

Supplementary information for

Organization of Historical Oceanic Overturnings on Cross-Sphere Climate Signals

by

Yingjing Jiang¹, Shaoqing Zhang^{1*}, Yang Gao^{2*}, Lixin Wu^{1,3*}, Lv Lu¹, Zikuan Lin¹, Wenju Cai^{1,3}, Deliang Chen^{4,5}, L. Ruby Leung⁶, Bin Wang⁷, Xueshun Shen⁸, Mingkui Li¹, Xiaolin Yu¹, and Xiaopei Lin¹

¹Key Laboratory of Physical Oceanography, Ministry of Education/Frontiers Science Center for Deep Ocean Multispheres and Earth System/College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

²Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao, China

³Laoshan Laboratory, Qingdao, China

⁴Department of Earth System Sciences, Tsinghua University, Beijing, China

⁵Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden

⁶Atmospheric, Climate, & Earth Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA

⁷Department of Atmospheric Sciences and International Pacific Research Center, University of Hawaii at Manoa, Honolulu, HI, USA

⁸The Center of Earth System Modeling and Prediction, CMA, Beijing, China

Contents of this file

Text S1–S3

References S1

Figures S1–S18

Tables S1–S3

28 **Text S1-S3:**

29 **Text S1: Convergent atmospheric and oceanic states in CDA estimates**

30 **a, Convergent atmospheric mean meridional circulation (AMMC) mean states**

31 The AMMC is denoted as the temporal mean atmospheric meridional stream function, which can be
32 expressed following Sun & Zhou [68] and Jiang et al. [30] as:

$$\psi = \frac{2\pi a \cos \phi}{g} \int_0^p \bar{v} dp. \quad (Eq. S1)$$

33 Here, \bar{v} is the zonal average meridional wind, p is the pressure, ϕ is the latitude, g is the gravitational
34 acceleration, and a is the radius of the Earth.

35 In a manner similar to the definition of the GMOC index (see **Methods**), we define the AMMC index as the
36 linear regression coefficient of the monthly AMMC with respect to its temporal mean value obtained from
37 ERA5.

38 **Figure S4** shows the root-mean-square error (RMSE) distributions of AMMC for model simulations and
39 CDA estimates against ERA5. The large errors of model-simulated AMMC are distributed over the tropics and
40 areas lying at 60°–80° S in the Southern Hemisphere (SH). The tropical error of CM2-HIS is larger than that
41 of CESM-HIS, which can be attributed to the coarser resolution of the atmospheric model in CM2. The
42 substantial errors in these regions could potentially affect the accuracy of subsequent analyses related to the
43 AMMC and its interaction with other climate components. The observational constraint greatly reduces the
44 error of the AMMC in both CDA experiments. The improvement in CM2-CDA is larger than that in CESM-
45 CDA. This indicates that observational data play a crucial role in enhancing the accuracy of AMMC estimates,
46 and the greater improvement in CM2-CDA suggests that it may benefit more from the incorporation of
47 observational information as compared with CESM-CDA. The AMMC obtained via CDA is generally
48 consistent with ERA5 (**Fig.S4e&f**), although it is a little weaker at high latitudes.

50 **b, Convergent ocean temperature and salinity estimates**

51 By analyzing the time series of ocean temperature and salinity at different depths (0–500, 500–2000, and
52 2000–5000 m) over the latitude range of 60° S–60° N (as shown in **Fig.S1**), we note that, although systematic
53 differences between CDA estimates (CESM-CDA and CM2-CDA) and the objective analysis product EN4
54 exist, they are much smaller when compared with the differences between model simulations (CESM-HIS and
55 CM2-HIS) and the EN4 product. Moreover, the phases in the variations of CDA-estimated ocean temperature
56 and salinity are highly consistent with EN4.

57 We also present the results of other CDA experiments, namely CESM-CDA0 and CM2-CDA0, which were
58 initialized with different initial conditions on January 01, 1978. These experiments have been evaluated in
59 Jiang et al. [30].

60 Both CDA systems converge from different initial conditions that are produced from different coupled spin-
61 up states (CESM-CDA0 starts from the historical simulation on 01-01-1869 and CM2-CDA0 starts from the
62 previous assimilation on 01-01-1978 from Chang et al. [69]. This convergence indicates that the CDA method
63 possesses a certain robustness in handling different initial setups, which is crucial for obtaining reliable and
64 consistent results in the context of oceanographic studies.

65 Although coherent convergence of upper- and deep-ocean temperature and salinity in CDAs to the EN4
66 observation product occurs, the CDA results are somewhat sensitive to the change in oceanic observing system
67 as the Argo profiles are assimilated (see the period after 2000 in **Fig.S1c-d**). This sensitivity implies that
68 further investigations are needed to understand how the CDA performance might be affected by different
69 configurations of the oceanic observing system, and to develop strategies to mitigate potential uncertainties
70 introduced by such changes.

71 **c, Convergent estimation of atmospheric work exerted on the ocean and oceanic heat fluxes to the**
72 **atmosphere**

73 To gain an understanding of the balance between the atmosphere and ocean achieved through CDA, we
74 conduct an examination of air-sea interaction processes within the CDA framework. To quantitatively assess
75 the atmospheric work exerted on the ocean (W_{A2O}), we utilize the following formula based on Huang et al. [70]:

$$76 \quad W_{A2O} = \tau_x * u^o + \tau_y * v^o, \quad (Eq. S2)$$

77 where, (τ_x, τ_y) are the wind-stress at the sea surface and (u^o, v^o) are the sea surface currents (for verification
78 with “observation”, we use geostrophic currents in this case).

79 **Figure S2** presents the error distributions of W_{A2O} for both model simulations and CDA results in comparison
80 with the observed product, as well as the time series of the global mean W_{A2O} . The observed sea surface wind-
81 stress is obtained from ERA5, while the geostrophic currents are derived from the Archiving, Validation and
82 Interpretation of Satellite Oceanographic data (AVISO). **Figure S2a&b** shows that the errors of model
83 simulations are substantial in low-latitude areas of the North Pacific, areas near 20° S in the Indian Ocean, and
84 ACC areas of the Southern Ocean. The substantial errors in these regions may potentially lead to inaccuracies
85 in subsequent analyses related to air-sea interaction processes and climate model predictions. In addition, the
86 errors are also substantial in the areas of the Kuroshio, Gulf Stream, and near 10° S in the Pacific.

87 The much smaller errors of W_{A2O} obtained via CDA compared with the corresponding model simulation not
88 only indicate its superiority in approximating the actual situation but also suggest that it can provide more
89 reliable estimates for further studies on air-sea interaction dynamics. From the time series of the normalized
90 W_{A2O} , we observe that the error of the CESM is approximately 1 mW/m² larger than that of the CM2. We also
91 note that, in addition to reducing the W_{A2O} bias, CDA substantially corrects the phases of W_{A2O} variability. This
92 correction is of great importance because it can enhance the accuracy of predicting air-sea interaction
93 phenomena based on W_{A2O} .

94 To analyze the oceanic heat flux to the atmosphere, we examine it through the surface turbulent heat flux
95 (HF_{O2A}), which consists of sensible (Q_S) and latent (Q_L) heat fluxes as described by Cronin et al. [71]. The
96 relationship can be expressed as:

97
$$HF_{O2A} = Q_S + Q_L. \quad (Eq. S3)$$

98 **Figure S3** plays a crucial role in illustrating the error distributions and RMSE time series of HF_{O2A} for both
99 model simulations and CDA results in comparison with ERA5. It provides valuable insights into the
100 performance of different models and CDA methods. We observe that large positive and negative values of
101 HF_{O2A} errors are distributed over high latitudes of the North Atlantic and Southern Ocean ACC areas in model
102 simulations (**Fig.S3a&b**). The presence of such large positive and negative values of HF_{O2A} errors in these
103 regions may potentially lead to inaccuracies in predicting the response of the climate system to ocean-
104 atmosphere heat exchange and could affect subsequent analyses related to air-sea interaction dynamics.

105 There are also substantial errors in tropical oceans and areas of the Kuroshio and its extension, where strong
106 air-sea interactions occur [42]. The substantial reduction of heat flux errors by CDA compared with model
107 simulation, especially in high latitudes of the North Atlantic and ACC areas, indicates that CDA can effectively
108 correct inaccuracies in estimating the oceanic heat flux to the atmosphere. This improvement is of great
109 importance because it enhances the reliability of climate models in simulating the heat exchange process
110 between the oceans and atmosphere.

111 From the RMSE time series of HF_{O2A} (**Fig.S3e**), we observe that although the errors of CDAs are substantial
112 reduced compared with those of their corresponding model simulations, they still exhibit consistent variation
113 phases. This consistency implies that CDAs maintain a certain level of stability in estimating the oceanic heat
114 flux to the atmosphere, despite the reduction in error magnitudes.

115 **Text S2: More evaluations of CDA-estimated GMOC mean state and variability**

116 ***a, Convergent upper-ocean circulations in CDA-estimated GMOC***

117 From **Fig.1a-d**, we note that although both CDA estimates generally result in consistent changes in
118 circulation patterns, there are nuanced differences in the GMOC behaviors during the transitions from CESM-
119 HIS to CESM-CDA and from CM2-HIS to CM2-CDA. Specifically, the transport center between 10° and 30°
120 S within the 500–2000 m depth range is more intense in CESM-CDA than in CM2-CDA, by at least 5 Sv.
121 Additionally, the transport associated with the North Atlantic Deep Water (NADW) is somewhat stronger in
122 CM2-CDA than in CESM-CDA in terms of both its central strength and vertical penetration. Moreover, the
123 southward return circulation in the deep ocean is considerably stronger in CM2-CDA than in CESM-CDA,
124 especially for the branch at the equator.

125 To validate ocean current velocities at a depth range of 950–1150 m, we utilize the “observation” data
126 derived from Argo-drift information [34], as shown in **Extend Data Fig.1**. As pointed out by Su et al. [34],
127 there are widespread global discrepancies between modeled and observed mid-depth ocean currents. Here, we
128 observe that, in general, the models underpredict current velocities globally, and this global underestimation
129 may lead to inaccuracies in understanding the overall ocean circulation patterns and related physical processes.
130 The underprediction is especially pronounced over the tropics and mid-latitudes.

131 The ocean current velocity distributions of SODA3 and ORAS5 are similar to that of CDA estimates, while
132 ECCO4 is close to the model simulations, which underestimate the current velocity. From the perspective of
133 average velocity, ECCO4 is too small, while CESM-CDA and CM2-CDA are closest to Argo-drifting compare
134 to ocean reanalysis products. From the distribution of RMSE, CEMS-CDA and CM2-CDA are significantly
135 smaller than SODA3 and ORAS5, especially in the ACC region of the southern hemisphere and between 35°
136 N and 75° N in the northern hemisphere. This finding suggests that the circulation center of the CDA-estimated
137 GMOC, located between 10° and 30° S at a depth range of 500–2000 m, is highly likely to be realistic.

138 ***b, Convergent deep-ocean circulations in CDA-estimated GMOCs***

139 In deep portions of the oceans, current velocities simulated by the models herein are generally small (as
140 shown in **Fig.S5a&b**). Large-value regions are predominantly concentrated along the western boundary of the
141 Atlantic and in the Antarctic Circumpolar Current (ACC) areas, with a maximum velocity reaching 2 cm/s. In
142 contrast, in other regions, the velocities of ocean currents are generally less than 0.5 cm/s.

143 We note that in open deep-ocean regions, such as the Pacific and central South Atlantic, the current velocities
144 of the CESM are larger than those of the CM2, and the CESM provides greater detail. This may be attributed

145 to the fact that the CESM has a slightly higher horizontal and vertical resolution compared with the CM2.

146 The deep-ocean currents estimated by CDA are substantially enhanced globally compared with the model
147 simulations (**Fig.S5c&d**), although the increases in the ACC and WBC areas are relatively small. This accounts
148 for the enhancement of the deep-circulation system of GMOC in CDA estimates.

149 Owing to the lack of observations in deep portions of the oceans below 2000 m, we are unable to determine
150 whether this enhancement aligns with the real-world situation. However, considering the improvement in the
151 1000-m current velocities, balanced atmosphere–ocean coupling system, and constraints on deep-ocean model
152 biases, we infer that the deep-ocean current velocities of CDA approach real-world values.

153 **c, Decomposition of AMOC and IPMOC (Indo-Pacific meridional overturning circulation) of GMOC**

154 The AMOC, being an important component of GMOC, plays a crucial role in both local and global climates
155 [[72](#)]. In **Fig.S6a–d**, the mean states of the AMOC for model simulations and CDA estimates are presented.
156 Meanwhile, in **Fig.S6e–g**, the corresponding versions of ocean reanalysis products are presented. The mean
157 states of the AMOC in CESM-HIS and CM2-HIS exhibit a similar characteristic, featuring northward flows in
158 the upper 1000 m and southward flows in the 1500–3000 m depth range. The intensity of the upper circulation
159 of the AMOC in CESM-HIS is marginally stronger than that in CM2-HIS. In contrast, the strength of the deep
160 southward transport circulation in CM2-HIS is greater than that in CESM-HIS. The CDA process substantially
161 enhances the AMOC, and it also generates a new circulation core at a depth of 1000 m and latitude of 20° S.
162 Consequently, in both the CESM-CDA and CM2-CDA, the AMOC displays a “double-core” northward
163 transport circulation structure, which can be attributed to an enhanced South Atlantic subtropical gyre.

164 From **Fig.S6e–g**, we observe that the features of the AMOC in ocean reanalysis products appear to be
165 intermediate between those of the model simulations (**Fig.S6a&b**) and those of the CDAs (**Fig.S6c&d**).
166 Compared with the model simulations, the AMOCs in ocean reanalysis products exhibit strengthened
167 circulations in the upper 3000 m of the South Atlantic and relatively small southward transport circulations in
168 deep tropical oceans. However, unlike in the CDAs, the strengthened South Atlantic circulations do not form
169 an enclosed circulation core. Meanwhile, the circulation cores associated with the NADW in ocean reanalysis
170 products appear to be similar with those of the model simulations, with the latter cores remaining above 3000
171 m. In contrast, the corresponding CDA counterparts extend below 4000 m.

