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Abstract

This study investigates the impact of assimilating high resolution (770 m) Aerosol Optical Depth (AOD)
retrieval derived from the Ocean Color Monitor (OCM) sensor into the Weather Research and Forecasting
model coupled with Chemistry (WRF-Chem) for the first time, aiming to improve fine particulate matter
(PM,.;) forecasts over India. AOD assimilation leads to substantial improvements in model accuracy,
reducing PM,. biases by 30-70% and lowering root mean square error (RMSE) across critical regions
such as Delhi, Punjab, Bihar, and West Bengal. The assimilation substantially improves initial conditions
of surface PM,. estimates by approximately 60 ug/mé3. Forecast accuracy is the highest on the first day,
with an RMSE of 21.35 pg/m?2 and a correlation coefficient (R) of 0.75, followed by increasing RMSE
values of 30.40 pg/m?® on Day 2 and 32 ug/m?2 on Day 3, with correlations of 0.73 and 0.70, respectively,
reflecting degradation of assimilation benefits by model uncertainties over time. With MODIS nearing
phase-out, high-resolution OCM retrieval provides a reliable alternate choice for future AOD assimilation
in the AIRWISE forecasting system over India.

1. Introduction

India's rapid urbanization, industrialization, and energy demand have led to rising anthropogenic
emissions, worsening air quality nationwide'. Studies report widespread PM,.; pollution driven by
vehicular, industrial, and agricultural emissions, coupled with unfavourable meteorology®~>. This poses a
significant environmental and public health threat. Accurate short-term air quality forecasts can help
reduce health risks by enabling timely interventions®’. A reliable air quality forecasting is essential for
Indian cities due to the severe and persistent air pollution challenges driven by rapid urbanization,
industrialization, and vehicular emissions. With frequent episodes of high pollution levels, accurate
forecasting helps provide timely Air Quality Index (AQl) information to the public, enabling precautionary
measures to reduce health risks, especially for vulnerable populations®.

The Air Quality Early Warning System (AQEWS), developed under the Ministry of Earth Sciences (MoES)
for the National Capital Region (NCR), has emerged as a critical tool for addressing air pollution
challenges®~'". Over time, AQEWS has evolved into a comprehensive framework through the integration
of a Decision Support System (DSS) '2. This integration has resulted in the Air Quality Warning and
Integrated Decision Support System for Emissions (AIRWISE)'3, a cutting-edge tool that combines high-
resolution numerical modeling based air quality forecasts with actionable source attribution insights for
air quality management. This system helps policymakers to implement the Graded Response Action
Plan (GRAP) in Delhi-NCR, which imposes temporary predefined restrictions on pollution sources based
on forecast data. The integrated system helps in managing air quality during critical periods like Diwali (a
major Indian festival celebrated with fireworks and lights) and other high pollution events, providing
crucial support for public health and environmental management. Utilizing advanced chemical-transport
models such as the WRF-Chem and employing a three-dimensional variational (3DVAR) data
assimilation framework, AIRWISE integrates diverse observational datasets. These include ground-based

Page 3/17



measurements and satellite-derived AOD retrievals, particularly from (Moderate Resolution Imaging
Spectroradiometer) MODIS. The assimilation of MODIS AOD data has significantly enhanced AIRWISE's
ability to predict PM, 5 concentrations during critical pollution episodes, enabling policymakers to take

pre-emptive actions'* However, with the MODIS platform nearing the end of its operational lifespan'® the
need to explore alternative satellite systems has become increasingly urgent to ensure continuity and
advancement in data assimilation efforts. In this context, the OCM onboard the Indian Space Research
Organization’s (ISRO) Oceansat-3 satellite EOS-06, launched in 2022, presents a promising alternative.
Although primarily designed for oceanographic applications, OCM extends its capabilities to aerosol
monitoring over land, offering enhanced spatial and temporal resolution for air quality modeling. The
transition from MODIS to OCM provides an opportunity to maintain and improve the accuracy of
AIRWISE by ensuring the consistency of AOD retrievals in the data assimilation pipeline. This integration
of OCM AOD retrievals into AIRWISE forms the core of the present study. By leveraging the advanced
features of OCM, the research aims to refine PM, s predictions during peak pollution periods and support
evidence-based decision-making to mitigate air quality crises. The findings are expected to contribute to
the ongoing evolution of air quality forecasting systems, emphasizing the critical role of satellite-based
data in tackling complex environmental challenges in India and beyond.

