Supplemental Material for ‘FLASH-MM: fast and scalable single-cell
differential expression analysis using linear mixed-effects models’
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1 Linear mixed-effects models

In this section, we first describe the linear mixed-effects model (LMM) and then introduce the methods for
the LMM parameter estimation, hypothesis testing, prediction of random effects, and gradient algorithms
for computing the LMM variance components, see Searle, Casella, and McCulloch (2006), Jiang (2007) and
references therein for details.

A linear mixed-effects model (LMM) is an extension of general linear model, which contains both fixed effects
and random effects as expressed below (Searle, Casella, and McCulloch 2006)

y=XB+Zb+e, (1)

where y is an n x 1 vector of observations, X is an n x p design matrix for fixed effects 8, Z is an n X ¢
design matrix for random effects b, and € is an n x 1 vector of residual errors. The term of random effects
may be a combination of various random-effect components:

Zb=Z1by + -+ Zkbk,

where Z = [Z1,...,Zk], b= [bT,...,bE]T, K is the number of random-effect components, Zj, is an n x gy
design matrix for the k-th random-effect component, and ZkK:1 qx = q. The superscript T denotes a transpose
of vector or matrix. The basic assumptions are as follows:

(1) The design matrix X is of full rank, satisfying conditions of estimability for the parameters.

(2) The random vectors by, and € are independent and follow a normal distribution, by ~ N (0,021, ) and
€ ~ N(0,0%1I,), where U,% and o2 are unknown parameters, called variance components, 0 is a vector or
matrix of zero elements, and I,, is an n X n identity matrix.

Assumption (1) implies p < n. We also assume g < n. If ¢ > n, we can use principal component analysis
(PCA) to obtain an equivalent LMM with the number of random effects less than n, as described late by (45).



Hartley and Rao (1967) specified the LMM (1) as mixed analysis of variance (ANOVA) models. Harville (1977)
introduced the general linear mixed-effects models with covariance matrices Cov(b) = Dy and Cov(e) = Dy,
specified by the unobservable parameter vectors ¢ and . Laird and Ware (1982) described the linear
mixed-effects models for longitudinal data, repeated measures data, or grouped data.

The random effects reflect variations between groups (subjects) and correlations within groups (subjects).
Suppose Cov(b) = 071,. Then the variance of the ith observation and the correlation between two observations
i and j are

Var(y) = 0® + 0p 2] 2,
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where z; is the ith row of Z corresponding to the ith observation. If two observations ¢ and j come from
different subjects, usually 2] z; # ijzj and then Var(y;) # Var(y;), reflecting the variation between subjects
(inter-subject variability). If the two observations come from same subject, usually z; = z; and then
Cor(y;,y;) > 0, that is, the two observations within a subject are correlated, reflecting the intra-subject
correlation.

1.1 LMM parameter estimation

Hartley and Rao (1967) developed maximum likelihood (ML) method for estimating the LMM parameters,
that is, the fixed effects and variance components. The ML method estimates all parameters of fixed effects
and variance components together. Patterson and Thompson (1971) proposed a modified maximum likelihood
procedure which partitions the data into two mutually uncorrelated parts, one being free of the fixed effects
used for estimating variance components, called restricted maximum likelihood (REML) estimators. The
REML estimator is unbiased, and the ML estimator (MLE) of variance components is biased in general. For
given variance components, both ML and REML methods provide with the same estimates of fixed effects.
In this section, we briefly describe both ML and REML methods, see Hartley and Rao (1967), Patterson and
Thompson (1971), Harville (1977), and Jiang (2007) for the details.