172 Besides presenting the IPMOCs for model simulations and CDA estimates, we also display the IPMOCs of
173 ocean reanalysis products in **Fig.S6l–n**. Similar to the IPMOCs of the CDA estimates (as shown in **Fig.S6j&k**),
174 the IPMOCs in ocean reanalysis products exhibit negative (southward transport) circulations, particularly in

175 ECCO4 and ORAS5, which are predominant over the area south of 40° N. This supports the hypothesis that
176 the enhanced deep southward transport circulations in CDA-estimated GMOCs (shown in **Fig.1c&d**) primarily
177 come from the data-constrained Indo-Pacific Oceans, and therefore, they are most likely realistic.

178 **d, Coherent CDA-estimated ocean stratification with the observation**

179 Previous studies have suggested that balanced and coherent states of the atmosphere and oceans are crucial
180 for reconstructing the three-dimensional flows and overturning circulations of the oceans through data
181 assimilation [10,30]. Following the evaluation of the AMMC, W_{A2O} , and HF_{O2A} in **Text S1**, we investigate the
182 ocean temperature, salinity, and potential density estimated by CDA herein to clarify the coherence of ocean
183 stratification within our balanced CDA estimates.

184 We compute the RMSE reduction rates of potential density within the CDA framework relative to the ocean
185 reanalysis results (SODA3, ECCO4, and ORAS5), with the latter being verified against the WOA (as depicted
186 in **Fig.S7**). In comparison with the results of ocean reanalysis, the RMSE of potential density in most areas of
187 the two CDAs significantly declines, particularly below 2000 m, with a reduction rate ranging from 60% to
188 80%. This finding indicates that in areas where observational data are scarce in the deep oceans, employing
189 stronger restoration schemes can mitigate deep-ocean model biases and lead to balanced and coherent ocean
190 stratification. In the upper middle ocean (0–2000 m), the CDA-estimated potential density, employing
191 multiscale filtering assimilation, is also improved in many areas, especially when compared with ECCO4 and
192 ORAS5.

193 **e, Observation-convergent geostrophic GMOC mean states in CDA**

194 The geostrophic GMOC displays a general characteristic of positive (northward-transport) circulations in
195 the SH and negative (southward-transport) circulations in the NH, as shown in **Fig.S8**. However, in the SH,
196 although the geostrophic GMOCs in CDA estimates, ocean reanalysis products, and the “observation” are
197 characterized by a large positive circulation with a small negative center in the upper 500 m of the subtropics,
198 the positive circulation in model simulations is much smaller and weaker, and vice versa for the negative
199 circulation. In the NH, although the CDA-estimated geostrophic GMOCs exhibit negative, positive, and
200 negative patterns in the upper 1000 m at low, middle, and high latitudes, respectively, similar to those of ocean
201 reanalysis products and the “observation”, the patterns in model simulations are particularly weak, especially
202 in the tropics within CESM-HIS.

203 The above analyses are substantiated by the distributions of differences between the two model GMOCs,

204 those between the two CDA-estimated GMOCs, and those among the ocean reanalysis products, as depicted
205 in **Fig.S8**. The strong geostrophic transport in the SH may be attributed to the more open nature of the oceans
206 in the SH, while the weaker geostrophic transport in the NH may be attributed to the more complex ocean
207 basin structure in the NH. Owing to common discretization features, such as an approximately 100 km
208 horizontal resolution, free model simulations tend to produce generally similar GMOC patterns. However,
209 these patterns deviate substantially from the real world owing to the approximation of physics and omission
210 of certain scales in the models. Our CDA results with independent models suggest that multiscale data–model
211 incorporation, consisting of deep-ocean bias treatment, can recover the GMOC mean state by a credible degree.

212 **f, Standard deviation (STD) of GMOC**

213 In **Fig.S9**, we show the STD values of the GMOCs for model simulations and various assimilation products.
214 In general, large STD values of the GMOC are predominantly located in the ACC (Antarctic Circumpolar
215 Current residual circulation), tropical, and NADW areas. However, these values are relatively lower in model
216 simulations but much higher in ocean reanalysis products, particularly in the ACC-RC region and tropics of
217 SODA3 and ECCO4.

218 Although the distribution patterns of GMOC STD values for the two CDAs and ORAS5 exhibit a generally
219 similar characteristic, featuring high values in the tropics, deep penetration in the ACC-RC area, and relatively
220 high values at high-latitudes of the NH, the patterns of SODA3 and ECCO4 deviate from this characteristic.
221 Among the seven GMOC STD distributions, which include two model simulations, two CDA estimates, and
222 three ocean reanalysis products, the two CDA estimates exhibit the same distribution centers. However, the
223 values in CM2-CDA are larger than those in CESM-CDA (as can be seen by comparing in **Fig.S9c&d**).

224 We also compare the STD values of AMOCs, as shown in **Fig.S10**. The STD values of model simulations
225 are smaller than those of assimilation results. Both CEMS-HIS and CM2-HIS exhibit a similar structure, in
226 which, the maximum values are located in the North Atlantic at approximately 40° N and a depth of 1000–
227 2000 m. In contrast, the maximum STD values of CESM-CDA and CM2-CDA are located in tropical oceans
228 at a depth of 500–1500 m, comparable with those of the ocean reanalysis products SODA3 and ORAS5.

229 **g, Convergent GMOC variability in CDA estimates**

230 To assess GMOC variability, we calculate the linear regression coefficient between GMOC states at each
231 time slice and their mean state as a GMOC index, measuring the departure of an instant from the mean (see
232 **Methods**). The timeseries of GMOC indices for CESM-HIS, CM2-HIS, CESM-CDA, CM2-CDA and the

233 mean of three reference ocean reanalysis products are displayed in **Extend data Fig.2a**. Model-simulated
234 GMOC timeseries show little correlation (0.04), whereas the CDA-estimated GMOC timeseries are highly
235 correlated (0.59, far above the 99% significance for 960 degrees of freedom, see **Methods**). We first check the
236 volume transports at 47°, 26°, and 16° N in the Atlantic (where long-term observations exist), as shown in
237 **Extend data Fig.2b–d**. The CDA- and reanalysis-estimated transports align well with observations in all three
238 cross-sections, substantially outperforming model simulations and exhibiting correlation above the 99%
239 significance level. All data-constrained estimates fit best at the 26° N RAPID cross-section (compare **Extend**
240 **data Fig.2c** with **Extend data Fig.2b&d**), likely owing to the dominance of large-scale circulations in the
241 mid-latitude Atlantic, which facilitates data constraints. For cross-sections at different latitudes, CDA and
242 ocean reanalyses perform differently. In mid-to-high latitudes, both CDA estimates and ocean reanalyses show
243 comparable quality. However, at low latitudes, CDA substantially outperforms ocean reanalysis products. This
244 suggests that in the tropics, where air-sea interactions are highly active, the coupled data assimilation improves
245 the efficiency of model–data integration, enhancing analysis quality.

246 Given the lack of direct and systematic observations on ocean currents, we evaluate the CDA-estimated
247 GMOC by verifying its geostrophic component (see **Methods**). We further assess the variability of the CDA-
248 estimated GMOCs by verifying their geostrophic components against “observed” geostrophic timeseries
249 derived from an observational dataset (e.g., EN4) [35] using monthly ocean temperature and salinity data.
250 Given that model simulations, CDA estimates, and ocean reanalysis products may have varying compositions
251 of geostrophic and non-geostrophic components, we examine the behavior of geostrophic GMOCs across
252 different timescales (**Extend data Fig.2e–g**). In free model simulations, aside from some correlation in the
253 temporal mean geostrophic distribution with “observations,” as expected, no correlation in variability is
254 observed at any scale. Overall, the CDA constraint greatly improves the capability of model’s geostrophic
255 fitting, particularly in the low-frequency band. However, as timescales shorten, geostrophic fitting becomes
256 more challenging (**Extend data Fig.2g**). At the decadal scale, CDA estimation shows slightly better skill than
257 ocean reanalysis (0.66 vs. 0.64 for 6–10-yr mean correlation). In contrast, ocean reanalysis performs better at
258 the interannual scale (0.51 vs. 0.41 for 1–5-year mean correlation). These differences likely arise from the
259 distinct approaches in information capture: ocean reanalysis relies on specified “observed” atmospheric fluxes,
260 while CDA estimation operates within a coupled model framework, which has more uncertainties in
261 atmospheric fluxes but achieves a greater atmosphere–ocean coupling balance.

262

263 **Text S3: Physical analysis of observation-convergent GMOC variability**

264 ***a, Mechanisms of multiscale processes in maintaining GMOC***

265 The GMOC is the consequence of maintaining an atmosphere–oceans balance. As important components of
266 the Earth system, the oceans and atmosphere interact with each other in multiscale processes (**Extend Data**
267 **Fig.3**). Excluding various dissipation mechanisms, the coupled atmosphere and oceans on Earth can be
268 regarded as a semi-enclosed system [73]. In this system, the atmosphere “stirs” the oceans, while the oceans
269 feed back to the atmosphere with updated boundary conditions that have redistributed thermal properties [74].
270 If the coupled atmosphere–oceans system is reduced to a two-dimensional space in the vertical and meridional
271 directions, the atmosphere and oceans can still be viewed as a pair of zonally-averaged self-constrained
272 counterparts, such as the AMMC [75] and GMOC [1]. The AMMC consists of Hadley, Ferrel, and Polar cells,
273 corresponding to Earth’s surface wind systems, including the trade winds and westerlies, among others
274 (**Extend Data Fig.3a**). Under the joint influences of atmospheric wind stress, Coriolis force, and topography,
275 the oceans ultimately form a complex circulation system (**Extend Data Fig.3b**). Ocean water upwells in the
276 Southern Ocean under wind-driven Ekman effects, and flows northwards to high-latitudes in the Northern
277 Hemisphere (NH), then sinks owing to evaporation and cooling, forming the NADW that continuously
278 transports southwards as the return flow. There are abundant and complex mixing and dissipation processes in
279 the tropics. The variation mechanism of GMOC can be summarized as a three-term balance model [2] (**Extend**
280 **Data Fig.3c**), i.e., the residual between the difference in northern sinking and southern upwelling, subtracting
281 tropical diffusive mixings, drives the change in pycnocline depth anomaly.

282 However, owing to imperfect Earth modeling and observational systems [35,76], a complete picture of the
283 historical AMMC–GMOC mean state and variability has yet to be established. Owing to suboptimal
284 discretization and physical schemes in climate models [77], the three-dimensional motion of ocean water
285 simulated by models is different from that in the real world [78]. Models tend to simulate a pair of AMMC–
286 GMOC structures with different features in their own model spaces [30]. The model GMOC is unable to
287 represent the transport of heat, freshwater, carbon, and nutrients between the hemispheres in the real world.
288 Moreover, measurements of ocean states are very limited [79], usually focusing on the ocean surface [80], or
289 otherwise only available as in-situ temperature and salinity profiles for the subsurface [81]. In this study, we
290 attempt to discover the degree to which a CDA approach can establish the AMMC–GMOC mean state and
291 variability in a coherent and balanced manner of model–data incorporation.

292 We show the mean states of NADW (**Fig.1g–l**), ACC-RC (**Fig. S11**) and tropical diffusive mixing (**Fig. S12**).

293 For NADW, both CDA estimates produce a nearly identical isopycnal structure with the observation while
294 ORAS5 only displays somewhat improvement from free model simulations. For ACC-RC, CDA constraints
295 weaken the northward transport between 65°–45° S and strengthen the southward transport around 45° S at
296 1000–2000 m depth from free model simulations, bringing the CDA ACC-RC mean state closer to the
297 “observation” (**Fig.S11**). Since ocean reanalysis uses “observational” atmospheric fluxes, it is expected that
298 ORAS5 shows the best fit for the mean ACC-RC features. For tropical diffusive mixing (ε_m), while the model
299 simulations appear very weak, especially in CESM, both CDA estimates greatly enhance ε_m in the regions of
300 tropical instability waves, WBCs, and the southern and northern equatorial currents across the Pacific, Atlantic,
301 and Indian basins, bringing the estimates close to the level of high-resolution (25 km) ORAS5 ocean reanalysis
302 (**Fig.S12**).

303 ***b, Decomposition of multiscale GMOC modes***

304 In **Fig.S14a&e**, we present the 1–20-yr band-pass filtered time series of the AMMC and GMOC. Similar to
305 the case of GMOCs in CESM-HIS and CM2-HIS, the time series of AMMCs in CESM-HIS and CM2-HIS are
306 almost uncorrelated, with a correlation coefficient of –0.01. While the variabilities of CESM-CDA and CM2-
307 CDA are highly correlated, with a correlation coefficient of 0.51. On interannual to multidecadal scales, the
308 variability of the CDA-estimated AMMC approximates to the “observed” product derived from ERA5
309 reanalysis. Meanwhile, the variability of the GMOC approximates the mean of the three ocean reanalysis
310 products.

311 In **Fig.S14b–d**, we present the 1–20-yr band-pass filtered time series of the North Atlantic Oscillation (NAO)
312 index, Southern Oscillation Index (SOI), and Southern Annular Mode (SAM) index. Additionally, in
313 **Fig.S14f&h**, we present the 1–20-yr band-pass filtered time series of NADW, ε_m and ACC-RC.

314 The NAO employs a PC-based index, which is the time series of the leading EOF of sea level pressure (SLP)
315 anomalies over the Atlantic sector within the range of 20°–80° N and 90° W–40° E, as defined by Hurrell &
316 Deser [82]. The SOI is a time series that represents the monthly SLP difference between Tahiti and Darwin in
317 the tropical Pacific, as described by Trenberth & Hoar [83]. The SAM also employs a PC-based index, which
318 is the time series of the leading EOF of SLP anomalies over the SH within the range of 40°–65° S, as specified
319 by Marshall [84].

