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Supplementary Figure 1: Spatial distribution of changes in European summer heatwave 
(EuSHW) intensity under global warming levels. Regression coefficients for the period 
2014-2100 and forSSP2-4.5 and SSP5-8.5 scenarios between global mean temperature 
anomalies relative to 1850-1880 and; a) the forced signal (i.e., ensemble mean) of non-
detrended EuSHW cumulative heat for ACCESS-ESM-1.5; b) the range (i.e., ensemble 
spread computed as ensemble standard deviation) of non-detrended EuSHW cumulative heat 
due to internal variability for ACCESS-ESM-1.5; c,d) same as a,b) but for CanESM5; e,f) 
same as a,b) but for MIROC6; g,h) same as a,b) but for MPI-GE CMIP6. The non-dashed 
regions show significant changes at the 95th confidence level.



Supplementary Figure 2: Spatial distribution of changes in European summer heatwave 
(EuSHW) intensity due to forced changes in internal variability under global warming levels. 
Regression coefficients for the period 2014- 2100 and for SSP2-4.5 and SSP5-8.5 scenarios 
between global mean temperature anomalies relative to 1850-1880 and; a) the forced signal (i.e., 
ensemble mean) of detrended EuSHW cumulative heat for ACCESS-ESM-1.5; b) the range (i.e., 
ensemble spread computed as ensemble standard deviation) of detrended EuSHW cumulative heat 
due to internal variability for ACCESS-ESM-1.5; c,d) same as a,b) but for CanESM5; e,f) same as 
a,b) but for MIROC6; g,h) same as a,b) but for MPI-GE CMIP6. The non-dashed regions show 
significant changes at the 95th confidence level.



Supplementary Figure 3: Spatial distribution of the forced signal of summer daily maximum 2m 
air temperatures (T2max) under global warming levels. Regression coefficients between global 
mean temperature anomalies relative to 1850-1880 and; a) the forced signal (i.e., ensemble mean) 
of 90th percentile summer (June, July, August) T2max for ACCESS-ESM-1.5;  b) the forced signal 
(i.e., ensemble mean) of mean summer (June, July, August) T2max for ACCESS-ESM-1.5; c) the 
difference between a) and b); d-f) same as a-c) but for CanESM5; g-i) same as a-c) but for 
MIROC6; j-l) same as a-c) but for MPI-GE CMIP6.



Supplementary Figure 4: Spatial distribution of extreme summer temperature variability changes 
under global warming levels. Regression coefficients between global mean temperature anomalies 
relative to 1850-1880 and the range (i.e. ensemble spread computed as ensemble standard 
deviation) of  90th percentile summer (June, July, August) daily maximum 2m air temperatures for; 
a) ACCESS-ESM-1.5; b) CanESM5; c) MIROC6; d) MPI-GE CMIP6.



Supplementary Figure 5: Spatial distribution of changes in soil moisture under global warming 
levels. Regression coefficients between global mean temperature anomalies relative to 1850-1880 
and; a) the forced signal (i.e., ensemble mean) of summer (June, July, August) mean soil moisture; 
b) the range (i.e., ensemble standard deviation) of summer mean soil moisture for ACCESS-ESM-
1.5; c,d) same as a,b) but for CanESM5; e,f) same as a,b) but for MIROC6; g,h) same as a,b) but 
for MPI-GE CMIP6. The non-dashed regions show significant changes at the 95th confidence level.