1.1.1 Maximum likelihood estimation

Under the assumptions that random vectors b; and e are independent and have a normal distribution,
b; ~ N(0,021,,) and € ~ N(0,0%I,), we have y ~ N(X 3, Vp), with a probability density function (pdf)

F010) = s bl 5 = X7V (- X6)L )
where
0 =[00,61,...,0K)" =[02 0%,...,0%]7,
Vo =0%L,+ 022\ Z] +.. + 0% Zx 7 = 0%, + ZDg Z",
01, ... O
Dy=1 1 .
0 ... Okl

The maximum likelihood estimation (MLE) is obtained by maximizing the log-likelihood
1 1 1 T -1
1(8,6) = log f(y18,0) = —5nlog 27 — < logdet(Vp) — 5(y — XB) V™ (y - XB). 3)
The first derivatives of the log-likelihood are
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where V; = Z;Z1 and Zy = I,,. By equating the first derivatives to zero, we have the MLE equations:

XT%71X5 _ XTvofly’ (5)
tr(ve_l‘/i) = yTRGVriRva 1= 07 sy K7

where
Ry = Vit =V XX TV ) XY (6)

With 6 given, from (5), we have the MLE of 8 and the covariance matrix:
b= X1V X)X TV, (7)
var(B) = (XTV, 1x) 7L

Note
PV9—1/2X _ Vvefl/QX(XT‘/Hle)—lXT‘/H*l/Q

is a projection matrix, and Ry = ‘/1971/2(171 - P 71/2X)V071/2

o is a residual (maker) matrix. The following
6

properties can be readily verified:
RoX =0, RyVyRo = Ry. (8)

The information matrix is given by the second derivatives of I(3, 6)

aﬂa;éT = _XTve_lX

2 — —
sogr = X Vg ViV (v — XB) (9)
gar = 3tr(Vy ViV V) = (y = XB) TV ViV Ve y - XB)

Using E(y — XB) = 0 and E[(y — XB)TA(y — XB)] = tr(AVj) for any n x n matrix A, we have Fisher
information matrix:

E( OQZT) E( SQIT) {var(ﬁ)l 0]
1(5,0) = — 989p 2590 _ ’ 0
(6 ) E(BGBB[éT) E(agaéT) 0 1(9) ( )
where
var(B) = (XTV; 1X) 71,
0?1 1
1(6) - (W) - {itr(v‘;lvivglvj)}ogingf('

Recall that I,, denotes an n x n identity matrix. Without confusion, I(-) denotes a function of the Fisher
information matrix with corresponding parameters as variables. The Fisher information matrix may also be

written as
oty saNT
9 b
00 o0
which is a positive semidefinite matrix.

Let 75 = o0?/0%,i=1,...,K. Then Vy = 0V, where

1(8,0) = FE

Vo=l +nZ 28 + . vy ZxZ =1, + ZD,Z". (11)
From Weinstein—Aronszajn identity:
det(I,, + ABT) = det(I, + BT A) (12)
for any n x ¢ matrices A and B, we have

det(Vp) = o*" det(I,, + ZD,Z") = o* det(I, + D, Z* 7).



Note V, ! (y — Xj3) = Rgy. Given the MLEs, 3 and 6, the log-likelihood (3) can be estimated by

N

) 1 1
1(3,0) = —g log(276”) — 7 log det(I, + D3 2" Z) = 5y" RyVyRyy, (13)

where 4; = 62/6%. From the MLE equations (5),

K K
y'R;VyRyy =Y 67y  RViRgy =Y 67tr(V, ' Vi) = m.
=0 i=0

Then the log-likelihood (13) is reduced as

n n

o 1
1(6,6) = 5 210g(2ﬂ'[72)— §logdet(Iq+DyZTZ). (14)

From y" RyVpRoy = 0 2yT" R, V, R,y and R,y = V. y - XJ3), we also have
. 1 1 N R
6% = —y"RyVsRyy = —(y — XP)" V5 (y — XB). (15)

Remark: The Weinstein-Aronszajn identity (12) can be derived from the equality

I, 0][L,+ABT Al[1I, o] [I, A
BT 1, 0 | |-BT 1,] |0 I,+BTA|

1.1.2 Restricted maximum likelihood

Let Q be an n x (n — p) full column rank matrix such that Q7 X =0, and L = V,; ' X, an n x p full column
rank matrix. Then the data y can be partitioned into two parts: z = QTy and u = LTy. The data z and u
are uncorrelated since Cov(z,u) = QTVyL = QT X = 0. From (1),

2= Q" Zb+Q e ~ N(0,Q"ViQ).

