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1.1 CERES-Rice crop parameters

Table S1 Crop parameters in CERES-Rice model and empirical calculation of Nerica 4.

Parameter Range Value Description

P1 150-800 520 Time period (expressed as growing degree days)
P2R 5-300 10 Panicle initiation (expressed as GDD in °C-d)
P5 150-850 550 Time period from beginning of grain filling (°C-d)
P20 11-13 13 The longest day length (in hours)

G1 38-540 75 Potential spikelet number coefficient

G2 0.015-0.03  0.03 Single grain weight (g)

G3 0.7-1.97 0.6 Tillering coefficient (scalar value)

PHINT 55-90 60 Phyllochron Interval (°C-d)

THOT 25-34 35 Spikelet sterility is affected by high temperature
TCLDP 12-18 15 Panicle initiation is delayed by low temperature
TCLDF 10-20 15 Spikelet sterility is affected by low temperature

1.2 Genetic Algorithm optimization

The Genetic Algorithm (GA) is an optimization method based on artificial intelligence
(AI), specifically within the subcategory of evolutionary computation. We employed
it to calibrate the CERES-Rice crop model by optimizing its parameters through the
evolution of a population of candidate solutions across multiple generations. The algo-
rithm starts by initializing a population of individuals, each representing a potential
parameter set. It evaluates the fitness of these individuals by comparing their per-
formance with observed values using a fitness function. The selection process favors
the best-performing individuals, which are then used to generate the next generation
through crossover and mutation operations. Mutation introduces diversity into the
population, preventing premature convergence.

The GA iterates over a specified number of generations, during which the algo-
rithm continually refines the population by selecting parents, performing crossover,
and applying mutation, aiming to minimize the error between the model’s predictions
and observed values. Key metrics such as the minimum error (dist_hist), mean error
across the population (dist_hist_mean), and the best genotype’s error (hist_ZBEST) are
tracked throughout the optimization process to monitor progress and convergence.

The algorithm uses the following parameters: Num_Pop, the number of generations,
is set to 15; Num_ind, the initial number of individuals in the population, is set to
10; Thr_mut, the mutation probability, is set to 0.7. At the end of the process, the
best set of parameters (ind_best.mat) is saved, and the error trends over iterations are
visualized and logged, allowing for further analysis and refinement.



Each individual in the GA represents a potential solution, corresponding to a
specific combination of crop parameters for the CERES-Rice crop growth model. The
individual is defined as X; = {P1, P20, P2R, P5,G1,G2,G3, PHINT}, where each
parameter takes a value within a predefined range, as shown in Table S1.

Operators in Genetic Algorithms To calibrate the model, we apply a Genetic
Algorithm (GA) for optimization, using the R>-NRMSE Integrated Index (RII) as the
fitness function to guide the selection, recombination, and mutation processes. The
GA is employed to tune model parameters iteratively, ensuring a balance between
model accuracy and genotype variability.

Fitness Metric: R®:-NRMSE Integrated Index (RII)

To guide and assess the performance and accuracy of the model for each com-
bination of crop parameter solutions, we introduce a fitness metric, the R2-NRMSE
Integrated Index (RII), defined in (1), where R? is given by (2) and NRMSE is given

by (3).
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This metric combines the coefficient of determination (R2) and the normalized root
mean square error (NRMSE), two widely recognized indicators of model fit and error.
The goal of the metric is to optimize for: (i) NRMSE approaching zero, which indicates
a low error between the predicted and observed values, and (ii) R2 approaching one,
which reflects a high proportion of variance explained by the model. Thus, as the RII
metric approaches zero, the model’s performance improves, reducing both estimation
error (NRMSE =~ 0) and achieving a model fit (R2 ~ 1).