In this paper, we highlight the impact of OCM data assimilation on air quality forecasting and assess
how it performs during peak pollution periods compared to MODIS. Our analysis shows that the OCM-
assimilated forecast falls within the expected uncertainties and is reliable for issuing timely warnings,
demonstrating its suitability alongside MODIS for operational air quality forecasting.

2. Data and methods
2.1 Satellite Retrievals for Data Assimilation

This research utilizes the WRF-Chem model configuration, emissions, parameterization schemes as
employed in the AIRWISE framework '3, focusing with 10 km grid spacing over the entire Indian region
as the domain of analysis. The meteorological initial and boundary conditions were derived from the
analysis and forecast product of the Indian Institute of Tropical Meteorology-Global Forecasting System

(IITM-GFS, T1534). This system employs Ensemble Kalman Filtering at a horizontal resolution of 12.5
16

km, providing data every three hours '°.
We have performed three experiments. The first was a control run without data assimilation, referred to
as the CNTL experiment; the second included assimilation using MODIS AOD data, defined as the
MODISDA experiment; and the third incorporated assimilation using OCM AOD data, termed the OCMDA
experiment. All simulations were performed with daily forecast outputs generated for 72 hours. The
meteorological parameters are reinitialized using global weather forecasts from IITM-GFS and chemistry
was recycled from the previous day's forecast to generate background initial conditions at the start of
each forecast cycle. The analysis period spanned from 01 November 2023 to 14 November 2023. To
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ensure consistency and comparability, all parameterization schemes and model configurations were
kept identical across the three experiments.

To assimilate either MODIS or OCM AOD in WRF-Chem, the 3DVAR data assimilation framework within
the Gridpoint Statistical Interpolation (GSI) system is utilized. AOD assimilation leverages the
observational data to optimize model initial conditions of aerosol species by minimizing a cost function
J, expressed as:

7@ = 3 - @) Bz — m) + S(H(z) ~ 4 R (H(z) - y)

1

Here, x is the state vector representing model variables (aerosol species and meteorological parameters
required for AOD calculation), x;, is the background model state, B is the background error covariance
matrix, H is the forward operator transforming model variables (aerosols) to observational (AOD) space,
y represents the satellite AOD observations, and R is the observation error covariance matrix. The
forward operator employs the Community Radiative Transfer Model (CRTM) to compute AOD from
modeled aerosol concentrations. The assimilation process iteratively minimizes the cost function by
balancing the model background with observations, resulting in updated aerosol mass concentrations
and improved analysis accuracy for initialization of air quality predictions. The background error
covariance matrix is modelled using the National Meteorological Center (NMC) method through the
Generalized Background Error (GEN_BE) module. This approach uses differences between two forecasts
valid at the same time to estimate parameters such as variance, horizontal length scales, and vertical
length scales. These parameters are derived from daily pairs of 24-hour WRF-Chem forecasts initialized
under varying meteorological, anthropogenic, and biomass burning conditions, We consider a 100%
uncertainty in both anthropogenic and biomass burning emissions, based on intercomparison studies of
various emission inventories 181°. The variances determine the weight of observational innovations,

while the length scales govern the spatial and vertical influence of assimilation increments '°.

The MODIS instrument, onboard NASA's Terra and Aqua satellites launched in 1999 and 2002,
respectively, operates in a sun-synchronous orbit with equatorial overpass times at approximately 10:30
AM and 1:30 PM local time. It provides near-global coverage every 1-2 days with a wide swath width of
approximately 2330 km. It offers AOD retrievals at spatial resolutions of 10 km, derived using the Dark
Target (DT) and Deep Blue (DB) algorithms. MODIS retrievals have observation errors estimated as
+(0.05+0.15 x AOD) over land and #(0.03 + 0.05 x AOD) over ocean.