The transformed data, z, does not contain the fixed effects 5. Based on the log-likelihood function of z,

1(0) =~ log2m — 1 logdet(@TVhQ) — 5 QUQTVIQ) QT

similar to the MLE equations (5), we have the restricted maximum likelihood (REML) equations:
tr[(Q@TVeQ)T'QTViQl = yTQQTVHQ) ' QTVIQ(QTVHQ) ' QTy, i =0,... K. (16)
The REML equations can be further simplified. Let
Py = A(ATA)~1AT

be the projection matrix for a full column rank matrix A. Based on Q7 X = 0 and both X and Q are of full
rank, for an n X n positive definite matrix V', we have the following equation (Jiang 2007)

PV1/2Q == In - Pv—1/2x,

that is,
RQRTVY) QT =v I —vix(xTvix)“ I xTy L (17)

With (17), the REML equations (16) reduces to
tr(ReV;) = y" RgViRgy, i =0, ..., K, (18)

where Ry is defined as (6),
R9 — ‘/0—1 _ Ve—lX(XT‘/G—lX)leT‘/G—l'



The REML equations (18) do not contain Q. Thus the REML estimator does not depend on Q.
Let Q = (I, — Px)C, where C is an n x (n — p) matrix. Thus
2=QTy=CT(In — Px)y = CT(y — XfiLs),

where ﬁLS = (XTX)"'XTy is the least square estimator of 3, is a linear combination of residuals obtained
after fitting the fixed effects. So the z is also called error contrasts (Harville 1977).

The REML equations do not include the fixed effects. The fixed effects can be estimated based on the second
part of the data: u = LTy, where L = Ve_lX. From (1),

u=L"XB+L"Zb+ LTe ~ N(LTXB,LYVyL).
With 6 fixed, based on the data u, the MLE of 3 is given by
B=[XTLLTVoL) 'L X)X T L(LTVe L) LT y) = (XTV, X)X Ty, by, (19)
For a given 6, the MLE of § based on u is exactly the same with that based on y in (7).

The first and second derivatives of [ are given as follows:

ol 1 1,
90, *5”(30‘/}) + 5y RoViRoy, (20)
Plr 1 -
From (21), using E(yT Ay) = tr(AVp)+ BT XTAXB, RyX = 0 and RyVyRy = Ry, we have Fisher information
matrix: 02
R 1
1(0) = —E(W> = {Str(BViRV) oo s (22)

Recall Vy = 02(I, + ZD,Z"). From (17) and the Weinstein-Aronszajn identity (12),

det(QTV5Q) = det[o*(QTQ + QT ZD,Z7Q)]
o> det(QT Q) det(l—p + (QTQ)'QTZD, Z7Q)

_ _ 23
— A de(QTQ)det(T, + D, 27 Q(QQ) Q" 2) 2
o2=P) det(QTQ) det(I, + D, ZTRZ),
where
R=QQ"Q)Q" =1, - X(X"X)"'X" = I, - Px.
From (17), Q(QTV4Q)~1QT = Ry. Then the REML log-likelihood function can also be expressed as
_ 1 T n—p 2 1 T L

Ir(0) = —§logdet(Q Q) — 5 log(2mo”) — B logdet(I; + DZ" RZ) — Y Roy. (24)