320 Similar to the cases of the AMMC and GMOC mentioned previously, the variabilities of the NAO, SOI,
321 SAM, NADW, ε_m , and ACC-RC in CESM-HIS and CM2-HIS are discrepant. In contrast, those in CESM-
322 CDA and CM2-CDA converge. The NAO, SOI, and SAM estimated by CDA are in line with the ERA5

323 “observational” result. Furthermore, the NADWs of the two CDAs converge to the objective analysis product
324 EN4 on decadal and multidecadal scales. However, the variabilities of the model simulations and ORAS5 are
325 discrepant and deviate substantially from those of EN4. Moreover, the ACC-RCs of the CDAs are highly in
326 line with both EN4 and ORAS5 on the interannual scale, corresponding to the interannual variability of wind
327 stress. It is worth mentioning that the ε_m time series of CESM-CDA and CM2-CDA are essentially consistent
328 after 1978, especially with regard to changes on interdecadal and annual scales.

329 **c, Composite GMOC variability by NADW, ACC-RC and ε_m**

330 We perform EOF analysis on the GMOC stream functions in the regions north of 30° N, between 30° S and
331 30° N, and south of 30° S, which are referred to as GMOCⁿ, GMOC^t, and GMOC^s, respectively. Then, in
332 **Fig.3a-i**, we present the time series of the first PC (PC1) obtained from the EOF decomposition of GMOCⁿ,
333 GMOC^t, and GMOC^s, along with the band-pass filtered NADW, ε_m , and ACC-RC indices for CESM-HIS,
334 CESM-CDA, and ORAS5. The counterparts in CM2-HIS and CM2-CDA are presented in **Extend Data Fig.6**.

335 With the exception of the CESM-HIS case, in all instances of free model simulations and data-constrained
336 products, the PC1s of GMOCⁿ, GMOC^t, and GMOC^s are substantially correlated with the NADW, ε_m , and
337 ACC-RC indices, respectively. The low correlation between the GMOCⁿ of CESM-HIS and NADW may be
338 ascribed to the specific model deficiency in the North Atlantic [41]. This deficiency is largely rectified by the
339 CDA data constraints, as can be seen by comparing **Extend Data Fig.6a&b**. In all data-constrained products,
340 the correlation between the GMOC^s and ACC-RC is highest, while that between the GMOC^t and ε_m is lowest;
341 the correlation between the GMOCⁿ and NADW lies between these two. The mean correlations for the three
342 cases in the data-constrained results, namely between GMOC^s and ACC-RC, between GMOCⁿ and NADW,
343 and between GMOC^t and ε_m , are 0.73, 0.58, and 0.48, respectively. All these correlations far exceed the 99%
344 significance level (which is approximately 0.12).

345 **d, More analysis of GMOC’s fingerprints on historic events**

346 Previous study [43] used a global mean SST (GMSST) residual (GMSSTr) index (a quadratic fit of GMSST
347 is removed) to show the responses of observed GMSST on Mt. Agung (1963), Mt. Chichon (1982) and Mt.
348 Pinatubo (1991) events, three major volcanic eruptions in the second half of the 20th century. They found that
349 the cold GMSSTr anomalies caused by the Agung and Pinatubo volcanic eruptions have a long and profound
350 influence on GMSST since they happen to have occurred at the descending period of a multidecadal GMSST
351 variation. Particularly, the Pinatubo volcanic eruption was the 2nd largest event in the 20th century and the 8th

352 in history [85], and it had even more profound impacts on global climate compared to the Agung volcanic
353 eruption. Nevertheless, the Chichon volcanic eruption occurred in the ascending period of a GMSST decadal
354 variation and it only produced a short period of cold abnormality for GMSST.

355 Following that, we first define the global mean sea surface temperature residual (GMSSTr) to identify the
356 SST's fingerprint on prominent volcanic eruption events. The GMSST is an area-weighted mean of 8-year
357 low-passed SST anomalies between 40°S and 60°N and the GMSSTr is obtained by removing the quadratic fit
358 from the GMSST. Then we define a quantity of North Atlantic SST residual (NASSTr) to examine the
359 relationship of NASST anomaly and NADW. The calculation of NASSTr is the same as that of GMSSTr but
360 for only limited in the Northern Atlantic Ocean over the area of 55°–35° W and 45°–65° N.

361 **Figure S15a** shows the 8-year low-passed GMSSTr of CDA estimates and the observation which is
362 consistent with Liguori et al. [43]. Affected by the volcanic eruptions of Mt. Agung (1963), Mt. Chichon (1982)
363 and Mt. Pinatubo (1991), the global mean sea surface temperature anomaly (SSTA) showed a significant
364 downward trend. This phenomenon shows consistent manifestations in CDA estimates and OBS.

365 **Figure S16** shows the distributions of SSTA during the periods of 1963–1965, 1982–1985 and 1991–1995
366 for CESM-CDA and CM2-CDA. Similar with the observation of ERSSTv5 (Extended Reconstructed Sea
367 Surface Temperature version 5) in **Fig.4a–c**, the global SST cooling produced by the eruption of Mt. Agung
368 (1963) mainly occurred in the Southern Hemisphere. In the high-latitude areas of the North Atlantic, the SSTA
369 shows a positive anomaly. This weakens the cooling and sinking of seawater related to local radiation, reduces
370 the thickness of NADW, and leads to a decrease in the corresponding NADW index. However, the SST cooling
371 caused by the eruptions of Mt. Chichon (1982) and Mt. Pinatubo (1991) is mainly in the Atlantic Ocean and
372 the western Pacific Ocean. In the high-latitude waters of the North Atlantic, there are strong negative anomalies.
373 **Fig.S15b** further confirms the different impacts of the three volcanic eruption events on the high-latitude
374 regions of the North Atlantic. The continuous decrease in the NASSTr of Mt. Chichon (1982) and Mt. Pinatubo
375 (1991) corresponds to the continuous increase in NADW, which reaches its maximum around 1997.

376 **Figure S17** shows the CDA-estimated AMMC anomaly distributions during 1963–1965 and 1991–1995
377 corresponding to Agung and Pinatubo events, respectively. The AMMC anomaly distributions are close to the
378 ERA5 (**Fig.4g&h**). From **Fig.S18**, it can be observed that during the period from 1961 to 1966, the amplitude
379 of the SAM index fluctuated within a wide range. In contrast, between 1980 and 2000, its amplitude is notably
380 small. This variation corresponds to the cooling of the SST in the Southern Ocean during the relevant event.
381 Conversely, the amplitude of the NAO is relatively small from 1961 to 1966 but became considerably larger

382 from 1980 to 2000. Notably, there is a distinct upward trend in the NAO index following the eruptions of
383 Chichon and Pinatubo.

384 **References S1**

385 68. Sun Y, and Zhou TJ. How does El Niño affect the interannual variability of the boreal summer Hadley
386 circulation? *J Clim*, 2014, **27**, 2622–2642. <https://doi.org/10.1175/JCLI-D-13-00277.1>

387 69. Chang Y, Zhang S, Rosati A, Delworth T, and Stern W. An assessment of oceanic variability for 1960–
388 2010 from the GFDL ensemble coupled data assimilation. *Clim Dyn*, 2013, **40**, 775–803.
389 <https://doi.org/10.1007/s00382-012-1412-2>

390 70. Huang RX, Wang W, and Liu LL. Decadal variability of wind-energy input to the world ocean. *Deep*
391 *Sea Res. Part II: Topical Studies in Oceanography*, 2006, **53**(1), 31–41.
392 <https://doi.org/10.1016/j.dsr2.2005.11.001>

393 71. Cronin MF, Gentemann CL, Edson J, et al. Air-sea fluxes with a focus on heat and momentum. *Front*
394 *Mar Sci*, 2019, **6**, 430. doi:10.3389/fmars.2019.00430

395 72. Buckley MW, and Marshall J. Observations, inferences, and mechanisms of Atlantic meridional
396 overturning circulation variability: A review. *Rev Geo*, 2016, **54**, 5–63.
397 <https://doi.org/10.1002/2015RG000493>

398 73. Stommel H. Thermohaline convection with two stable regimes of flow. *Tellus*, 1961, **13**(2), 224–230.
399 <https://doi.org/10.1111/j.2153-3490.1961.tb00079.x>

400 74. Manabe S. Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the
401 Earth's surface. *Mon Wea Rev*, 1969, **97**(11), 739–774. [https://doi.org/10.1175/1520-0493\(1969\)097<0739:CATOC>2.3.CO;2](https://doi.org/10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2)

402 75. Charney JG, and Drazin PG. Propagation of planetary scale disturbances from the lower into the upper
403 atmosphere. *J Geophys Res*, 1961, **66**, 83–109. <https://doi.org/10.1029/JZ066i001p00083>

404 76. Zhang, S., Xu, S., Fu, H., et al. Toward Earth system modeling with resolved clouds and ocean submesoscales
405 on heterogeneous many-core HPCs. *Natl. Sci. Rev.*, 10, nwad069 (2023). <https://doi.org/10.1093/nsr/nwad069>

406 77. Zhang, S. & Rosati, A. An inflated ensemble filter for ocean data assimilation with a biased coupled GCM.
407 *Mon. Wea. Rev.*, 138, 3905–3931 (2010). DOI: 10.1175/2010MWR3326.1

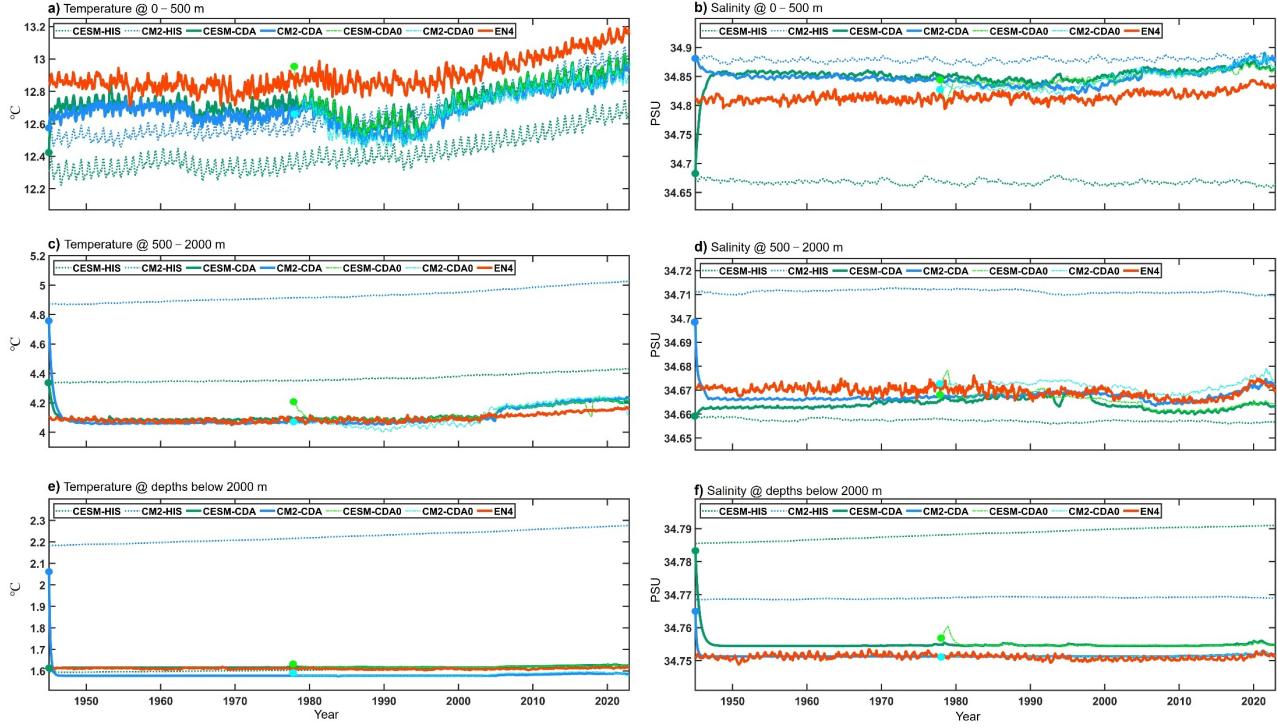
408 78. Griffies SM, Danabasoglu G, Durack PJ, et al. OMIP contribution to CMIP6: experimental and
409 diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. *Geo Mod*
410 *Dev*, 2016, **9**(9), 3231–3296. [https://doi.org/10.1175/1520-0469\(1950\)007<0080:OTWDOC>2.0.CO;2](https://doi.org/10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2)

411 79. Jayne SR, Roemmich D, Zilberman N, Riser SC, Johnson KS, Johnson GC, and Piotrowicz SR. The
412 Argo program: present and future. *Oceanography*, 2017, **30**(3), 18–28.
413 <https://doi.org/10.5670/oceanog.2017.213>

414 80. Donlon CJ, Martin M, Stark J, Robert-Jones J, Fiedler E, and Wimmer W. The operational sea surface
415 temperature and sea ice analysis (OSTIA) system. *Remote Sens Environ*, 2012, **116**, 140–158.
416 <https://doi.org/10.1016/j.rse.2010.10.017>