In line with MODIS, the OCM, onboard ISRO’s Oceansat-3 satellite launched in 2022, also operates in a
sun-synchronous orbit with an equatorial overpass time near 12:00 PM local time. OCM has a narrower
swath width of approximately 1420 km, providing high-resolution AOD retrievals at a spatial resolution of
approximately 770 m (0.007°), making it particularly suited for aerosol monitoring over South Asia and
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adjoining regions. OCM retrievals, produced using the Space Applications Center AErosol Retrieval
(SAER) algorithm, have a theoretical uncertainty of +(0.06 + 0.26 x AOD) over land '°.

MODIS near real-time retrievals have a latency of approximately 3 hours, while OCM retrievals are
available with a shorter latency of 2 hours, making both datasets accessible by around 16:30 IST every
day. In the operational forecasting setup, downloading and processing these near real-time AOD
retrievals takes about 15 minutes. Each day, the chemical fields are initialized from the previous day’s
WRF-Chem forecast, aerosol fields are updated through data assimilation, and meteorological fields are
refreshed using the IITM-GFS forecast. This workflow ensures that applying assimilation at 09 UTC is
both practical and efficient.

PM,.s measurements from 258 monitoring sites, located in urban centers across India, are collected by
the Central Pollution Control Board (CPCB), IITM, and the US Embassies' AirNow program. These sites
are distributed across 12 states: 40 sites in Delhi, 17 in Gujarat, 30 in Haryana, 2 in Jharkhand, 1 in West
Bengal (Kolkata US Embassies site), 29 in Madhya Pradesh, 11 in Pune (Maharashtra, [ITM sites), 19 in
Odisha, 8 in Punjab, 44 in Rajasthan, and 57 in Uttar Pradesh. These locations were judiciously chosen as
MODIS and OCM satellites have daily swath coverage over these regions during the study period. The
geographical locations of these 12 states are shown in Fig. ST and were used to evaluate the
performance of the assimilation experiments. To ensure the reliability of PM, 5 observations for
evaluating model performance, additional quality control steps were applied alongside the standard
procedures implemented by the CPCB (https://cpcb.nic.in/quality-assurance-quality-control/). First,
measurements below 10 pg m™2 and above 1,500 pg m™ 2 were excluded as such extreme values were
likely due to instrument malfunctions. For example, PM, - concentrations below 10 ug m™ 2 were often
recorded immediately after instrument restarts, which is improbable in regions with significant
anthropogenic emissions. Second, sporadically high PM, s values, which appeared intermittently in the

time series at some monitoring sites, were also filtered out.

A variety of statistical metrics were employed to evaluate the performance of the model experiments,
including Pearson’s correlation coefficient (R), mean bias (MB), and root mean square error (RMSE).
Pearson'’s correlation coefficient was interpreted using its statistical significance to ensure robust
insights into the relationships between observed and forecasted values. These metrics comprehensively
assess the accuracy and reliability of day-1 to day-3 PM, 5 forecasts, offering valuable insights into the

model's performance.