This also shows that the REML estimator, obtained by maximizing [z(6), doesn’t depend on the choice of Q.
We can choose @ such that QTQ = I,,_,. From the REML equations (18),

y" RyVyRyy = tr(R;V5) = tr(L, =V, ' X(XTV, 7 X) I XT) = n—p.
From (8), yTRéy = yTRéVéRéy =n — p, and then the REML log-likelihood function can be estimated by

n—p n-—

Ir(0) = - 2 2

1
P og(2m6?) — 5 logdet(l, + D; 2" RZ). (25)

From y" ReVyRoy = 0~ 2y" R, V, R,y and V, ' (y — X3) = Ry, we also have

1 1 A R
A2 _ TPV Py Ty —1¢, _
o= —py Ry Vi Ry = n —p(y XPB) Vi (y — XB). (26)



1.2 Hypothesis testing

The hypotheses for testing fixed effects and variance components can be respectively defined as
HO,i : Bi =0 versus Hl,i : 51‘ 75 O7

Hoy - 0,3 =0 versus Hyy : 0126 > 0.

Under regularity conditions, the MLE is consistent and asymptotically normal with asymptotic covariance
matrix equal to the inverse of Fisher information matrix (Jiang 2007), that is, asymptotically

ﬂ - ﬂ ~ N(Oa var(ﬂ)), (27)
0—6~N(0,I(0)7"). (28)

The asymptotic normality is inappropriate for the variance components under null hypothesis, o7 = 0, because
the zero variance is on the boundary of the parameter space. To avoid the problem of zero-boundary in
hypothesis testing, we reparameterize the variance components by 0, = 027, k = 1,..., K, and allow the
parameters, v or 0, to take negative values. The lower boundary of the parameters can be a negative value
such that the variance-covariance matrix

Vo =0>(In+nZ 2] + ...+ 1k 2k Zk),

is well defined (positive-definite). Note that Vjp is positive-definite when v, > —1/Apnaz, Where Apq. > 0, i
the largest singular value of ZZT. That is, Vy can be well-defined with negative parameters ;. Then the
hypotheses for the variance components are extended as

Hy 20, <0 versus Hyp: 0 >0,

in which the zero components, 6; = 0, are no longer on the boundary of the parameter space, and the the MLE
asymptotic properties hold under regularity conditions, which enables the use of z-statistics or t-statistics for
testing fixed effects and variance components. If 65 > 0, 07 = 6, is definable and the mixed-effects model is
well-specified. Otherwise, 0 < 0, implies that the term of random effects is not needed in the model design.

The test statistics for fixed effects are given by
T, = b — = b — ~ t(n—p). (29)
Voar(3)  yJvar(B)a

The test statistic for a contrast, a linear combination of the estimated fixed effects, CTB, is

1= —L iy (30)
cTvar(B)c

The test statistics for the parameters of variance components are given by

>

L=t~ N(0,1). (31)

ORI

To

If Tp, > 0, then o7 = 6y, is definable. Otherwise, Tp, < 0, means that the random effects are not required or
can be ignored.



1.3 Prediction of random effects

With the assumption of normality: b ~ N(0, Dy) and € ~ N(0,021,,), from (1), we have
b - N( 0 Dy DQZT )
Yy XB|’ | ZDg Vo ’
Note Vy = 0?1, + ZD¢Z". The prediction of random effects is given by a conditional mean:

b= E(bly) = DeZTV; (y — XB). (32)

Since . .
Epy(16=0 1) = Ey(Il b—E(ly) |I*) + Eby (| b — E(bly) [I?),

b= E(bly), is the best predictor in the sense of minimum mean squared error (MSE) of prediction . It is seen

~

from E(b) = E,[E(bly)] = E(b), that the best predictor is unbiased. Without any assumption of normality,
the prediction (32) can also be derived from the best linear predictor of the form

bprp = a+ Aly — E(y)],
by minimizing E(|| bgrp — b ||?) which yields
a=E(b)=0, A=Cou(by)[Cov(y)]™t =Dez"V, "

Therefore the b is the best linear unbiased prediction (BLUP) (Searle, Casella, and McCulloch 2006). It is
also known that the MLE of (3, .
B= X"V X)X TV,

is the best linear unbiased estimator (BLUE), which does not require the normality assumption. This can be
readily verified. Let 8ryg = 8 + Cy be any linear unbiased estimator of 3. Then we have CX = 0 and

E(| Brur =B 7)) = E(| = B |1*) +tr(CVeCT) = E(| 5 = B 1)

Thus /3 minimizing the MSE is the BLUE.
The BLUP of E(y|b) = X8 + Zb is give by

g = XB+Zb
XB+ZDgZTVy Hy — XB)
XB+ (In =V )y — XB)
= y—a?V, (y— XP).

