Assessing the Risk of Discriminatory Bias in
Classification Datasets
— Supplementary Materials —

Kejun Dai, Jonathan Kim, Saso Dzeroski, Jorg Wicker, Gillian
Dobbie, and Katharina Dost

1 Dataset Generation

We opt to generate synthetic datasets to support our training of meta-learning models
L. In order to generate data points that are dependent on some features and indepen-
dent of others, we first construct a hypercube whose dimensions include dependent
features. Then, we create clusters of normally distributed data points around the ver-
tices of the hypercube. At last, we assign equal numbers of clusters to each class of
label values. We also parameterize our dataset generation process to promote more
diversity among our synthesized datasets. For example, we can reduce the number
of dependent features and increase the number of independent features to generate a
richer classification dataset.

In practice, the parameters to generate synthetic datasets will be randomly drawn
from two parameter pools; one represents datasets with small size and small com-
plexity, and the other represents datasets with larger size and larger complexity. The
parameter pools for both types of synthetic datasets are detailed in Table 1. After
generation, we will then randomly mark at most half of the possible label values as
positive labels.

2 Bias Generation

When generating synthetic bias for the synthetic datasets, we alternate between the
following two methods. Patch sensitive complex generation’s intuition is to divide the
datasets into many small chunks and then assemble them into the desired output. The
algorithm first partitions the datasets into many small equal-size sensitive shapes. For
each requested sensitive complex, the algorithm will use greedy search to find the best-
performing shape from the remaining unused shape without overshooting the required
size and prevalence and add it to the complex. The end output of the algorithm will
be disjointedly connected to sensitive complexes. The results of this algorithm also do
not overlap with each other. Two examples are provided in Figure 1.

The goal of continuous sensitive complex generation is to output a singular sen-
sitive shape as the sensitive complex that closely matches the size and prevalence
requirement. For each requested sensitive complex, the algorithm will choose a set of
random features and iterate through them. For each iterated feature, the algorithm
will find the best five suitable sensitive rules that are close to the requirements but

LFor our experiments, we use scikit learn’s make_classification method to generate biased datasets.

Small dataset

Large dataset

of data points 2000-10000 10000-20000
of classes 2-6 2-10

of features 2-10 10-50

of dependent features >1 > f—o#features

< #features

< #features

of independent features

>1
< #tfeatures

>1
< #features

of repeated features 0 < %#features

of clusters per class 1-3 1-3

Table 1: Parameter pools for our synthetic dataset generation process.
All parameters will be validated and adjusted before running the method.

Fig. 1: Example for Patch sensitive complex generation

also overshooting to allow further dissection by other sensitive rules. After all itera-
tions of features, the algorithm will combine them into a sensitive shape as output.
The end output of the algorithm will be a continuous space that closely matches the
specified size and prevalence. However, they can overlap with each other and can
have a consequence that is unseen in sensitive attribute frameworks. See Figure 2 for
examples.

Fig. 2: Example for continuous sensitive complex generation

3 Hyperparameter Tuning

In our experiment, we use grid search? to tune hyperparameters of Random Forest,
XGBoost, Light GBM, and Multi-Layered Perceptron (MLP) models. For each model
we train, we first designate the models’ baseline hyperparameters, which set up their
training procedure, such as random_state or device_type. Hyperparameters that influ-
ence the models’ behavior and thus performance will then be selected from ranges of
possible candidates through grid search. The search grids for each model are detailed
in Table 2.

4 Other Error Metrics for Regression Tasks

In addition to Root Mean Squared Error (RMSE), we also use error metrics of
Mean Absolute Error (MAE), Mean Squared Error (MSE), Mean Absolute Percentage
Error (MAPE), Symmetric Mean Absolute Percentage Error (SMAPE), Mean Squared
Logistic Error (MSLE) to evaluate the performance of our meta-learning models in
our experiments. However, they show similar results to RMSE and reach the same
conclusions. Note that since bias metrics are range from 0 to 2, the MAPE of our meta-
learning model sometimes explodes exponentially and is impossible to comprehend.
These error metrics’ results are detailed in Figure 3.

5 Legend of Meta-features

When constructing our meta-dataset, we use the Python library pymfe® to extract
meta-features. The meaning of the meta-features is as follows®*:

1. Complexity meta-features

® c1: The entropy of class proportions.

c2: The imbalance ratio .
cls_coef: Clustering coefficient.
density: Average density of the network for synthesised datasets.
fl.mean: Average maximum Fisher’s discriminant ratio .