3. Results

3.1 Effect of Aerosol Optical Depth Assimilation on PM,
Forecast
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To evaluate the effectiveness of OCMDA in improving WRF-Chem simulated AOD and to understand how
chemical data assimilation enhances aerosol initial conditions, we have compared the CNTL and
OCMDA experiments against collocated OCM AQD retrievals on 10 November 2023 at 09 UTC (Fig. 1).
OCM provides higher spatial resolution data, which can be critical for detailed regional studies that
require finer spatial granularity. The CNTL experiment (Fig. 1 (b)) underestimates AOD substantially
when compared with OCM observations (Fig. 1 (a)), with simulated AOD values ranging between 0.1-0.4,
while observed AOD values range from 0.8—1.0. After assimilating OCM AOD, the OCMDA experiment
exhibits significant improvements. The enhancements observed in OCMDA demonstrate that OCM-
based assimilation effectively corrects model-simulated AOD, bringing it in line with satellite-retrieved
values. The most notable improvements occur over the Central and lower Indo-Gangetic Plain (IGP),
regions heavily impacted by crop residue burning in early November (Fig S1). The assimilation increases
AOD by approximately 1.5 to 2.0 times compared to CNTL, highlighting the effectiveness of data
assimilation in adjusting aerosol mass concentrations and refining the model’s chemical initial
conditions. To further analyze the impact of OCMDA, frequency distribution plots of AOD at 550 nm
using all data from the study period illustrate how data assimilation improves model performance (Fig. 2
(b)). The OCMDA experiment captures higher AOD frequency distributions beyond 0.5, accurately
representing more intense aerosol events that CNTL often misses. In contrast, CNTL overestimates
aerosol concentrations in the 0—0.5 AOD range, leading to a higher frequency distribution compared to
both observed and assimilated data. This discrepancy highlights the inability of the CNTL experiment to
adequately capture high aerosol loading events, whereas OCMDA demonstrates enhanced sensitivity to
aerosol variability. The one to one comparison of OCMDA with MODISDA, which has been evaluated
previously in AIERWISE'329 shows that improvements by OCMDA is comparable with that of MODISDA
(figures from Fig. 1 (f) and Fig. 1 (i)). For instance, enhancement over IGP by OCMDA falls in close range
with that by MODISDA (0.8-1.0).

Additionally, we analyzed the impact of OCMDA on surface PM, 5 concentrations by comparing PM, 5
differences between the OCMDA and CNTL experiments, averaged over 1-14 November 2023 at the
initialization of each forecast cycle (Fig. 3). On average, PM, s concentrations increased by

approximately 35-45 pug m™ 2 over the IGP due to OCM data assimilation. These increments from
OCMDA are generally smaller than those from MODISDA (Fig. 3a) over the IGP region, which is likely due
to the higher observational error associated with OCM. Both are generated within the GSI assimilation
framework, which adjusts the mass concentrations of all aerosol species in GOCART (Goddard Global

Ozone Chemistry Aerosol Radiation and Transport,2'"23) chemistry model based on assimilation-driven
changes in WRF-Chem AOD. This process enhances the initial conditions for more accurate PM, ¢

predictions.

The forecasted 72 hour time series of PM,  concentrations were extracted from the CNTL, MODISDA,
and OCMDA runs at 258 observation sites across 12 states of India. The average hourly PM, 5 values

were then estimated from each of these runs and compared with the hourly mean PM, s observations
across the same sites for the first day of the forecast (Fig. 4). The CNTL simulation consistently
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underestimates PM, 5 concentrations throughout the period, while both the OCMDA and MODISDA
significantly improves agreement with observations. The improvements in OCMDA and MODISDA
highlight the effectiveness of satellite AOD assimilation in enhancing model performance, particularly
during the biomass burning period during the first ten days of November. A sharp decrease in PM, 5
concentration was observed between 10 and 11 November, attributed to rainfall in parts of India.
However, limitations in satellite AOD retrieval during cloud cover affected the dataset. Despite this, both
assimilation runs successfully captured the overall trend of decreasing aerosol concentrations, as
reflected in the observed data on 12 November. MODISDA shows slightly higher PM, = concentrations

compared to OCMDA with the average difference between the two assimilation runs being relatively
small, around 8 pg m™ 3. The impact of assimilation is also analysed for localized events during the
simulation period. For example, a sharp spike in PM, s concentrations was observed in the early morning
of 13 November, following the Diwali celebrations on 12 November, where the observed average PM, ¢

levels reached over 400 pg m™ 3. This increase may be attributed to the use of firecrackers during the
Diwali festival across India, even after the ban on firecracker use is imposed in major Indian cities. The
influence of firecracker usage is evident in the elevated PM, 5 pollution observed in multiple regions.
OCMDA simulations show the tendency to capture this event, although with an underestimation of
approximately 200 ug m™ 3, whereas the CNTL simulation completely missed this episode. Similar
tendency is noticed in MODISDA time series for this event. This underperformance highlights the
localized nature of the event, which presents challenges for capturing such spikes in regional-scale
models. Nevertheless, the assimilation of MODIS and OCM AOD data significantly improves PM, s
predictions compared to the CNTL run.

