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1 Fitting and evolution of SiIv line components

We found the complex profiles of the Si1v spectra well described by a six-Gaussian fit, with three negative components
corresponding to the absorption lines superimposed on three positive components that account for the SiIV line and its blue and
red wings. The multi-Gaussian fitting template, designed a priori with the LMFIT! Python package, was used to fit all Si1v
spectra in the period under study. The fitting routine was fully automated, running through iterations of the fit with different
components switched on and off by allowing the respective component intensities to be set to zero. The best fit was then
determined by least-squares minimization. By inspecting the fits, we verified that the reduced y? statistics converged to 1 in
most spectra under study. The multi-Gaussian fitting routine was used to derive the evolution of the Si1v line for a single
pixel-of-interest (POI) used in this study at [-635.93", 262.81"], corresponding to the location where condensation downflows
were the strongest. This location was identified via a preliminary analysis, where the Si1V velocity along the slit was calculated
using a 1st-moment analysis of the spectral line over the wavelength range 1401.5-1404.0 A. The velocity along the slit shown
in Fig. 1 was also inferred using this method.

Multi-component Si IV profiles, albeit common among flare observations, do not typically show absorption lines. Previous
investigations have found the presence of absorption features in so-called UV bursts, highly-localized transient brightenings
seen in emerging active regions that have been attributed to reconnection in the photosphere>? or chromosphere®, and Alfvénic
turbulence in the chromosphere”. Irrespective of its formation mechanism, these spectra have been shown to have absorption
features matching those seen here: a self-absorption of Si1v and two narrow Fe 11 1403.10 A and 1403.13 A absorption lines.
Concerning the of SiIV self-abortion, this can either be attributed to optical-depth effects in chromospheric conditions> or the
scattering of emission from plasma along the LOS?>. The latter has also been used to describe the Fe IT absorption lines, which
would arise from cool gas lying atop the 80 kK plasma responsible for the SiTv emission®. Absorption of Fe 11 lines can also
occur in chromospheric plasma with optical depths close to 0.1°.

In the case of the present event, it is hard to quantify the conditions, namely a cool gas along the LOS or optical depth
effects, that would result in these absorption features. For instance, cool, low-lying loops may exist along the LOS. A numerical
study into chromospheric condensation was able to synthesize two-component Fe 112814.45 A profiles following an injection of
electron beams’, where each component arose from separate chromospheric depths due to the deposition height of high and
low-energy electrons. As the condensation observed in this event also arises from electron deposition in the chromosphere, it is
plausible that Si1v is formed at lower depths with cooler plasma along the LOS, thereby leading to the observed absorption
features.

Regardless of the physical interpretation of these absorption features, the multi-Gaussian routine was primarily used to infer
LOS plasma velocity in the low atmosphere. The central Gaussian was chosen for the analysis, as it is the most prominent
emission component and shows clear oscillations over the observation window with minimal noise both pre- and post-flare.
The evolution of the Gaussian fitting of the redshifted component, typically used to study Si 1V condensation®?, also shows
virtually the same oscillations in the POI, albeit noisier and at higher velocities (Supplementary Fig.1). Because the velocity
oscillations of the central and redshifted Gaussian are in phase (c.f.; Figure 2, Supplementary Fig. 2), this suggests the plasma
for the respective emission components is moving in tandem. Provided these components are formed in separate formation
regions, this would further imply that different chromospheric regions are subjected to the repeated energy deposition driving
the condensations, as evidenced by oscillations in Mg 1T and CalI K . To the best of our knowledge, the peak redshift of the
red-component (200.3kms~!) is the highest velocity of Si1Vv during a flare seen to date.