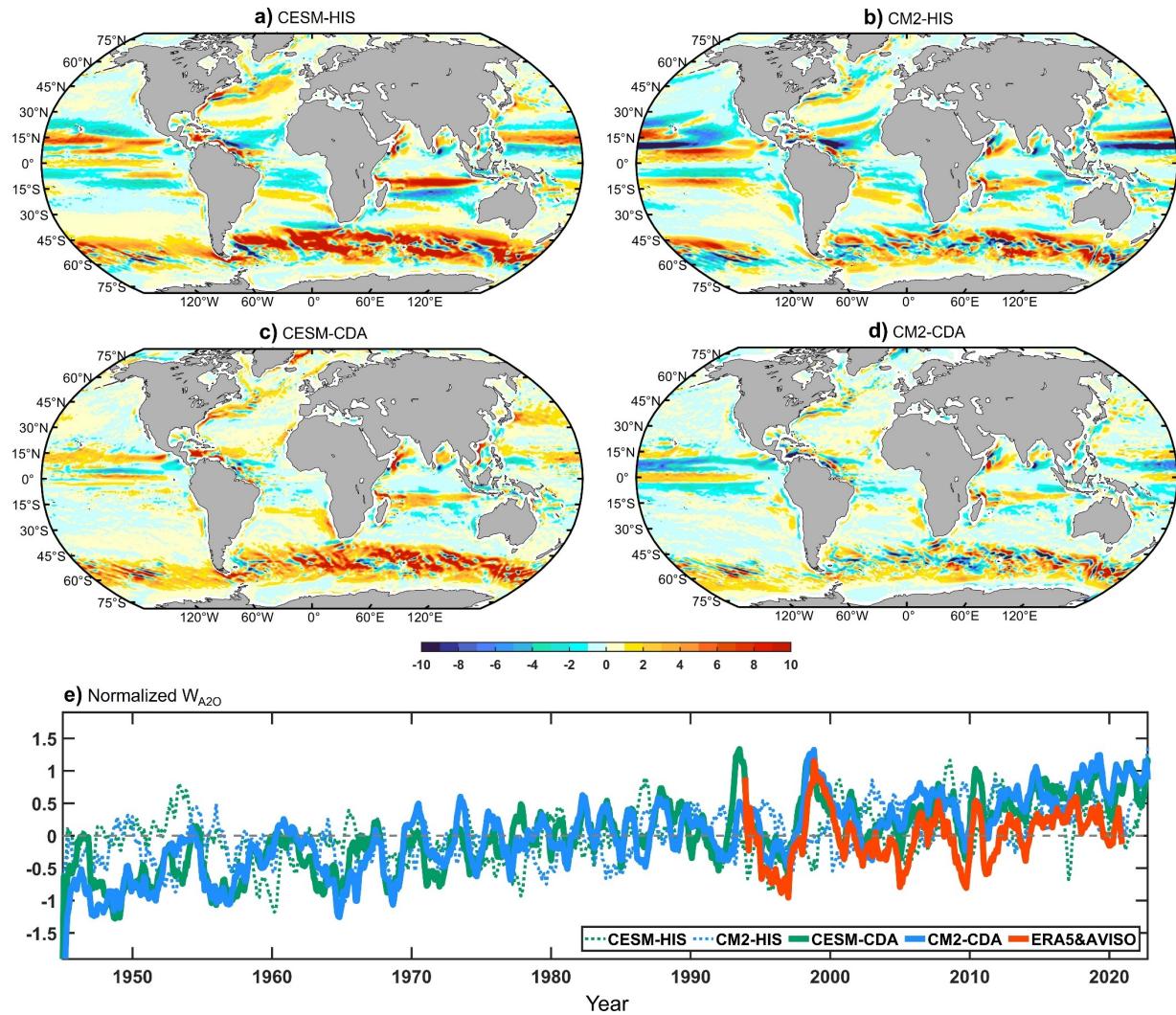
418 81. Abraham JP, Baringer M, Bindoff NL, et al. A review of global ocean temperature observations:
419 Implications for ocean heat content estimates and climate change. *Rev Geo*, 2013, **51**(3), 450–483.
420 <https://doi.org/10.1002/rog.20022>

421 82. Hurrell JW, and Deser C. North Atlantic climate variability: The role of the North Atlantic Oscillation. *J*
422 *Mar Syst*, 2009, **78** (1), 28–41. <https://doi.org/10.1016/j.jmarsys.2009.11.002>

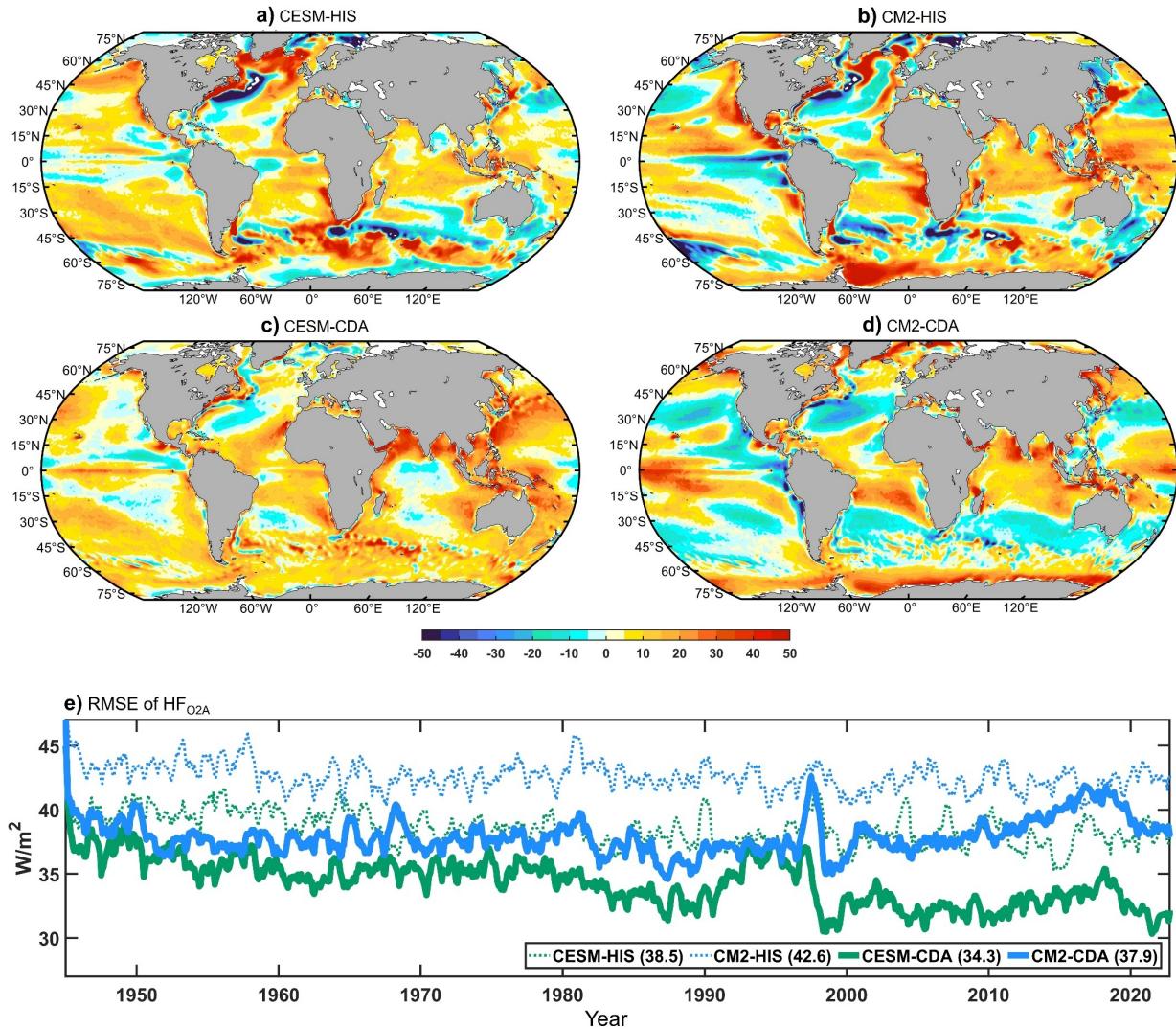

423 83. Trenberth K-E, and Hoar T-J. The 1990-1995 El Nino-Southern Oscillation event longest on record.
424 *Geo Res Lett*, 1996, **23**, 57–60. <https://doi.org/10.1029/95GL03602>

425 84. Marshall GJ. Trends in the Southern Annular Mode from observations and reanalyses. *J Clim*, 2003, **16**,
426 4134–4143. [https://doi.org/10.1175/1520-0442\(2003\)016<4134:TITSAM>2.0.CO;2](https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2)

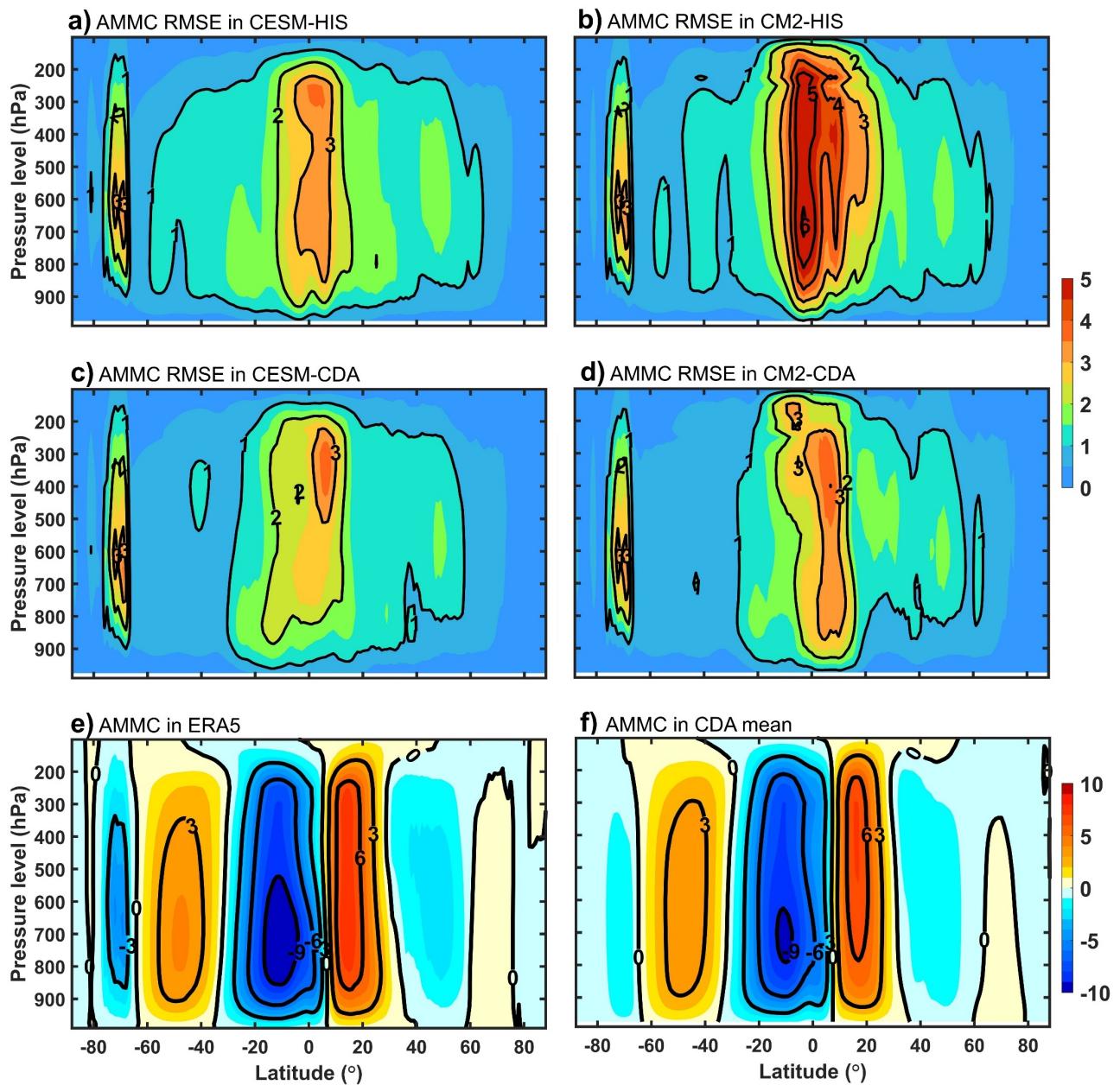
427 85. Ghose, T. The 12 biggest volcanic eruptions in recorded history. Live Science, Future US, Inc. Full 7th
428 Floor, 130 West 42nd Street, New York, NY 10036 (2023). [https://www.livescience.com/planet-](https://www.livescience.com/planet-earth/volcanos/the-12-biggest-volcanic-eruptions-in-recorded-history)
429 [earth/volcanos/the-12-biggest-volcanic-eruptions-in-recorded-history](https://www.livescience.com/planet-earth/volcanos/the-12-biggest-volcanic-eruptions-in-recorded-history).