The performance of all three experimental setups, OCMDA, MODISDA, and CNTL, is systematically
assessed using key statistical metrics: RMSE (ug m-3), MB (ug m-3), and R (Table 1). This evaluation
aims to quantify the impact of OCM-based data assimilation on the accuracy and reliability of air quality
forecasts across multiple regions. Additionally, we have compared the OCMDA experiment with
MODISDA to assess whether OCMDA is comparable in performance. Overall, the application of OCM
data assimilation significantly improved the forecasts compared to the CNTL simulation, demonstrating
notable enhancements in RMSE, MB, and R across the states. These improvements highlight the
effectiveness of assimilating OCM AOD in refining model predictions and reducing biases in simulated
PM, 5 concentrations.

In Bihar, OCMDA significantly reduced both the mean bias (MB) and root mean square error (RMSE)
compared to the control (CNTL) simulation, achieving improvements comparable to those observed with
MODISDA. For instance, on Day 1, the RMSE in the CNTL run was substantially high, but OCMDA reduced
it by nearly 20 ug m=3, which is similar to the reduction achieved by MODISDA. Furthermore, while
OCMDA demonstrated the lowest MB and RMSE among all configurations, its correlation coefficient (R)
was also close to that of MODISDA. However, MODISDA outperformed all other configurations in terms
of R, indicating slightly better spatial-temporal agreement with observations.
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In Delhi, the CNTL simulation consistently underestimated PM, 5 concentrations, particularly during
periods of high pollution. Both OCMDA and MODISDA addressed this underestimation, with OCMDA
showing a slightly better correlation (R = 0.5) on Day 1, indicating its effectiveness in aligning forecasts
with observations.

For Gujarat, OCMDA demonstrated substantial improvements over CNTL, reducing RMSE values for Day
1 from 35.18 yg m=2in CNTL to 21.35 pg m-3, outperforming MODISDA, which achieved 29.84 ug m-3.
Similarly, correlation (R) values improved from 0.51 in CNTL to 0.75 in OCMDA and 0.72 in MODISDA,
reflecting a stronger agreement with observed PM, ; concentrations.

A similar trend was observed in Haryana, where both assimilation experiments significantly improved
RMSE and MB compared to CNTL, although a slight underestimation persisted in both MODISDA and
OCMDA.

For states like Maharashtra (Pune) and Madhya Pradesh, MODISDA slightly outperformed OCMDA in
reducing RMSE on Day 1, although the difference between the two was minimal. In Punjab and
Rajasthan, MODISDA exhibited better performance, particularly in capturing PM, 5 variability during

pollution episodes such as Diwali. However, OCMDA also showed significant improvements, effectively
reducing errors and improving correlation coefficients.

In Rajasthan, Uttar Pradesh, and Punjab both assimilation experiments demonstrated the clear benefits
of data assimilation in enhancing air quality forecasts. OCMDA and MODISDA consistently reduced
RMSE and improved correlation (R) compared to CNTL, indicating a better alignment between forecasts
and observed trends. In Rajasthan, MODISDA significantly outperformed CNTL by correcting its poor
correlation and large RMSE values. Similarly, in Uttar Pradesh, both OCMDA and MODISDA exhibited
substantial improvements, with OCMDA slightly surpassing MODISDA in reducing RMSE for certain days.
Punjab followed a similar pattern, where both assimilation experiments corrected CNTL's large biases
and weak correlations, particularly in the early forecast periods. In Jharkhand, MODISDA significantly
degraded the performance in terms of both MB and RMSE, despite showing relatively strong short-term
forecast skill. Similarly, OCMDA also led to a slight degradation in RMSE; however, it notably improved
the MB, indicating better alignment with observed concentration levels. Moreover, OCMDA achieved a
higher correlation coefficient (R = 0.5446) over extended forecast periods, highlighting its potential to
enhance the temporal evolution of PM,.5 predictions through improved assimilation of OCM aerosol
observations.