2We use scikit learn’s GridSearchC'V implementation to tune models’ hyperparameters
3github.com /ealcobaca/pymfe
“Further details on the meta-features can be found at pymfe.readthedocs.io/en/latest /auto_pages/meta_features_description.html

https://github.com/ealcobaca/pymfe
https://pymfe.readthedocs.io/en/latest/auto_pages/meta_features_description.html

Random n_estimators: [25, 50, 75, 100, 125]

Forest max_depth: [5, 10, 20, 30, 40|
max _features: [#features, w , v/ #feature]
XGBoost n_estimators: [50, 100, 150, 200, 250]

max_depth: [2, 5, 10, 15, 20]
learning_rate: [0.01, 0.3, 0.5]

Light GBM n_estimators: [50, 100, 150, 200, 250, 300, 500,
750, 1000]

max_depth: [2, 3, 5, 7, 10, 15, 20, 30]
learning_rate: [0.01, 0.1, 0.5]

MLP hidden_layer_sizes: [(50,), (100,), (25,25),
(75,25), (25,50,25), (10,30,10)]

solver: [Stochastic gradient descent, Adam
optimizer],

activation: [ReLu, Logistic]

learning_rate_init: [0.001, 0.01, 0.1]

Table 2: Hyperparameter search grids of all relevant models that
grid search selects from

flv.mean: Average directional-vector maximum Fisher’s discriminant ratio.
f2.mean: Average volume of the overlapping region.

f3.mean: Average feature maximum individual efficiency.

f4.mean: Average collective feature efficiency.

hubs.mean: Average hub score.

I1.mean: Average sum of error distance by linear programming.

12.mean: Average OVO subsets error rate of linear classifier.

13.mean: Average non-Linearity of a linear classifier.

Isc: Local set average cardinality of a linear classifier.

nl: the fraction of borderline points.

n2.mean: Average ratio of intra and extra class nearest neighbor distance.
n3.mean: Average error rate of the nearest neighbor classifier.

n4d.mean: Average non-linearity of the k-NN Classifier.

t1: Fraction of hyperspheres covering data.

t2: The average number of features per dimension.

t3: The average number of PCA dimensions per points.

t4: The ratio of the PCA dimension to the original dimension.

2. Information theory meta-features

attr_conc.mean: Average concentration coef. of each pair of distinct
attributes.
attr_ent.mean: Average Shannon’s entropy for each predictive attribute.

Equal Disparate Group NaiveMean
Opportunity Parity Fairness B LinearRegression
- 0.1 * _ B 01 ° , * B * BN Lasso
= 0.2 - XGBoost
= . LightGBM
0.0 0.0 0.0 = RandomForest
Model Model Model MLP
Equal Disparate Group NaiveMean
Opportunity Parity Fairness B LinearRegression
' ' ' ' g ¢ B Lasso
E}J) 0.02 ! 0.02 (] 0.1 - XGBoost
= = LightGBM
0.00 0.00 0.0 RandomForest
Model Model Model MLP
Equal Disparate
Opportunity Parity Group NaiveMean
%102 x 1012 Fairness EE [inearRegression
. I 5 I B Lasso
% 2 . XGBoost
= -i = LightGBM
0 0 RandomForest
Model Model Model MLP
Equal Disparate Group NaiveMean
Opportunity Parity Fairness EEE [inearRegression
) : =~ B : _ B * * BN Lasso
05 05 0.5 = XGBoost
= = LightGBM
0.0 0.0 0.0 = RandomForest
Model Model Model MLP
Equal Disparate Group NaiveMean
Opportunity Parity Fairness BN LinearRegression
- 0013 \ ' ' : * * BN Lasso
2 0.0 (] 0.1 . XGBoost
= lI = LightGBM
0.0 0.0 0.0 RandomForest
Model Model Model MLP

Fig. 3: The performance of the single-target meta-learning models in main text section
4.2 evaluated with MAE, MSE, MAPE, SMAPE and MSLE

® class_conc.mean: Average concentration coefficient between each attribute
and class.

e class_ent: Target attribute Shannon’s entropy.

® eq_num_attr.mean: Average number of attributes equivalent for a predic-
tive task.

® joint_ent.mean: Average joint entropy between each attribute and class.

¢ mut_inf.mean: Average mutual information between each attribute and
target.

ns_ratio.mean: Average noisiness of attributes.

3. Landmarking Meta-features

best_node.mean: Average performance of the best single decision tree
landmarkers.

elite_nn.mean: Average performance of the Elite Nearest Neighbor land-
markers.

linear_discr.mean: Average performance of the Linear Discriminant classi-
fier landmarkers.

naive_bayes.mean: Average performance of the Naive Bayes classifier
landmarkers.

one_nn.mean: Average performance of the 1-Nearest Neighbor classifier
landmarkers.

random_node.mean: Average performance of the single decision tree node
landmarkers induced by a random attribute.

worst_node.mean: Average performance of the single decision tree node
landmarkers induced by the worst informative attribute.

