300 °C 500 °C 700 °C 900 °C
Space group Fm-3m Fm-3m Fm-3m Fm-3m Fm-3m
a(A) 5.43 5.45 5.47 5.50 5.51
V(A% 160.34 161.92 163.98 165.93 167.72
Pr/Zr (0, 0, 0)
100 x Uio (A% 1.213 1.49 1.86 2.21 2.60
foce 0.75/0.25  0.75/0.25 0.75/0.25 0.75/0.25 0.75/0.25
O (Y4, Y4, Va)
100 x Uio (A% 4.31 4.83 5.60 6.21 6.54
foce 0.915 0.91 0.90 0.89 0.87
Reliability Factors
Rwp (%) 4.20 4.19 4.07 3.66 3.55
Ry (%) 3.32 3.23 3.17 2.87 2.73
RBigg (%) 3.96 4.03 3.99 3.52 3.76
c? 2.06 4.10 3.50 2.58 2.01
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39  Figure S4. XPS spectrum of the pristine PZO measured at RT.
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Figure S5. Temperature-dependent TGA profiles measured in air and argon.
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49

50 Table S3. Performance comparison of PZO with other RAO materials.
materials synthes  cycles T(°C) H,O Gas 0O, yield H, yield ref
is red./ ox. (%ovol) red./ox.  (umol/g)  (umol/g)
method
PZO sol-gel 10 900/400 20.0 Ar/wet 415.8 85.3 This
Ar work
CeO» comme 1 1500/1000 82.0 Ar/wet 49.5 33.8 !
rcial Ar
Ce0,-Fey03 comme 1 1500/1000 82.0 Ar/wet 150.2 86.6 !
rcial Ar
Ce0,-Cu0O comme 1 1500/1000 82.0 Ar/wet 69.4 43.5 !
rcial Ar
LaMnOs.4 Pechini 3 1350/1000 84.0 No/wet 112.8 68.1 2
N
BaCe25sMng7503.¢  Pechini 3 1350/1000 40.0 Ar/wet 82.0 140.0 3
Ar
Sro75Ce02sMnQO3q  Pechini 3 1350/800 40.0 Ar/wet 68.0 98.0 4
Ar
Lag.6Sr04Fe0s.q comme 5 1400/1400 45.0 No/wet 327.2 124.0 5
rcial N,
BaFeO;.q sol-gel 9 900/900 30.0 Ar/wet  Reduced 216.9 6
Ar by H,
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Figure S7. Comparison of XRD patterns of PZO before and after exposure to 4%H2-Ar at 900°C

for 2 hours.
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Figure S8. Top and side views of the PZO (100) (a), PZO (110) (b), and PZO (111) (c) surface
models along with the surface formation energies. O, Pr, and Zr atoms are represented by red,
green, and blue small balls, respectively. Atoms of the top layer are represented by small balls,

while remaining atoms are represented by sticks.
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Figure S9. The PZO Unit cell (a); top and side views of the cleaved PZO (111) unit cell (b); top
and side views of a 2x1x1 PZO (111) supercell (¢). O, Pr, and Zr atoms are represented by red,

green, and blue small balls, respectively. Atoms of the top layer are represented by small balls,

while remaining atoms are represented by sticks.
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Figure S10. Top and side views of oxygen vacancies at various concentrations on the clean PZO

89

(111) surface, along with the vacancy formation energies. The red balls represent oxygen atoms

90

moving from the subsurface to the surface.
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Figure S11. Schematic diagram of oxygen molecule desorption before (a) and after (b).
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Figure S12. Experimental setup for TC performance evaluation.
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