Across all states, the Day 1 forecast consistently showed better performance compared to the second
day (Day 2) and third day (Day 3) forecasts, as RMSE values increased and correlation coefficients
slightly decreased with increasing lead time. For example, in Odisha, OCMDA achieved an RMSE of 34.02
pug m=2and R=0.80 for Day 1, while RMSE increased to 36.32 uyg m=2and R=0.78 by Day 2. Similarly, in
West Bengal (Kolkata), OCMDA reduced Day 1 RMSE to 64.08 ug m-3 compared to CNTL’s 87.22 ug m-3,
with R improving to 0.64 from 0.56. To support these statistical evaluations, time series of PM,.;
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concentrations for each state have been plotted and are provided in the supplementary figures (S3 to
S13).

Overall, the comparison between OCMDA and MODISDA confirms that OCMDA is highly effective in
improving PM, : forecasts and, in some cases, performs comparably to or better than MODISDA, further

validating the value of OCM-based data assimilation in air quality modeling.

Thus, the improvements in statistical parameters decrease with increasing forecast lead time. This
indicates that model deficiencies, such as uncertainties in emissions, meteorology, or chemical
processes, begin to offset the benefits of AOD assimilation over time. Unfortunately, data on the vertical
distribution of aerosols and their chemical composition were not available for the study period, limiting
further analysis of how assimilation impacted aerosol distribution. The uncertainty of the OCM sensor,
as calculated by the SAER algorithm, is higher than that of MODIS, indicating relatively larger retrieval
errors in OCM-derived AOD. Additionally, OCM as of now does not provide data over the ocean region. If
such data were available, it would allow for the assimilation of dust plumes originating from the Middle
East and transported over the sea, thereby improving the representation of their impact on regional air
quality. Furthermore, since MODIS fire count data will not be available in the future, having fire count data
from the Oceansat satellite would be a valuable asset for air quality forecasting, ensuring continuity in
fire emissions monitoring and improving model accuracy. Additionally, while the spatial resolution of
OCM data is generally sufficient for broad-scale applications, its finer resolution enhances detailed, city-
centric forecasting. However, its effectiveness may be influenced by temporal frequency and retrieval
accuracy, particularly under challenging atmospheric conditions such as high aerosol loading or cloud
cover. To address these challenges and fully exploit the advantages of OCM data for urban areas, future
research should explore the benefits of integrating OCM data into higher-resolution model
configurations. This advancement could significantly refine our simulation capabilities, enabling more
precise predictions of aerosol dynamics and interactions. By focusing on urban environments, where
aerosol impacts are often most critical, the assimilation of OCM data can lead to improved forecast
accuracy that is vital for effective air quality management in metropolitan areas.

Conclusion

The OCM refers to the Ocean Colour Monitor sensor aboard India's Oceansat-3 satellite, providing AOD at
a high-resolution of 1 km since January 2023. The present study, for the first time, evaluated the
utilization of AOD retrievals of OCM in the chemical data assimilation framework of AIRWISE for
improving PM,. air quality forecasts across India. The study is conducted during 15t-15™ November
2023, keeping the entire India and surrounding region as the study domain. All simulation experiments
provide PM, s forecast three days in advance. For evaluating the impact of OCM AOD assimilation, three
sets of simulation experiments are conducted (i) Without AOD assimilation (CNTL), (2) With OCM AOD
assimilation (OCMDA) and (3) With MODIS AOD assimilation (MODISDA).The research highlights
significant improvements in forecast accuracy during the selected high-pollution period. Assimilating
OCM AOD data significantly enhanced WRF-Chem-simulated AOD, bringing values closer to observations
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(0.8-1.0) compared to the underestimated CNTL range (0.1-0.4). The improvements in OCMDA closely
match those of MODISDA, demonstrating that OCM-based assimilation is as effective as MODIS in
refining aerosol distributions.