Oscillations of the individual Gaussian components (intensity, velocity, and FWHM) measured from the central Gaussian
were also found to be correlated (Supplementary Fig. 2). In turn, this suggests the physical mechanisms underlying each
component are also oscillating in phase. As has been discussed, the Doppler shift of the line is due to repeated energy injections
in the form of non-thermal electrons, resulting in quasi-periodic downflows. Numerical simulations of condensation have
shown these downflows to be in the form of radiative shocks propagating downward through the chromosphere!®!!. This
downward flowing shock naturally produces a corresponding region of enhanced plasma density, which could have implications
for the broadening of the spectral line!>!3. Variations in the FWHM of the line in flaring conditions could also be due to
turbulence in the emitting region, as has been previously suggested'4. QPPs of Si1v broadening measured in a separate event
were found to contain periods of ~10 s during the pre-flare phase, and were attributed to periodic variations in turbulence'>
(although no variations in the intensity or velocity were identified). Finally, we note that while propagating MHD waves could
result in variations in the width of the line, we would expect to find the same 7 /2 phase relation between the intensity and
velocity and a P/2 period in the FWHM (for a sausage mode wave), which is not seen here. Instead, our interpretation for the
coherent oscillations in the Gaussian components is that it is caused by repeated, quasi-periodic, injections of energy into the
chromosphere, which heat the plasma (increasing intensity), generate propagating downflows (changing velocity), and create
compression and turbulence in the condensation region (enhancing FHWM). This interpretation also aligns with the generation
of tearing modes in the corona, which has been linked to the onset of turbulence in the form of Si 1V line broadening'® (see
Supplementary Section 3).
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Supplementary Fig. 1. Evolution of the red and central components of the Si1v 1402.77 A spectral line in the POL

While the analysis of condensation taken from IRIS spectra is concentrated on a single pixel (POI), different IRIS pixels
where the IRIS slit crossed the ribbon exhibited similar behavior. An example comparison is shown in Supplementary Fig. 3
that illustrates the velocity time series of the central Gaussian fit from two additional pixels, PX,, (green curve) and PX; (yellow
curve), corresponding to the upper and lower bounds of the IRIS ribbon pixels, respectively (see lower panel of Supplementary
Fig. 4 for locations). To a large extent, the pulsations seen in the POI are present in the additional pixels. Differences between
the velocities, while minor, can be attributed to several factors, including spatial inhomogeneities of the fine ribbon structure,
the spatial evolution of the ribbon over time, and potential LOS effects of the local magnetic structure of the ribbon footpoints.
Nevertheless, the consistent pulsation pattern across multiple IRIS pixels confirms that the observed condensation behavior
represents a genuine physical phenomenon, not limited to our choice of the POI or instrumental effects. This result is further
confirmed by the similarity of CaIIK velocity periods across the entire ribbon structure.

2 Bi-modal periodicities in QPP map

Analysis of oscillations in CaTl K condensation revealed that while most ribbon pixels displayed a single dominant period, 20%
showed bimodal QPP behavior with two significant peaks in their period power spectrum. Supplementary Fig. 5(a) maps these
secondary QPP periods and their spatial distribution. While this distribution is not as well-defined as the one seen with the
primary periods, they peak at ~25 and ~42 s. Calculating the period ratios at each bimodal QPP pixel location yields the map
and distribution shown in Fig. 5(b). Here, we find two distinct peaks at 0.67 and 1.57, respectively. Like the primary periods,
neither the secondary periods nor their ratios demonstrate any spatial organization along the ribbon.

The ratios of 0.67 and 1.57 are notable as they correspond to near integer ratios of 2:3 and 3:2, respectively. It is tempting
to speculate about the processes that drive bi-modal QPPs with such period ratios. They could suggest a coupling of modes
between the primary and secondary QPP periods along the ribbon. In contrast to a simple harmonic system, which would have
integer ratios of 1:n'”, the 2:3 and 3:2 ratios can be characteristic of systems with nonlinear wave interactions'®-2!. In our
speculative interpretation, the primary 34.1 s oscillation would be directly driven by the electron acceleration mechanism, as
supported by the correlation with HXR signals, while the emergence of secondary periods in rational ratios could be caused by
a nonlinear response of the chromospheric plasma to impulsive heating. The presence of these rational ratios, occurring in a
substantial fraction of ribbon pixels that are evenly distributed throughout the ribbon, would then indicate that such couplings
may be a component of the overall energy transport and dissipation mechanism during the impulsive phase of solar flares,
possibly linked to the fundamental ways MHD modes can naturally arise from quasi-periodic impulsive forcing.

3 Connection between observations and the tearing mode instability

The tearing mode instability arises when a current sheet approaches a critical aspect ratio, causing the sheet to decompose into
a series of magnetic islands, or plasmoids>>>3. The formation of plasmoids creates multiple X-points between adjacent islands
along the current sheet, facilitating fast reconnection. Plasmoids can also cascade into smaller scales®* or coalesce into larger
islands?’, creating an environment where reconnection becomes fundamentally bursty in the process?®. This mechanism offers
a viable framework for oscillatory reconnection in addition to efficient particle acceleration in flares?’, and has been used to
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Supplementary Fig. 2. Evolution of detrended line components from the central Si1v 1402.77 A Gaussian (a) and Mg 11
2791.60 A moments (b) in the POL.

explain QPPs in HXR and radio in flares®®%°.