430

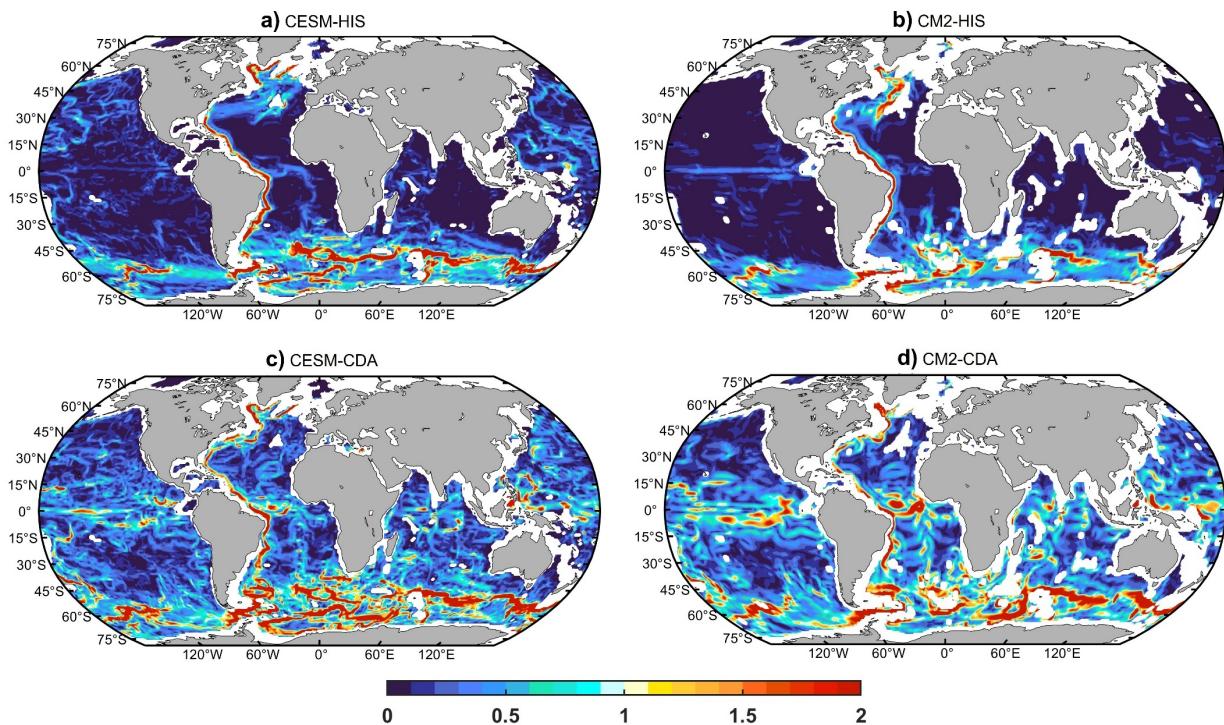
431 **Figs. S1-S18:**


432

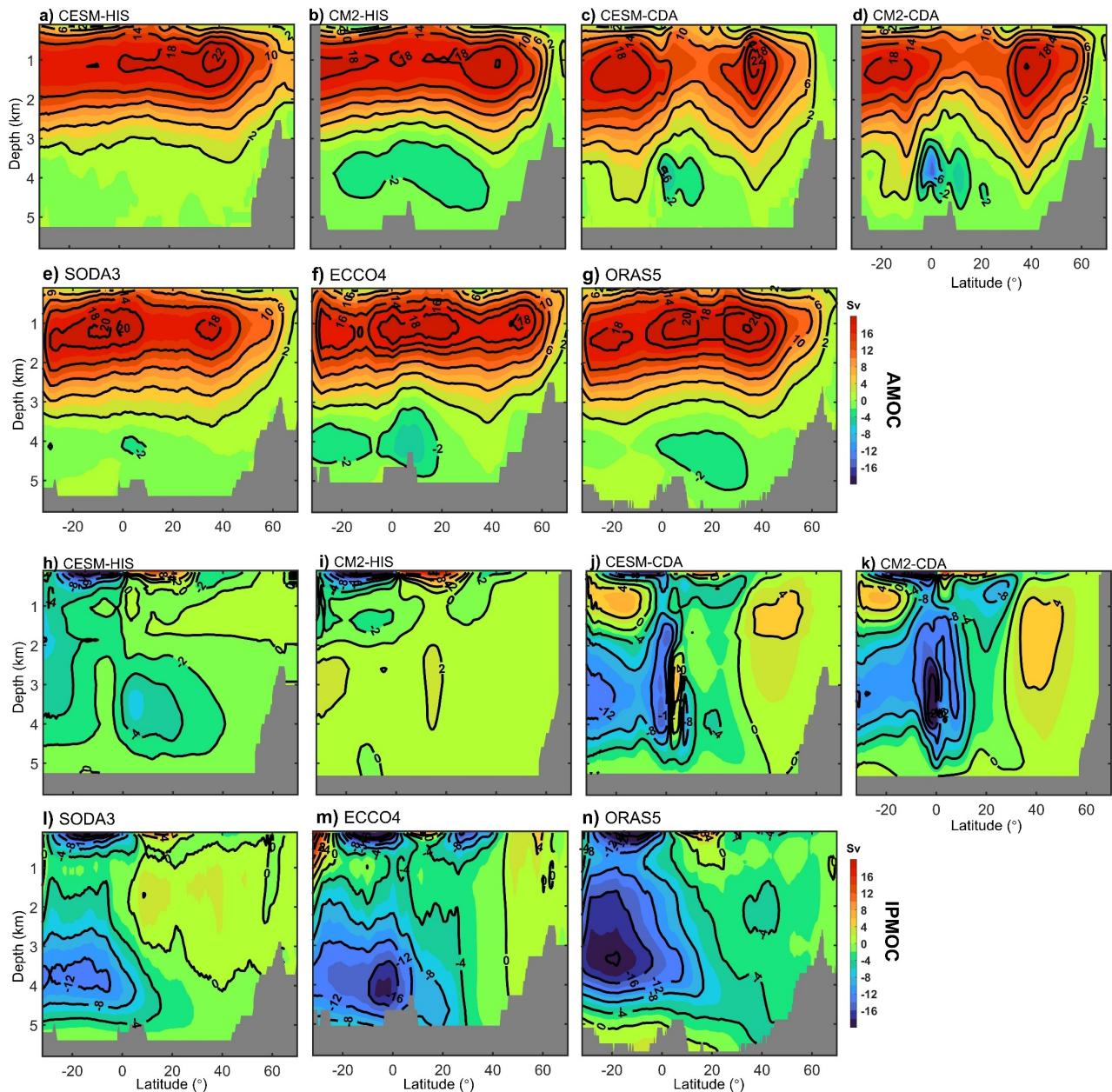
433 **Fig. S1 | Convergent ocean temperature and salinity in coupled data assimilation (CDA) estimates. a–b)** Time
 434 series of a) mean temperature (unit: $^{\circ}\text{C}$) and b) salinity (unit: PSU) over the area 60° S– 60° N at 0–500 m ocean
 435 depth. The dashed light-green and light-blue lines represent other CDA experiments (CESM-CDA0 and CM2-
 436 CDA0) for the period 1978–2022 [30]. The restart initial condition (denoted by a light-green dot) of CESM-CDA0
 437 is the coupled model state at 00:00 UTC on 01-01-1978 of the historical model simulation running from 01-01-
 438 1869. The restart initial condition (denoted by a light-blue dot) of CM2-CDA0 is the previous assimilation coupled
 439 state at 00:00 UTC on 01-01-1978 [69]. c–d) Same as panels a–b but for 500–2000 m ocean depth. e–f) Same as
 440 panels a–b but for the ocean depths below 2000 m.


441

442 **Fig. S2 | Atmospheric work exerted on the oceans (W_{A20}).** a-d) Error distributions of W_{A20} for CESM-HIS,
 443 CM2-HIS, CESM-CDA, and CM2-CDA, respectively, against the observed product derived from ERA5 and AVISO
 444 over the period 1993–2020 (unit: mW/m^2). e) Normalized global mean time series of W_{A20} in CESM-HIS (green
 445 dotted line), CM2-HIS (blue dotted line), CESM-CDA (green solid line), CM2-CDA (blue solid line), and the
 446 observed product (red solid line).


447

448 **Fig. S3 | Convergent oceanic heat flux to the atmosphere (HF_{O2A}) in coupled data assimilation (CDA)**
449 **estimates. a-d)** Error distributions of HF_{O2A} in CESM-HIS, CM2-HIS, CESM-CDA, and CM2-CDA, respectively,
450 verified against ERA5. **e)** Time series of HF_{O2A} root-mean-square error (RMSE) against ERA5 in CESM-HIS (green
451 dotted line), CM2-HIS (blue dotted line), CESM-CDA (green solid line), and CM2-CDA (blue solid line) (unit:
452 W/m²). The average value for each line is indicated in the figure key.


453

454 **Fig. S4 | Convergent atmospheric mean meridional circulation (AMMC) mean state in coupled data**
 455 **assimilation (CDA) estimates. a–d)** Root-mean-square error (RMSE) distributions of AMMC for the model
 456 simulations CESM-HIS and CM2-HIS, and the CDA results CESM-CDA and CM2-CDA, verified against ERA5.
 457 **e–f)** Mean states of AMMC in ERA5 and CDA mean, respectively (unit: 10^{10} kg/s).

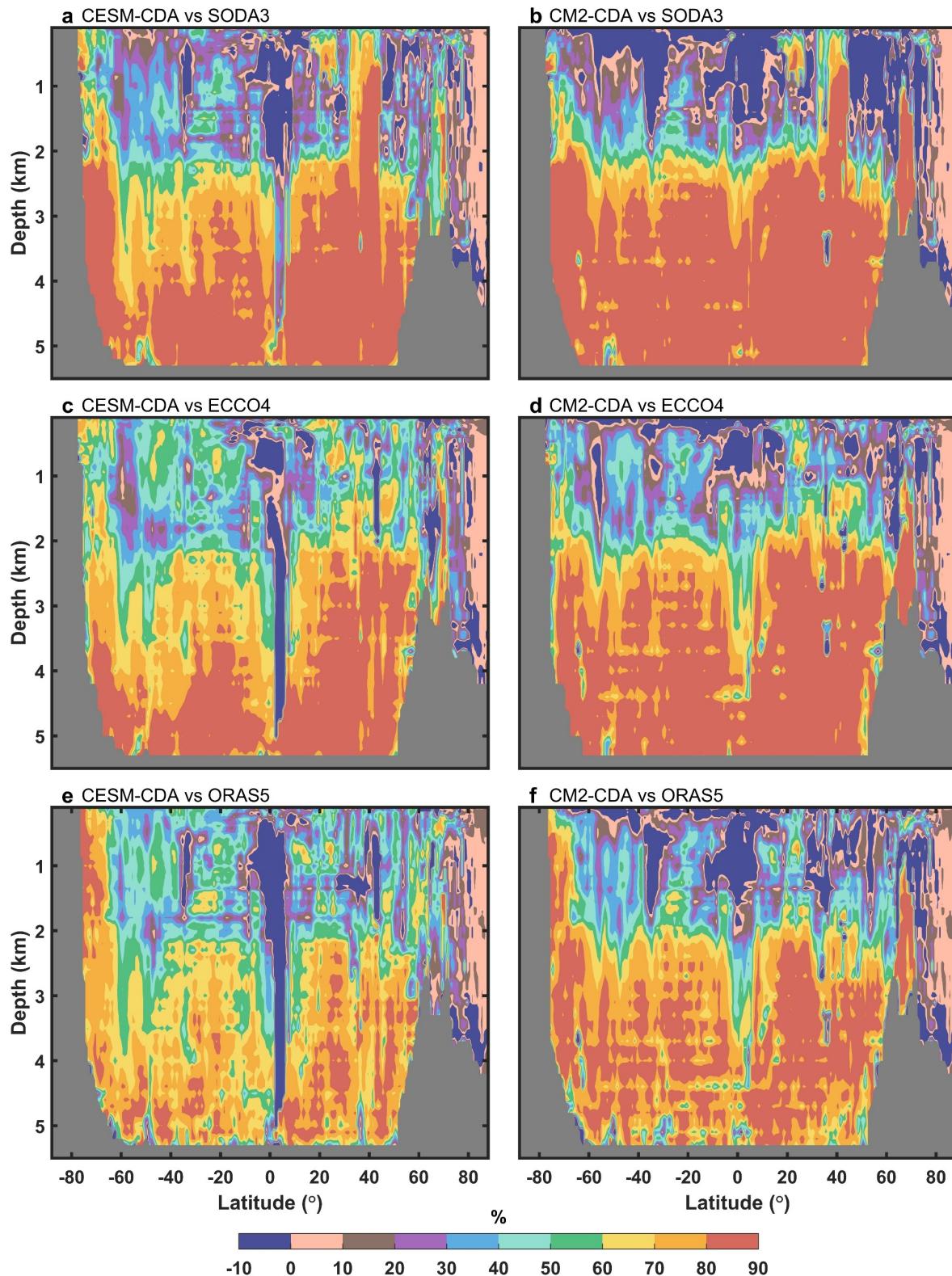

458
459
460
461

Fig. S5 | Convergent deep-ocean current velocities in coupled data assimilation (CDA) estimates. a–d)
Temporal mean distributions of 2500–5000 m ocean current velocities (unit: cm/s) in CESM-HIS, CM2-HIS, CESM-CDA, and CM2-CDA, respectively.

462

463 **Fig. S6 | Convergent Atlantic and Indo-Pacific meridional overturning circulations (AMOC and IPMOC) in**
 464 **coupled data assimilation (CDA) estimates. a–g)** Temporal mean AMOC (unit: Sv) in CESM-HIS, CM2-HIS,
 465 CESM-CDA, CM2-CDA, SODA3, ECCO4, and ORAS5, respectively. **h–n)** Same as a–g) but for IPMOC.

466

467

468

469

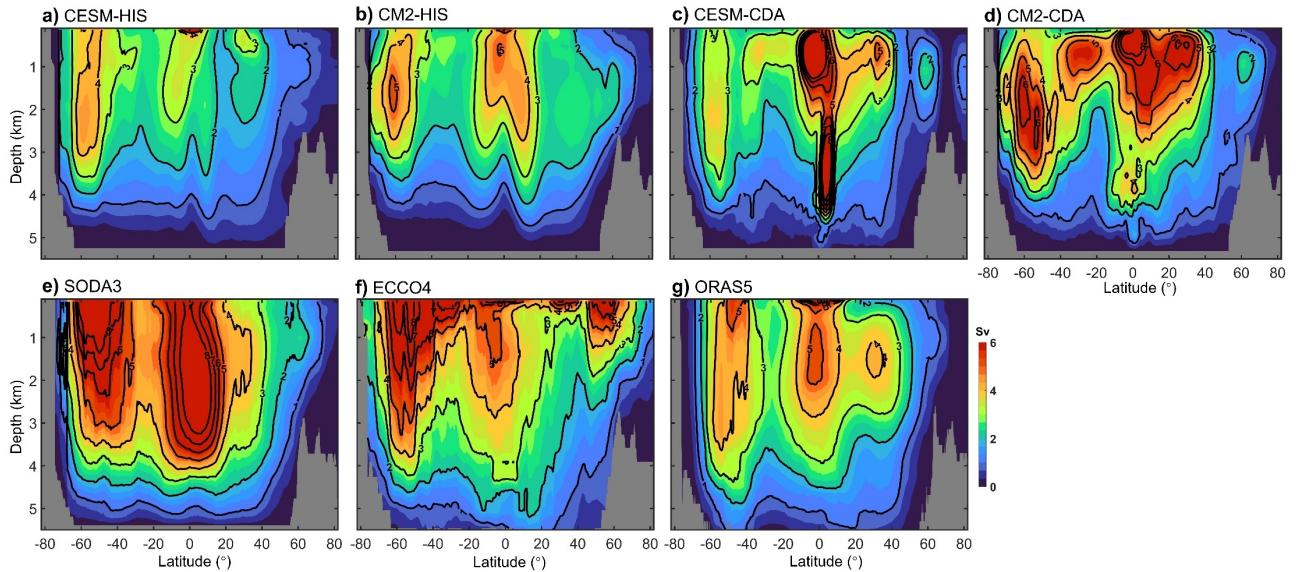

470

Fig. S7 | Coherent ocean stratification in coupled data assimilation (CDA) estimates. **a-f**) Latitudinal distributions of root-mean-square error (RMSE) reduction rates (unit: %) for potential density compared with **a-b**) SODA3, **c-d**) ECCO4, and **e-f**) ORAS5 in CESM-CDA (left panels) and CM2-CDA (right panels), verified against the WOA18.