The state-wise analysis of Indian states based on ground observations of PM, s revealed significant
reductions in RMSE and MB in PM,.; forecasts underscoring the significance of OCMDA. For example, in
Bihar, the Day 1 RMSE dropped from 62.44 ug/m?2in CNTL to 39.36 pg/m?3 with OCMDA, showcasing the
effectiveness of OCM assimilation. Similarly, in Gujarat, the RMSE for Day 1 forecasts improved from
35.18 yg/m? in CNTL to 21.36 pg/m? with OCMDA. Additionally, correlation coefficients (R) increased
from 0.57 in CNTL to 0.75 in OCMDA, demonstrating a stronger alignment with observed PM,.
concentrations.

Due to assimilation significant reduction in underestimation over Haryana and Punjab, along with a
noticeable sign change in mean bias over Delhi, highlights the role of local emission uncertainties
emphasizing the importance of region-specific emission characterization for improving forecast
accuracy.

The statistical analysis shows that assimilating OCM AOD is equally good as that of MODIS AOD. These
findings confirm that OCM-based AOD assimilation substantially improves air quality forecasts,
performing on par with or even exceeding MODIS-based assimilation in certain regions. This reinforces
the potential of OCM AOD as a reliable data source for enhancing regional air quality predictions through
chemical data assimilation.

Both assimilation experiments successfully captured major pollution events, such as the Diwali-induced
PM.,.5 spike on November 12, 2023, when observed concentrations exceeded 400 pg/mé. This finding
demonstrates the ability of data assimilation to significantly enhance the model’s capability to capture
regional trends in PM,.5 pollution, though localized, short-term events remain challenging.

A key observation is that the benefits of AOD assimilation diminish with increasing forecast lead times,
highlighting the growing influence of model uncertainties over longer time horizons. Moreover, the
MODISDA and OCMDA experiments effectively capture higher frequency distributions beyond 0.5 AOD,
reflecting their enhanced capability to accurately track more intense aerosol events, which are often
missed by the CNTL. To further enhance PM, ¢ predictions, leveraging finer resolution data from the
OCM and assimilating it into a higher-resolution, city-specific model configuration could be particularly
beneficial. Overall, this study underscores the critical role of data assimilation in improving air quality
forecasts, with the OCM sensor emerging as a promising alternative to MODIS. The results validate the
potential of OCM data to ensure the continuity and advancement of air quality forecasting systems in
India, enabling more accurate and actionable predictions for mitigating pollution episodes.
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Figure 1

Spatial distribution of AOD on 10 November 2023 at 0900 UTC. The first column represents the observed
AOD from OCM, AQUA and TERRA swaths (a, d, g). The second column shows the model AOD without
data assimilation (CNTL experiment) (b, e, h). The third column displays the model AOD after data
assimilation: OCMDA experiment (c) MODISDA experiment (f,i).
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Figure 2

Frequency Density of Observed and Modeled AOD at 550 nm retrievals during 1 November to 14
November 2023 at 09 UTC: (a) Comparison of CNTL and MODISDA Outputs against collocated MODIS
AOD Observations. (b) Comparison of CNTL and OCMDA Outputs Against OCM AOD Observations.

-3
(a) APM2 % (ug m'3) MODISDA (b) APMz.s (ug m™) OCMDA

h
h

th
=}

Latitude (°N)
Latitude (°N)

60 70 80 90 60 70 80 90
Longitude (°E) Longitude (°E)

Figure 3

Spatial distribution of PM, s analysis increment due to (a) MODISDA and (b) OCMDA.
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Figure 4

Hourly time series of PM, 5 concentrations for the first-day forecast averaged over 258 observation sites

across 12 states of India from 1 November to 15 November 2023, comparing observations (OBS) with
CNTL, MODISDA, and OCMDA simulations
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