This optimization incorporates the integrated index RII for Grain Yield (GY),
Biomass (BSS), Number of Grains (NG), Number of Tillers (NT), and phenological
stages, including anthesis (ANT) and maturity (MAT). The Cost Function (FC) inte-
grates all these variables, as defined in (4). Grain Yield and Biomass are given double
priority relative to the other variables.
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Each individual in the GA represents a potential solution, corresponding to a
specific combination of crop parameters. The fitness of each individual is defined as
shown in equation (5).
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Selection Operator

Roulette Wheel Selection, or fitness proportional selection, is a probabilistic
method in genetic algorithms. It starts by calculating the fitness of each individual
in the population, which reflects how well they solve the optimization problem. The
total fitness Fiota1 Of the population is calculated by adding the fitness values of all
individuals f;.

The selection probability P; for each individual ¢ is then computed by dividing the
fitness of the individual f; by the total fitness Fiota1, as shown in equation (6).
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Next, a random number r € [0, 1] is generated, and the cumulative selection prob-
ability C; is computed by summing the selection probabilities up to individual 4, as
expressed in equation (7). The individual i is selected if the random number 7 lies
within the cumulative probability interval [C;_1, C;), as defined in Equation (8).
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This process ensures that individuals with higher fitness have a greater chance of
selection, while still allowing for genetic diversity by giving less fit individuals a small
chance to be selected.

Recombination and mutation Operators

Arithmetic Crossover is a recombination operator. The primary objective of this
operator is to combine two parent solutions to produce offspring solutions by gen-
erating new combinations of their values. Unlike traditional crossover methods that
exchange segments or genes, arithmetic crossover blends the parent solutions through
a weighted average. Given two parent solutions, P, = {P!, P?,...,P!'} and P, =
{P},P?,..., P}, where each P} and P4 represent the values of the corresponding
genes in the solution vectors, arithmetic crossover produces a new offspring O based on
a linear combination of the parents’ gene values. The new gene values in the offspring
are calculated as expressed in equation (9).

O'=aPj+(1—a)Pi, Vie{l,2,...,n} (9)
where a is a random scalar weight factor in the interval [0, 1] that controls the influence

of each parent on the offspring. Finally, a random mutation is applied, prioritizing the
crop parameters with the highest sensitivity, based on the sensitivity analysis.



1.2.1 Results

The algorithm runs the CERES-Rice model 8280 times for 9 sites of the rainfed exper-
iment in the Nerica 4 cultivar [1]. It evaluates 920 combinations of crop parameters,
and the performance of the best candidate is shown in Figure S1.
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Fig. S1 GA-based optimization for the calibration of Nerica 4 cultivar.

The variability of the cost function in each generation ensures variability in the
exploration of possible solutions. The best combination of crop parameters is shown

in Table S2.

The results of the Genetic Algorithm in Table S2 are consistent with the empirical
calibration in Table S1. The difference in the GA lies in three crop parameters: PHINT
(Phyllochron Interval), where the algorithm defined 63.5 instead of 60; G2 (Single
grain weight), where the algorithm defined 0.026 instead of 0.03; and P5 (Time period
from the beginning of grain filling), where the algorithm defined 427 instead of 550.
The other crop parameters remained unchanged.

Table S2 GA-driven calculation of crop parameters in the CERES-Rice

model.

Parameter Value Description

P1 520 Time period (expressed as growing degree days)
P2R 10 Panicle initiation (expressed as GDD in °C-d)
P5 427 Time period from beginning of grain filling (°C-d)
P20 13 The longest day length (in hours)

G1 75 Potential spikelet number coefficient

G2 0.026 Single grain weight (g)

G3 0.6 Tillering coefficient (scalar value)

PHINT 63.5 Phyllochron Interval (°C-d)

THOT 35 Spikelet sterility is affected by high temperature
TCLDP 15 Panicle initiation is delayed by low temperature
TCLDF 15 Spikelet sterility is affected by low temperature




1.3 Support data

® https://data.mendeley.com/preview/fwp748vfkx?a=5bffaad1-1590-46b5-9¢27-41ecfd82c119
® https://github.com/EdgarStevenC/Crop- Growth-Modelling
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