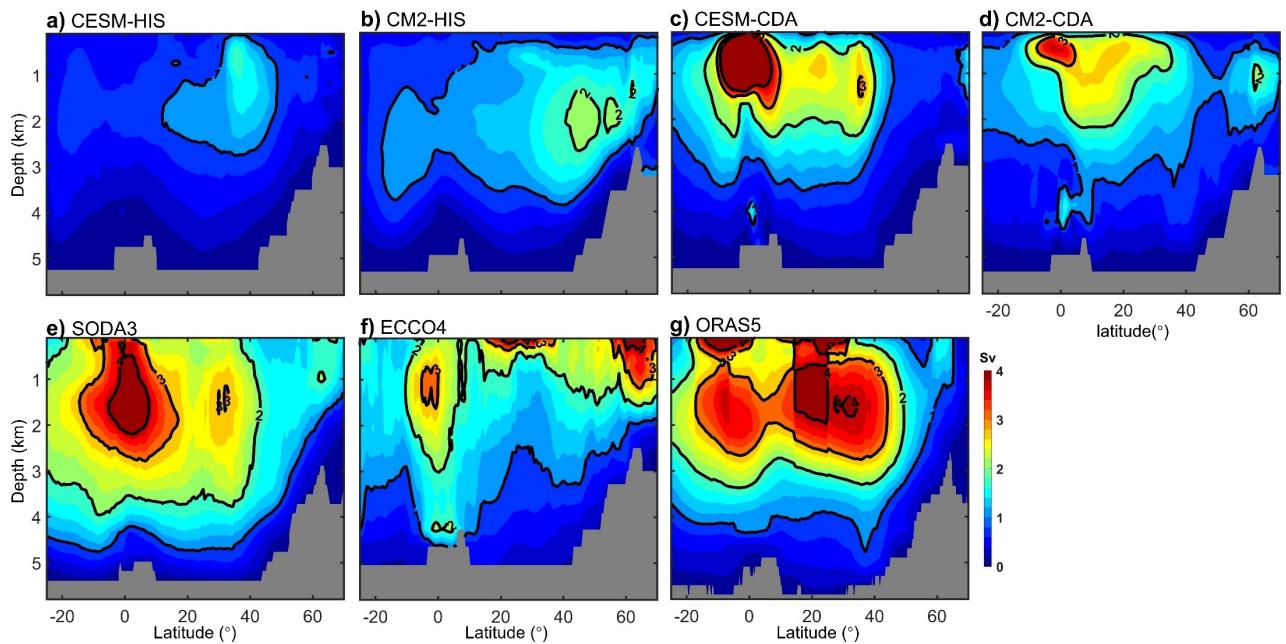
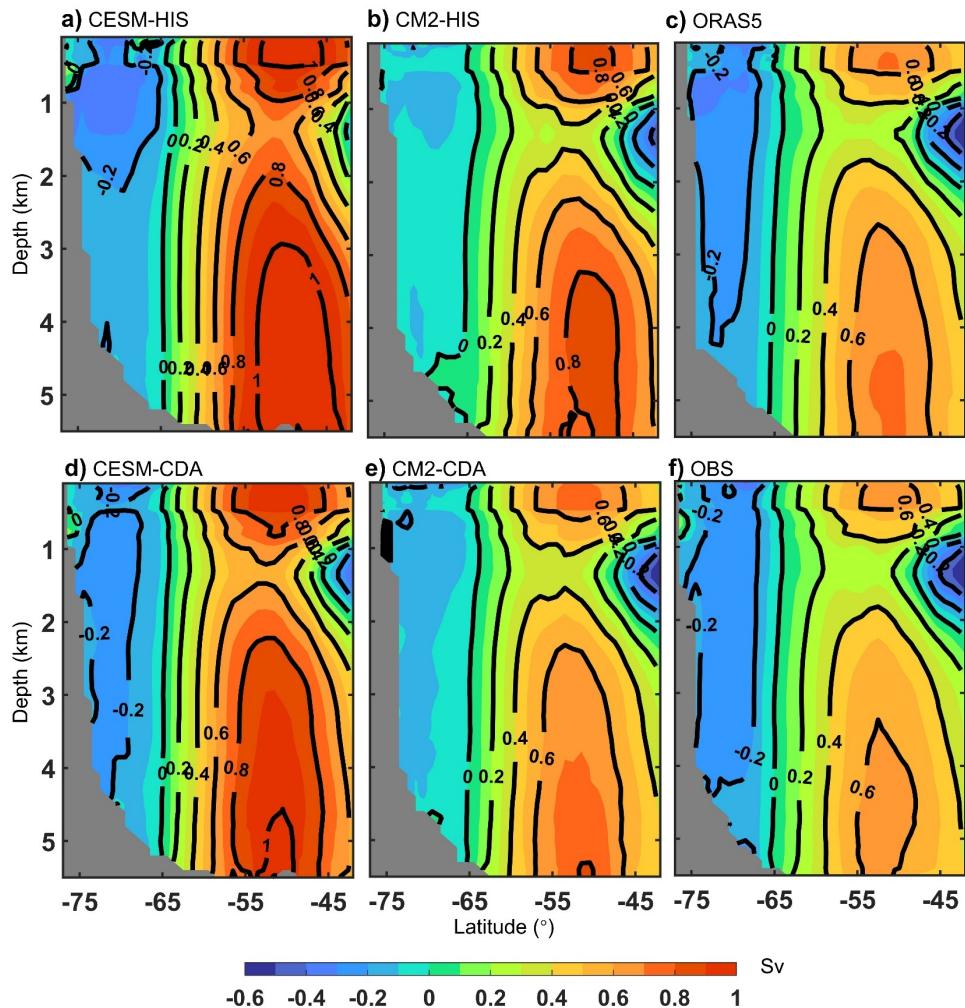
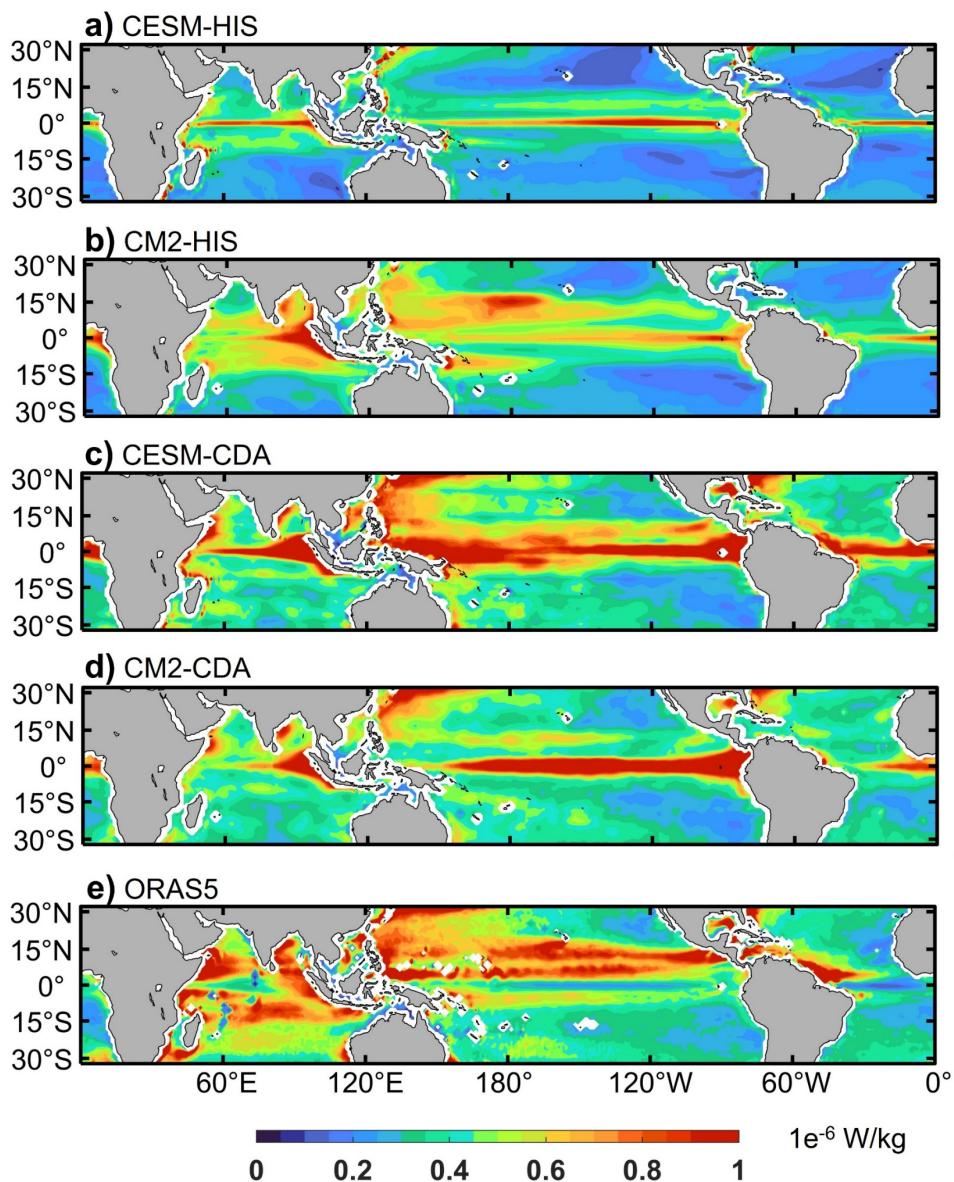

471
472
473
474
475

Fig. S8 | Geostrophic global meridional overturning circulation (GMOC) mean states of model simulations and assimilation products. a–h) Geostrophic GMOC mean states in CESM-HIS, CM2-HIS, CESM-CDA, CM2-CDA, WOA18, SODA3, ECCO4, and ORAS5, respectively.