(33)

Substituting 3 and § for the unknown parameters in (32) and (33), we have the empirical BLUPs (Harville
1991),
b= E(bly) = D2V, y — XB) = Dy Z" Ryy, (34)
§=B(ylb) =y — 5" Ryy, (35)
where Ry is defined by (6), that is,

Rg _ ‘/9—1 o Ve—lX(XT‘/:g—lX)leT‘/:g—l'

1.4 Numerical algorithms

With variance components estimated, the fixed effects estimated by ML and REML methods are given by (7)
or (19) as follows
B — (XTVe—lX)leT‘/e—ly.



Estimating variance components by either ML or REML is a numerical optimization problem. Various
iterative methods based on the log likelihood, called gradient methods, have been proposed to compute the
ML and REML estimates (Searle, Casella, and McCulloch 2006). The gradient methods are represented by
the iteration equation
o1(0@))
a9
where §() represents the value of the estimate of the parameter vector 6 at the ith iteration, d1(6)/96 is the
gradient of the log likelihood function, and I'(6) is a modifier matrix of the gradient direction. Let H () and
1(#) be the Hessian matrix and Fisher information matrix of the log likelihood function with respect to 6.
Let I4(0) = [I(0) — H(6)]/2 be the average information matrix. The modifier matrix can be specified by

1) Newton-Raphson: I'(§) = —H(6)~!
2) Fisher scoring: T'(0) = I(0)~*
3) Average information: T'(6) = I4(6)~!

For MLE, from (4), (5), (9) and (10), we have

oli+Y) = 9 L (9@ (36)

% = —3[tr(Vy;'V;) — yT ReViRoyl,
H;j = 85’” 1tr(V, ViV ') — yT Re ViV ' Vi Rey,

29; 37
~E(H; ): tr(V, ViV 1VJ) 37)
IA,JZ%( - z )—2y RQV% Vng.
For REML, | = [r(#). From (20), (21) and (22), we have
gt = —3[tr(RoVi) —y" RoViRgy),
H;; = 6(3 181; = 1t7“(R9VR9V) TRQVZ'RQVJ-Roy, (38)
Iij = —E(Hi;) = 5tr(ReViReVj),

uwza%—ﬂmzéf&w&wmy

Here H;;, I;; and I, ;; represent the (i,;) entry of H(6), I(f) and I4(f), respectively. Recall V; = Z,ZT,
defined in (4), and
Vo =01, + ZDpZT,

RQ — ‘/071 _ nglX(XT‘/érlX)—lXT‘/Gfl7
defined in (2) and by (6), respectively.

2 Summary statistics based algorithm

This section describes our work to improve LMM solver scalability and memory usage efficiency in the context
of single cell transcriptomics data. The gradient methods given by (36), (37) and (38) have a computational
complexity of O(n?). The computational burden arises from the n x n matrix inverse, V~1(6), and the
matrix-matrix products, V(flVﬂ/(fle and RyV;ReV;. Now we derive a summary statistics based algorithm
to implement the gradient methods for the LMM estimation. The n X n matrix inverse and matrix-matrix
products are computed through the low dimension p X p and ¢ X ¢ matrices. The algorithm achieves a
computational complexity of O(n(p? + ¢?)), which is fast and linearly scalable with the sample size n. In
addition, using the summary statistics requires less computer memory usage to estimate the LMM parameters,
which enables the LMM application to the large-scale data analysis. By precomputing and directly using
the summary statistics as inputs, the algorithm has a computational complexity of O(p?® + ¢®), which makes
computations independent of the sample size n and achieves both speed and memory efficiency.