While EUV images of current sheets during flares constitute direct observational evidence of plasmoids , indirect
evidence is also possible through measuring the structure and dynamics of flare ribbons'®32. As ribbons are widely considered
to be the aggregate of individual flare loop footpoints, instabilities present in the corona would likely be reflected in the
chromosphere following the transport of energy generated via a fragmented reconnection process. One such indirect observation
is the presence of fine ribbon structure. Recent work® using observations taken with SST/CHROMIS found small-scale
periodic blobs of plasma along the flare ribbon, which were attributed to current sheet tearing. This interpretation was based on
the results of a numerical study>* that was able to reproduce such features as a response to tearing modes using an analytical
3D flare model.

Here, we find similar observations in the high-resolution Ca 11 K data, where the structure of the flare ribbon footpoints
consists of finger-like striations along the ribbon’s elongation axis. Supplementary Fig. 6 shows an example of this behavior at
one time, where there appears to be a quasi-periodic spatial pattern similar to the kernels analyzed by>3. The loop footpoints also
demonstrate dynamic behavior typical of the “breaking wavelike” perturbations of the flare ribbon plasma (see Supplementary
Video 1), which was also predicted by an analytical model**.

A previous investigation®? using IRIS data found tearing modes could also explain the “sawtooth pattern” observed when
small-scale ribbon structure cross the slit, which was later affirmed by a follow-up numerical study>>. Condensation oscillations
were also found in the IRIS Si1v line, where both the sawtooth oscillations and condensation velocities were quasi-periodic
with periodicities of ~140s. In the current work, the evolution of SilV intensity and velocity along the spectrograph slit
(Supplementary Fig. 4) is reminiscent of the same ‘sawtooth pattern’, best seen before 09:25 UT.

29-31
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Supplementary Fig. 3. Detrended Si1v 1402.77 A velocities taken from the POI (blue) and two additional pixels: PX,,
(green) and PX; (yellow). Detrended 25-50 keV HXRs (red) are shown for context. The locations of each pixel are shown in
Supplementary Fig. 4.

A comparison between the morphological and temporal characteristics of these features and those seen in past studies
supports the interpretation that they are lower atmospheric manifestations of plasmoid-mediated reconnection occurring in
coronal current sheets. The primary ~35 s oscillations we observe in ribbon velocities likely correspond to this reconnection
process, potentially reflecting the characteristic growth time of the tearing modes or the coalescence of magnetic islands>.

4 Wavelet Analysis

The routine outlined in Methods for determining QPP periodicity was applied to the oscillatory signals referenced in Results.
The outputs of this routine depicting the original signal, detrended signal, slowly varying component, and the results from
the wavelet analysis and Lomb-Scargle periodogram are shown below for the following timeseries: CHROMIS Ca1 K POI
mean Vp (Supplementary Fig. 7), IRIS Mg 11 2791.6 A Vp (Supplementary Fig. 8), Fermi/GBM 25-50 keV (Supplementary
Fig. 9), and IRIS Fe xXI 1354.08 A peak intensity (Supplementary Fig. 10), velocity (Supplementary Fig. 11), and FWHM
(Supplementary Fig. 12).
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Supplementary Fig. 4. Temporal evolution of Si1v 1402.77 A along the IRIS spectrograph slit. Each panel is a
time-distance stack plot over the portion of the slit covering the flare ribbon. The top panel shows integrated intensity
(Oth-moment), with the green dashed line indicating the POI. Black contours show the region of Fe XX1 1354.08 A emission at
15% and 25% peak intensity, respectively. The bottom panel shows the 1st moment velocity. Pink and cyan dashed lines show
the PX,, and PX| locations.
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Supplementary Fig. 8. QPP analysis results for the Mg 11 2791.6 A velocity.
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Supplementary Fig. 9. QPP analysis results for the 25-50keV HXR fluctuations.
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Supplementary Fig. 10. QPP analysis results for the Fe XX1 1354.08 A peak intensity.
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Supplementary Fig. 11. QPP analysis results for the Fe Xx1 1354.08 A velocity.
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Supplementary Fig. 12. QPP analysis results for the Fe Xx1 1354.08 A FWHM.
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