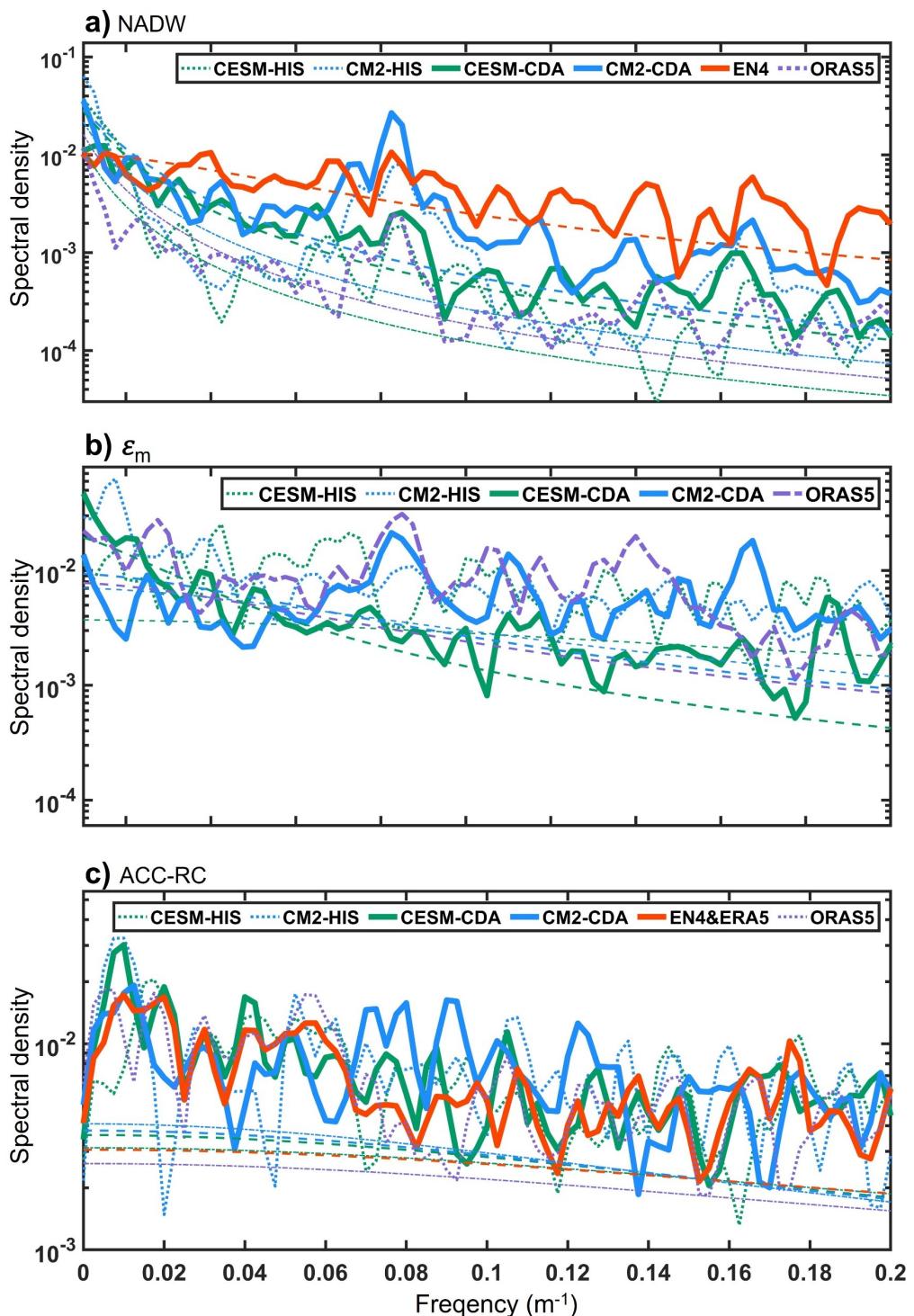

476

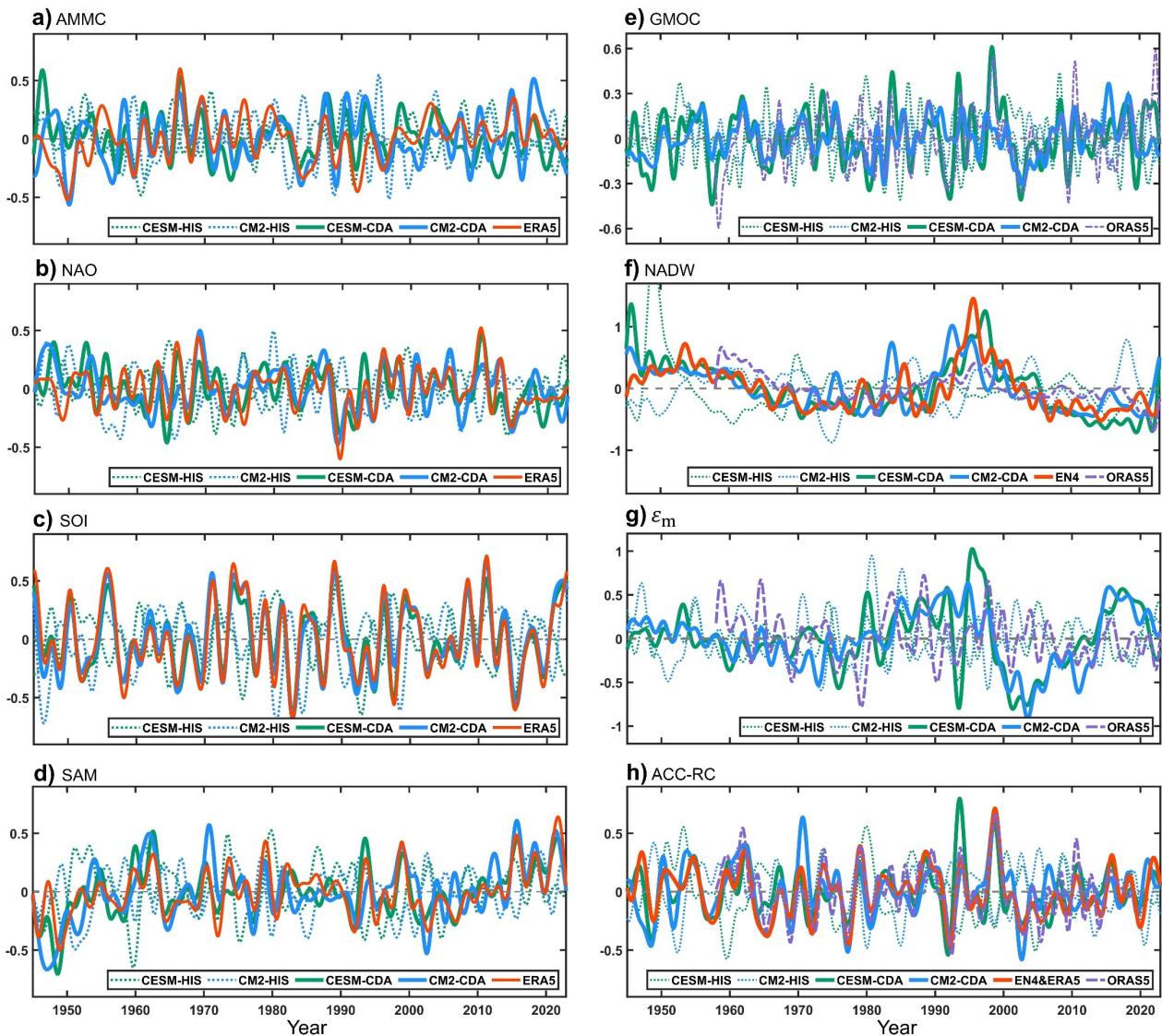
477 **Fig. S9 | Distributions of global meridional overturning circulation (GMOC) standard deviations in model**
 478 **simulations and assimilation products. a–g)** Standard deviations of GMOC stream functions (unit: Sv) in CESM-
 479 HIS, CM2-HIS, CESM-CDA, CM2-CDA, SODA3, ECCO4, and ORAS5, respectively.

480


481 **Fig. S10 | Same as Fig. S9 but for Atlantic meridional overturning circulation (AMOC).**

482


483 **Fig. S11 | Coupled data assimilation (CDA)-estimated Antarctic Circumpolar Current residual circulation**
484 **(ACC-RC). a-f** Mean states of ACC-RC stream functions for **a) CESM-HIS, b) CM2-HIS, c) ORAS5, d) CESM-**

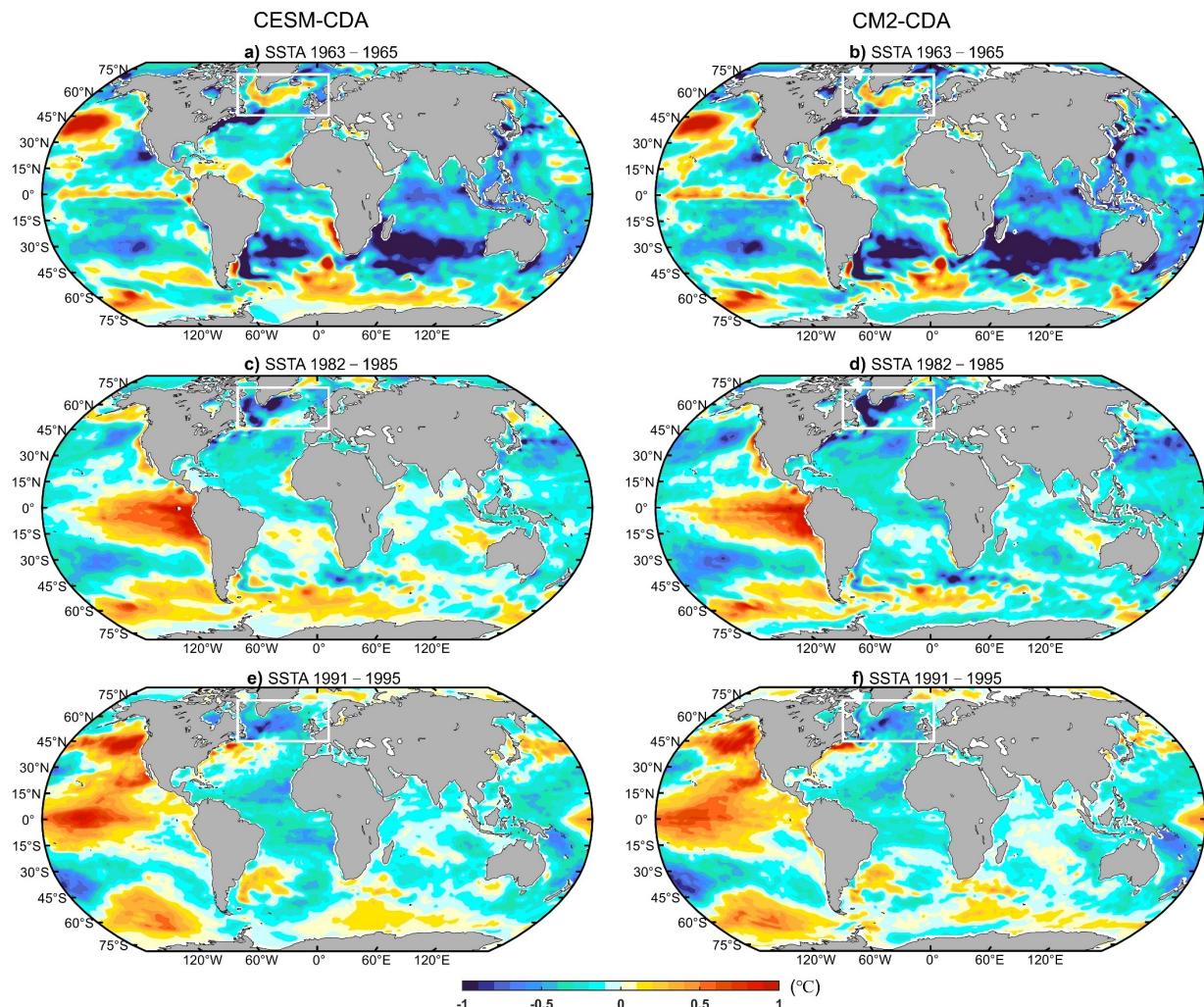

485 **CDA, e) CM2-CDA, and f) observational result (calculated from EN4 and ERA5).**

486
487
488
489

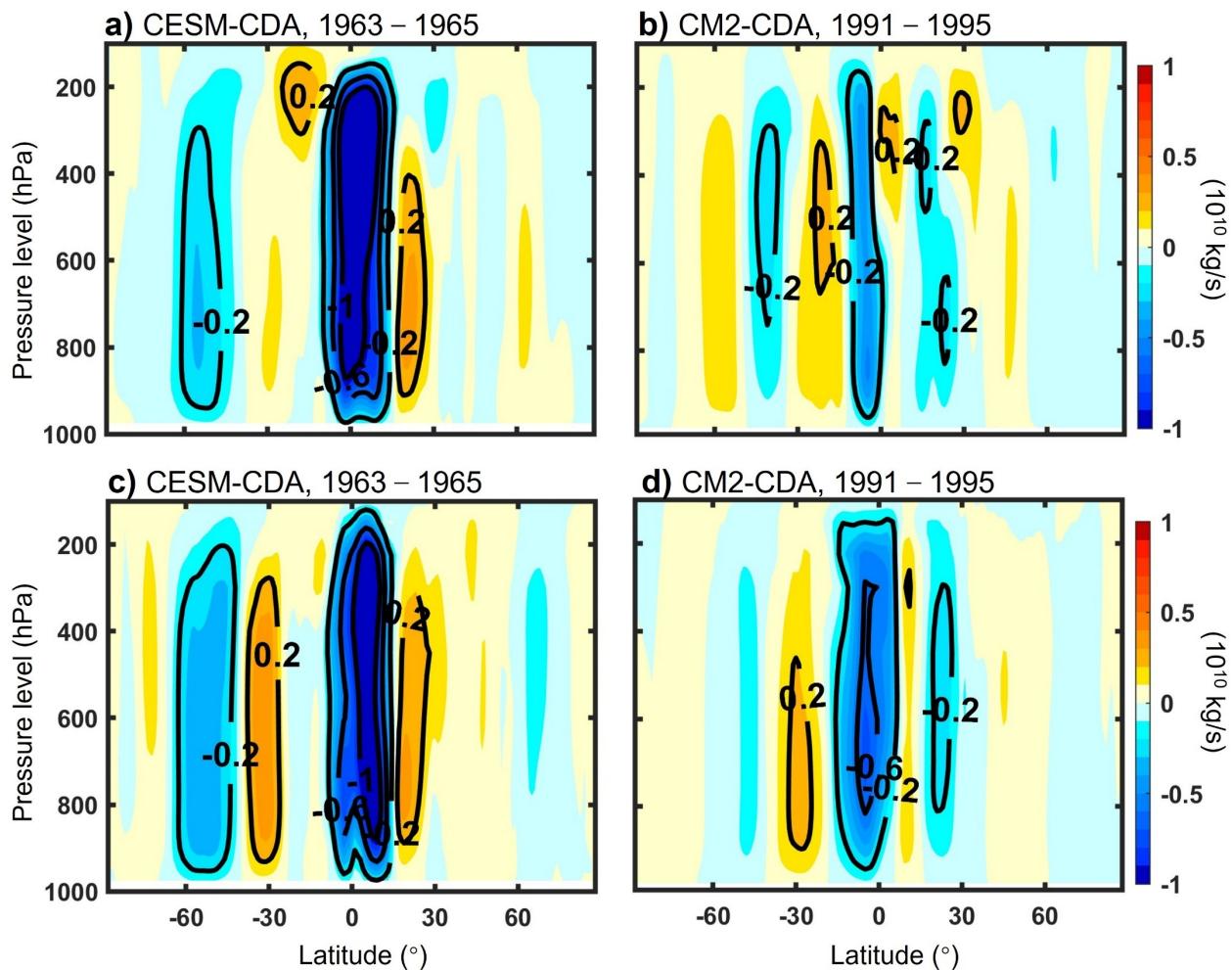
Fig. S12 | Coupled data assimilation (CDA)-estimated tropical diffusive mixing. **a–e**, Temporal mean distributions of tropical (30°S – 30°N) kinetic energy dissipation rate [ϵ_m] (unit: 10^{-6} W/kg) in **a**) CESM-HIS, **b**) CM2-HIS, **c**) CESM-CDA, **d**) CM2-CDA, and **e**) ORAS5 ocean reanalysis.