Recall that v, = 02 /0%, k=1,..., K, and
V=L, +mZ 25 + . vy ZxZE =1, + ZDZ",

Ry =V, =V ' X(XTV X)XV



where D = D,. Then Vj = sz,y, Ry = U_2Rw and

tr(Vy Vi) = o 2tr(ZFV; )7
tr(Vy ViV V) = a*4tr[(ZzTV Z)"(ZIV Zy),
y"RoViVy 'ViRey = U‘Gtr[(ZTRwy) (ZI'Vi 1 Zi)(Z] Ryy)l,
tr(RyVi) = o 2tr(Z'R,Z;), (39)
tr(RyViRgV;) = o %tr[(ZTR,Z;)T(ZT R, Z;)),
y'RyViRgy = o *tr[(Z'Ryy)" (Z]'R )]
y"RegViReViRoy = o Str[(Z] Ryy)"(Z] R\ Z;)(Z] Ryy)].

Using the formulas of matrix identities given by Harville (1977) and Rao (1979), we have
Vo =1,-Z(I,+DZ"Z)"'DZ",

R,=R—-RZ(,+DZ"RZ)"'DZ"R,

where
R=1,- X(XTx)'xT,
Let
My = (I,+Dz%'z)7! (40)
M = (I,+DZTRz)™!
Then Vv_l =1, — ZMyDZ" and R,=R- RZMDZTR. By the identity equation
DZTZMy = MyDZ"Z = 1, — My,
DZTRZM = MDZ'RZ = 1, — M,
and R*> = R, we have V> = V! — ZM§DZ", R?2 = R, — RZM*DZ" R, and
ZfV{le = ZI'Z;—(ZI'Z)M\D(Z" Z;),
ZiTVW_2Zi = ZiTVW_lZi —(ZFZ2)MEgD(ZT Z;), (41)
tr(V;Y) = n—q+tr(M),
tr(V;?) = n—q+tr(Mg),
ZI'R,Z; = ZI'RZ;— (ZI'RZ)MD(ZTRZj),
ZiTRiZz = ZI'R,Z,— (Z'RZ)M?D(Z"RZ;), (42)
tr(Ry) = tr(R)—q+tr(M),
tr(RZ) = tr(R) —q+tr(M?),
ZI'Ry = ZI'Ry—(ZIRZ)MD(Z" Ry),
y'R2y = y"Ry,y—(y"RZ)M’D(Z" Ry), (43)
y"Ryy = y"Ry—(y"RZ)MD(Z" Ry),

where
ZI'RZ; = 21 Z; — (Z X)(XTX)"Y(XT" Z;),
ZTRy=7"y — (Z"X)(XTX)"1(XTy), (44)
y"Ry = yTy — (yP X)(XTX)"H(XTy).

Thus the gradient methods given by (36), (37) and (38) can be implemented by using the summary statistics:
XTX, XTZ XTy, ZTy and ZT Z, based on the formulas (39)~(44).



2.1 Computational complexity

The complexity for computing the summary statistics: X7 X, XTy, 27X, ZTy and Z7 Z, is O(n(p? + ¢?)).
The complexity for computing the ¢ x ¢ matrix inverse, My and M, by (40) is O(¢?) or even O(q?log(q)).
Using the summary statistics as the inputs, the algorithms given by (42), (43) and (44) have a complexity of
O(p® + ¢*). Then the summary statistics based algorithm given by equations (39)~(44) has the complexity

O(n(p*+ ) +1* +¢*) = 0(n(¥* + ¢*)),

since p < n, qx < n and ¢ < Kn. The summary statistics can be computed in advance and stored in a
computer with less storage. Once the summary statistics are computed and directly used as the inputs, the
algorithm complexity, O(p® + ¢°), doesn’t depend on the sample size n.

2.2 LMM with dimension reduction

The LMM estimation algorithm can be further sped up by reducing the number of random effects. For a large
number of random effects, we may combine the correlated random effects by cluster analysis or principal
component analysis (PCA). By PCA, we have

Z, = U VT,

where Uy, is an n X r matrix of principal components (PCs), Vj is an g X rg matrix, v, < min(n, ¢x) is the
rank of Zj, UkTUk is diagonal, and V,CTV;€ =1I,,k=1,..., K. Thus the LMM (1) can be rewritten as

y=XB+Uiv1+...+Uxvg +e=XB+Uv +¢, (45)

where v, = V,I'b, ~ N(0,0321,,), is a ri-vector of random effects. The LMM (45) is equivalent to the LMM
(1). The random effect design matrices Uy in the LMM (45) have a lower dimension rp. We may even
approximate the design matrix Zj using a smaller number of PCs such that r, < min(n, g).

3 Simulation methods

To simulate the multi-subject multi-cell-type single-cell RNA-seq (scRNA-seq) dataset, we developed a
scRNA-seq simulator, named simuRNAseq, by using a reference dataset based on a negative binomial (NB)
distribution. The reference dataset contains genes-by-cells counts matrix and meta data. The simulated
genes are randomly selected from the reference data. The simulated cells are randomly selected from the
meta data that specifies subjects, cell-types and treatment conditions for the cells. If the reference data is
not available, it will be generated randomly. The simuRNAseq workflow is illustrated in the Supplemental
Figure S1, which consists of following main steps:

(1) Estimate the dispersion and mean of the NB distribution for each gene using the reference count data.

(2) Select the differetially expressed (DE) genes and non-DE genes randomly from the genes in the reference
count data and the cells from the meta data, with given numbers.

(3) Generate counts by sampling from the NB distributions for the non-DE genes without log-fold-change
(logFC) between treatments and for the DE genes with assigned logFC between treatments.

10



Reference data Parameters Sampling

- N N \
Estimating parameters: I:' p
Genes-by-cells Mean for each gene, u, (1)
count matrix Dispersion for each gene, ¢, ! m, non-DE genes
Library size for each cell, a;, m, DE genes
\_ J \_ J ! necells,sumofny i
4 ) ﬁixed and random effects: \ e —————————
Meta data: Trtlela;cmen.t i specific to goT——
Treatments, i cell-type j, B : (2)
, For non-DE genes, ;=0 : m-bv-n counts
Cell-types, j . i Y
i For DE genes, =0, ! matrix generated
Subjects, k . :
. . B, ~ +/- uniform(a,, a,) : b
Library sizes ) ) : y
Subject, b, ~ N(0, 7,2), i NB(gir D)
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Figure S1: Workflow of the scRNA-seq simulator, simuRNAseq.

Let yg,i1 be the count for gene g and the cell from subject k = 1,...,n, and cell-type j = 1,...,n. with
treatment ¢ = 1,2. The count is generated by the NB distribution with dispersion ¢, and mean fig;;%,

Yg,ijk ~ NB(lg,ijk, Bg) (46)

where
log(kg,iji) = 10g(pg) + aijk + Bg,ij + by k,

¢4 and g are the dispersion and mean estimated from the reference data for gene g, ;i is a centered
log-library-size for the cell ¢;j, B,.; represents the effect of treatment i specific to cell-type j, by ~ N(0,07)
is a random effect of subject variation. For the non-DE genes, §4.1; = (4,25 = 0. For the DE genes, 34,1, =0
and fg0; ~ £Uniform(ai,as2), a uniform distribution with aias > 0, where a; and ag are the lower and
upper bounds of the DE gene effect sizes.