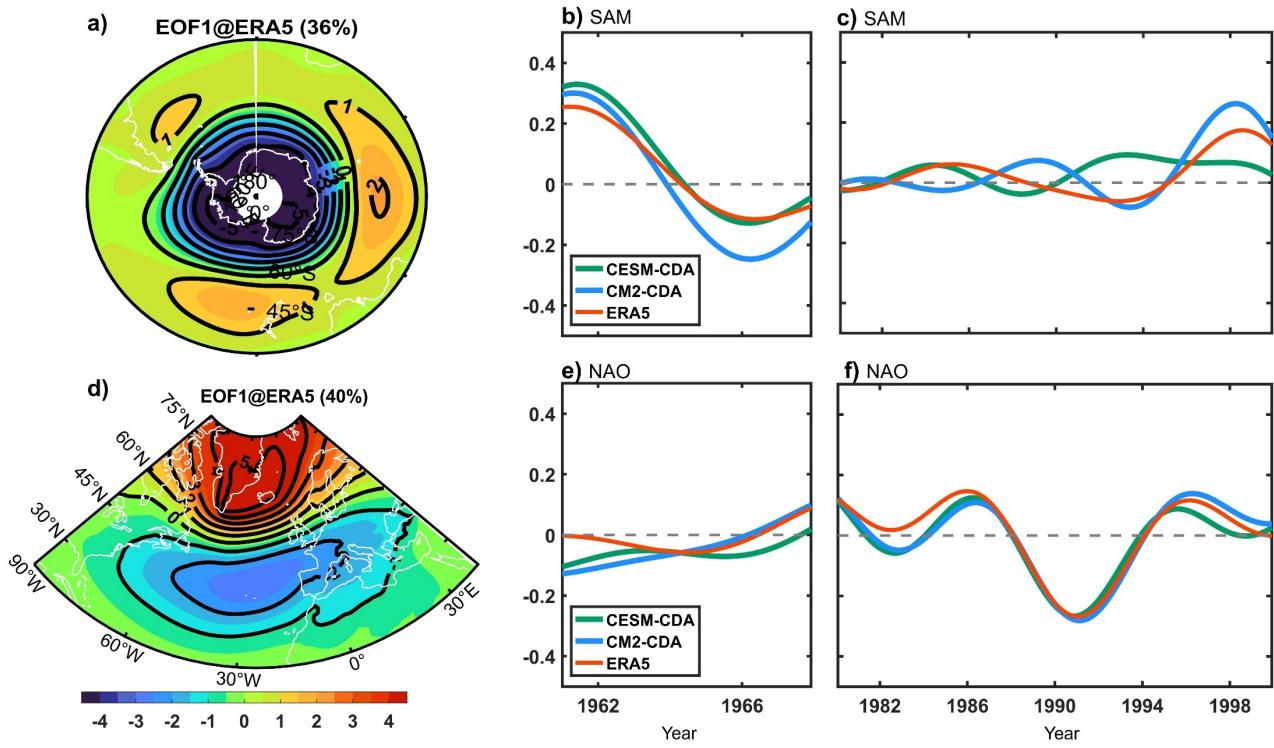
493


494 **Fig. S14 | Convergent variability of various components of atmospheric mean meridional circulation (AMMC)**
495 **and global meridional overturning circulation (GMOC) in coupled data assimilation (CDA) estimates. a-d)**
496 The normalized 1–20-yr band-pass filtered time series of **a) AMMC**, **b) North Atlantic oscillation (NAO)**, **c)**
497 **Southern Oscillation Index (SOI)**, and **d) Southern Annular Mode (SAM)** indices, respectively. **e-h)** The normalized
498 1–20-yr band-pass filtered time series of **e) GMOC**, **f) North Atlantic Deep Water (NADW)**, **g) tropical diffusive**

499 mixing (ϵ_m), and **h) Antarctic Circumpolar Current residual circulation (ACC-RC)**, respectively.


500

501 **Fig. S15 | Decadal variability of global and North Atlantic mean sea surface temperature (SST) anomaly**
 502 **residual (GMSSTr and NASSTr) and North Atlantic Deep Water (NADW) in coupled data assimilation (CDA)**
 503 **estimates.** **a)** Time series of GMSSTr for CDA estimates CESM-CDA (green-solid) and CM2-CDA (blue-solid) as
 504 well as observation (OBS, black-solid) ($^{\circ}\text{C}$). The GMSSTr is obtained by removing the quadratic fit from the
 505 GASST (computed from 8-year low-passed SST). The GMSST is defined as area-weighted mean SST between 40°S
 506 and 60°N and anomalies are relative to the 1980–2010 mean [43]. **b)** Time series of 5–20-yr band-pass filtering
 507 NASSTr for observation (black-solid, $^{\circ}\text{C}$) and 2–20-yr band-pass filtering normalized NADW for CESM-CDA
 508 (green-dash) and CM2-CDA (blue-dash). The NASSTr is obtained by removing the quadratic fit from the NASST,
 509 which is computed from 1-year low-passed SSTA over the area of 55° – 35° W and 45° – 65° N.


510

511 **Fig. S16 | Temperature response after major volcanic events.** a–b) Distribution of sea surface temperature (SST)
 512 anomaly (SSTA) during the period of 1963–1966 for a) CESM-CDA and b) CM2-CDA. c–d) Same as a–b) but for
 513 period 1982–1985. e–f) Same as a–b) but for period 1991–1995.

514

515 **Fig. S17** | Atmospheric meridional mean meridional circulation (AMMC) anomaly distributions during (left panels)
 516 1963–1965 and (right panels) 1991–1995 for **a–b**) CESM-CDA and **c–d**) CM2-CDA.

517

518 **Fig. S18** | **a)** The leading Empirical Orthogonal Function (EOF) of sea level pressure (SLP) anomalies over the
 519 Southern Ocean. **b–c)** Time series of 5–20-yr band-pass filtering Southern Annular Mode (SAM) during periods of
 520 **b)** Mt. Agung (1963), **c)** Mt. Chichon (1982) and Mt. Pinatubo (1991) volcanic eruptions. **d–f)** Same as **a–c)** but for
 521 the Atlantic and the North Atlantic Oscillation (NAO).

522

Table S1. List of acronyms.

Acronym	Full name	Description/Definition/Role in this study
ACC	Antarctic Circumpolar Current	An ocean circulation system around the Antarctic
ACC-RC	Residual circulation of the Antarctic Circumpolar Current system	A circulation to reflect the balance between direct Ekman effects and counteracting influences of eddy-induced transport in ACC.
AM2.1	Atmosphere Model version 2.1	Atmospheric component model of CM2
AMMC	Atmospheric mean meridional circulation	The atmospheric vertical circulation in y-z plane
AMOC	Atlantic meridional overturning circulation	An important branch of ocean meridional overturning circulation in the Atlantic
Argo	Array for real-time geostrophic oceanography	An international program that deploys a global array of free-floating profiling floats to measure upper 2000 ocean temperature and salinity
CAM5	Community Atmosphere Model version 5	Atmospheric component of CESM
CDA	Coupled data assimilation	A data constraint approach using coupled models
CESM	Community Earth System Model developed at the National Center for Atmospheric Research	One of coupled models used in this study as assimilation model
CESM-CDA	CDA system/experiment using CESM	CDA system/experiment by applying multiscale CDA algorithm to CESM
CESM-CDA0	The formal version of CDA experiment using CESM	Experiment evaluated in Jiang et al. (2024)
CESM-HIS	Historical simulation experiment of CESM	CESM control run without data assimilation
CICE4	Community Ice Code version 4	An ice component model of CESM
CLM4	Community Land Model version 4	A land component model of CESM
CM2	The second generation of Coupled Climate Model developed at the Geophysical Fluid Dynamics Laboratory	One of coupled models used in this study as assimilation model
CM2-CDA	CDA system/experiment using CM2	CDA system/experiment by applying multiscale CDA algorithm to CM2
CM2-CDA0	The formal version of CDA experiment using CM2	Experiment evaluated in Jiang et al. (2024)
CM2-HIS	Historical simulation experiment of CM2	CM2 control run without data assimilation
ECCO4	Estimating the Circulation and Climate of the Ocean version 4 release 3	One of 3 ocean reanalysis products used in this study as references
EN4	Version 4 of global ocean objective analysis dataset of observations combining from two European Union projects: ENACT (Enhanced Ocean Data Assimilation and Climate Prediction; http://www.ecmwf.int/research/EU_projects/ENACT/index.html) and ENSEMBLES (http://ensembles-eu.metoffice.com/index.html).	The subsurface temperature and salinity observation dataset used in this study to evaluate CDA results
EOF	Empirical Orthogonal Function	An analysis method; Each EOF represents a spatial pattern.
ECMWF	European Centre for Medium-Range Weather Forecasts	An institution on numerical weather and climate prediction
ERA5	The fifth-generation ECMWF reanalysis starting from 1940	Atmospheric reanalysis products used for CDA's atmosphere "observation" and validation in this study

ERSSTv5	Extended Reconstructed SST version 5	SST observation product used to evaluate GMSSTr and NASSTr
GFDL	Geophysical Fluid Dynamics Laboratory	The institution of NOAA, who developed the CM2 model
GMOC	Global ocean meridional overturning circulation	The main theme in this study
MOC ⁿ	The northern component of GMOC	The first Principal Component (PC1) of GMOC stream functions over the region north of 30°S
MOC ^s	The southern component of GMOC	The PC1 of GMOC stream functions over the region south of 30°S
MOC ^t	The tropical component of GMOC	The PC1 of GMOC stream functions over the region 30° S–30° N
GMSST	Global mean SST	An index of observed global mean SST
GMSSTr	Global mean SST residual	An index used to show the responses of observed SST on major volcanic eruptions
HadISST	Hadley Centre Sea Ice and Sea Surface Temperature Dataset	SST observation product used for CDA in this study
HF02A	Oceanic heat flux to the atmosphere	Feedback of the ocean to the atmosphere
IPCC	Intergovernmental Panel on Climate Change	An international organization created in response to the growing concern about human-induced climate change
IPMOC	Indo-Pacific meridional overturning circulation	The stream function of ocean meridional overturning circulation for the Indian Ocean and Pacific Ocean
LM2.1	Land Model version 2.1	A land component model of CM2
MOM4	Modular Ocean Model version 4	An ocean component model of CM2
MOVE	Meridional Overturning Variability Experiment	Volume transport data mooring observations at 16° N in the western Atlantic
NADW	North Atlantic Deep Water	The NADW index is defined as the average thickness between two isopycnals of $\sigma_{1.5}$ over the North Atlantic, see Materials and Methods b3 .
NAO	North Atlantic Oscillation	A time series of the leading EOF of SLP anomalies over the Atlantic sector, 20°–80° N, 90° W–40° E
NAOC	The North Atlantic Changes	Volume transport data mooring observations at 47° N in the western Atlantic
NASSTr	North Atlantic SST residual	An index used to show the responses of observed SST over Northern Atlantic on major volcanic eruptions
NCAR	National Center for Atmospheric Research	The institution develops CESM model
NH	Northern Hemisphere	One half of the Earth in north of the equator
NOAA	National Oceanic and Atmospheric Administration	An agent of US federal government
OISST	Optimum Interpolation Sea Surface Temperature Dataset	SST observation product used for CDA in this study
ORAS5	Ocean Reanalysis System 5	Ocean reanalysis product as reference in this study
PC	Principal component, referred as PC1 (first), PC2 (second) etc.	The temporal evolution associated with each EOF
POP2	Parallel Ocean Program version 2	An ocean model component of CESM
Ps	Surface pressure	A basic variable of atmosphere state
RAPID	Rapid Climate Change: Meridional Overturning Circulation and Heatflux Array	A collaborative research project for measuring transport at 26.5°N in the Atlantic

RCP45	Representative Concentration Pathway 4.5	A medium-emission scenario, in which the radiative forcing level stabilizes at around 4.5 W/m ² by 2100.
RMSE	Root mean square error	A measure of quantifying the differences between the estimated values and actual observed values
SAM	Southern Annular Mode	The principal mode of variability in the SH extra-tropics, describing ~30% of SH variability
SH	Southern Hemisphere	One half of the Earth in south of the equator
SLP	Sea level pressure	A basic variable of atmosphere state
SODA3	Simple Ocean Data Assimilation version 3.4.2	Ocean reanalysis product as reference in this study
SOI	Southern Oscillation Index	An index used to characterize the large scale SLP patterns in the tropical Pacific
SST	Sea Surface Temperature	A basic variable of ocean state
STD	Standard deviation	The dispersion of data relative to the mean
W _{A20}	Atmospheric work exerted on the ocean	An important variable in atmosphere-ocean coupling process
WBCs	West boundary currents	An important ocean currents system
WOA	World Ocean Atlas	Ocean temperature and salinity observational climatology used for deep ocean restoring in CDA and validation of CDA results
ε_m	Kinetic energy dissipation rate	The diagnosed tropical diffusive mixing effects
$\sigma_{1.5}$	The potential density referenced to a depth of 1500 m	The isopycnals used to define NADW

525

526

Table S2. Description of reanalysis experiments.

Experiment	Model information	Data constraint	Period
CESM-HIS	NCAR-CESM1.3 Atmospheric component: CAM5 $1^\circ \times 1^\circ$, 26 layers	1945–2006: historical radiative forcing 2007–present: RCP45 scenario	1945–present
CESM-CDA	Oceanic component: POP2 $1^\circ \times 1^\circ$, 60 layers	Gridded surface pressure (Ps) from ERA5, gridded SST from HadISST and OISST, in-situ temperature and salinity profiles, restoring to World Ocean Atlas 2018 (WOA18) in deep ocean Radiative forcing is the same as CESM-HIS.	
CM2-HIS	GFDL-CM2.1 Atmospheric component: AM2.1 $2^\circ \times 2.5^\circ$, 24 layers	Same as CESM-HIS	
CM2-CDA	Oceanic component: MOM4 $1^\circ \times 1^\circ$, 50 layers	Same as CESM-CDA	

527

528

Table S3. Information of reanalysis products.

Reanalysis	Ocean model	Resolution	Forcing	Period
SODA3.4.2	Modular Ocean Model	$0.5^\circ \times 0.5^\circ$ 50 layers		1980– 2019
ECCOv4r3	Massachusetts Institute of Technology General Circulation Model	$0.5^\circ \times 0.5^\circ$ 50 layers	ERA-interim	1992– 2015
ORAS5	Nucleus for European Modelling of the Ocean	$0.25^\circ \times 0.25^\circ$ 75 layers		1958– present