The mean of NB distribution is taken as the sample mean for each gene. The dispersion of NB distribution is
computed by the method-of-moments estimate (MME) (Clark and Perry 1989), which is computationally more
simple and performs reasonably well compared to the maximum likelihood estimate (MLE). The simuRNAseq
simulator shares similarities with muscat (Crowell et al. 2020) and GLMsim (Wang et al. 2024). However,
both muscat and GLMsim have limitations in sScRNA-seq simulations. Muscat estimates the dispersion of the
negative binomial (NB) distribution using the edgeR package based on a subset of the reference data. Muscat
cannot be applied to large-scale scRNA-seq data and only reflects partial information from the reference
dataset. GLMsim estimates the coefficients and dispersion parameters of the NB models for each gene using
glm.nb from the MASS package, which is time-consuming and only generates data of a fixed size matching the
reference data. In contrast, The simuRNAseq simulator is fast and flexible, and utilizes the whole information
from the reference dataset.

We used the PBMC scRNA-seq data as a reference to simulate the scRNA-seq data. The PBMC data from
eight lupus patients (Kang et al. 2018), available through Bioconductor’s ExperimentHub package, contains
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35,635 genes and 29,065 cells (14,619 control cells and 14,446 stimulated cells) consisting of eight identified
cell types. After quality control filtering (filtering the cells with few or many detected genes and the genes
lowly expressed), the data contains 7,040 genes and 26,320 cells.

3.1 Performance of simuRNAseq simulator

We examined the performance of simuRNAseq simulator by comparing dispersions estimated by MME and
MLE, means and variances across cells and library sizes of real reference data and simulated data using
scatterplots. The simulated scRNA-seq data is generated by simuRNAseq with the same genes and cells as
the reference data.

It is shown that the dispersions estimated by MME and MLE methods are coincident, see Supplemental
Figure S2 (a). The MME method took only 0.48 seconds while the MLE method needed about 51.5 minutes
to estimate the dispersions. This verified that the MME method is fast and performs very well. The means
and variances of counts across cells and library sizes of the real and simulated data are shown in Supplemental
Figure S2 (b), (c) and (d), respectively. The scatterplots display the similarity between the real and simulated
data.

3.2 Differential expression analysis of simulated scRNA-seq data

We generated scRNA-seq datasets consisting of 6,000 genes with 6 different numbers of cells (sample sizes)
from 20,000 to 120,000 using the PBMC data as a reference, as described above. The genes to be simulated
were randomly selected from the reference data. We randomly generated the meta data comprising 25 subjects
and 12 cell-types which were treated by one of two treatments. The treatments, cell-types and subjects are
assigned randomly with equal probability. There are 480 DE genes specific to a cell-type. For the DE genes
bg.2j ~ £Uniform(0.25,1). The variance component o7 = 0.16.

We did differential gene expression analysis for the 6 simulated scRNA-seq datasets using LMM with model
formula:
~ log(library.size) + cell .type + cell.type : treatment + (1|subject). (47)

The interaction term cell.type : treatment in the model formula (47) represents treatment effects in a specific
cell-type. The last term represent random effects of subject variation. We fit the LMM to the log-transformed
counts, loga(1 + y), by FLASH-MM method. Note that FLASH-MM doesn’t directly use model formula as
an argument and need design matrices of fixed and random effects that can be created by, respectively,

X = model.matriz(~ log(library.size) + cell.type + cell.type : treatment),
Z = model. matriz(~ 0 + subject).

Table S1: Computation time in minutes for running FLASH-MM, Imer and nebula in differential expression
analysis of the simulated data across various sample sizes n.

n=20000 n=40000 n=60000 n=80000 n=100000 n=120000

FLASH-MM 0.46 0.51 0.67 0.67 0.88 1.04

Imer 925.15 49.70 74.90 94.02 122.44 149.12

nebula 39.71 86.45 140.95 205.98 274.87 331.89
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Figure S2: Performance of the scRNA-seq simulator, simuRNAseq: (a) Scatterplot of dispersions
estimated by MME and MLE (glm.nb). (b) Scatterplot of means of real and simulated counts across cells.
(c) Scatterplot of variances of real and simulated counts across cells. (d) Scatterplot of library sizes of real
and simulated counts.
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