4. Model-based Meta-features

leaves: The number of leaf nodes in the trained Decision Tree model.
leaves_branch.mean: Average size of branches in the trained Decision Tree
model.

leaves_corrob.mean: Average leaves corroboration of the trained Decision
Tree model.

leaves_homo.mean: Average model homogeneity for leaf nodes of the
trained Decision Tree model.

leaves_per_class.mean: Average proportion of leaves per class in trained
Decision Tree model

® nodes: The number of non-leaf nodes in the trained Decision Tree model.
® nodes_per_attr.mean: Average ratio of non-leaf nodes per number of

attributes in the trained Decision Tree model.

nodes_per_inst.mean: Average ratio of non-leaf nodes per number of
instances in the trained Decision Tree model.

nodes_per_level.mean: Average ratio of number of non-leaf nodes per tree
level in the trained Decision Tree model.

nodes_repeated.mean: Average number of repeated nodes in the trained
Decision Tree model.

tree_depth.mean: Average depth of nodes in the trained Decision Tree
model.

tree_imbalance.mean: Average tree imbalance for leaf nodes in the trained
Decision Tree model.

tree_shape.mean: Average tree shape for leaf nodes in the trained Decision
Tree model.

var_importance.mean: Average features importance of the trained Deci-
sion Tree model for all attributes.

Disparate Parity

—
5]
S

Tmp

o
LN S e B B N B B B B S B N B N B B B B B B B B B B B B S B B B S B

o

Equal Opportunity

Importance
no
(=]

o

Group Fairness

Importance

Fig. 4: Feature importance for all meta-features per bias score based on the total
gains of the splits using each feature in a single-target Light GBM model

6 Additional Feature Importance Results

In addition to the feature importance results from CLUS presented in the paper, we
randomly draw 10 x 1000 samples from the meta-dataset, train a single-target Light-
GBM model on each of them for each bias score, and average over the models’ feature
importance per bias score. Feature importance for a feature here is calculated as the
sum of gains of splits using this feature. We provide feature importance results based
on the number of splits using the feature in our supplementary materials, alongside
the legend of all feature names. Figure 4 shows the results.

We observe that while Disparate Parity and Equal Opportunity use a large number
of features, Group Fairness relies heavily on “leaves_per_class”, the average number
of leaves dedicated to a class. Since Group Fairness seems to be strongly impacted
by the number of classes, this feature may be an adequate proxy. If we remove this
attribute and repeat the single-target training for Group Fairness, we observe an only
1.2% increase in RMSE and the model uses the features’ average Shannon entropy
(“class_ent”). Removing this feature as well results in a 2.6% increase in error. The
model then relies mostly on “f3”, but considers a blend of features. f3 estimates the
average efficiency of a single feature in separating the classes [1]; a measure closely
related to both other features.

Similarly, Disparate Parity relies strongly on “eq_num_attr”, the number of equiv-
alent attributes for a predictive task [2]. Removing it results in a 0.3% increase in
RMSE and a focus on “attr_conc”, the average concentration coefficient between pairs
of features [3]. Removing this feature as well causes a 0.5% increase in error. The
model then focuses on “n2”, the average ratio of intra/inter class nearest neighbor
distance [1], and an overall broader distribution of importance.

Equal Opportunity immediately takes a number of features into account. The most
essential ones here are “class_conc”, the concentration coefficient between the features

Disparate Parity

g
8
= 100
@
2
=
=}
&
= 0-
Equal Opportunity
8 50
=]
<
b
=}
a
I
Group Fairness
[
8
g 200 -
2
=
=}
&
= 0-
OO, Cp S oD, B, Cols B Coly O b $at. Cal G Xot G O ot DG O Gty 0l G O, & B L G0 Coto O %,
B I A e N N N N A A I A AN R I RN A RN AR NN AN NN
% G %%l %l %%h s Bt e, e v et G R GR Be R s B B %
NRVRCACRTe) 0\ & 0% 2 , @ . Gy A ZA) 7 5 APRZR AR R G
b TR, Wy b, B, Rt W PR R Gk Yy Y
A < 9 v % YN 2 %Y Y @ X RS AR AN LY
- S AT S S) %% RPN RAN] 5,
AT AR b, % G, %%
% % 6, C G Y 5 R e o & L% % %
? % b Y % DI O
% v, “ %, % % %, %
© % % %%

Fig. 5: Feature importance for all meta-feautres per bias score based on the amount
of information gained from the single-target Light GBM model by using the feature

and the target [3], “cls_coef”, the clustering coefficient (a measure of neighborhood in
the dataset’s graph representation) [1], and “f1”, the maximum Fisher discriminant
ratio measuring the overlap of features in different classes [1].

Overall, the least important features are the ones generally describing the shape
of the landmarker trees. Figure 5 shows feature importance based on the number of
times the feature is used to split the space in single-target Light GBM models. Figures
6 and 7 show the described leave-one-feature-out experiments, an iterative approach of
understanding the feature dynamics, where we iteratively remove the most informative
feature (based on the cumulative gains of the splits using this feature).

References

[1] Lorena, A.C., Garcia, L.P., Lehmann, J., Souto, M.C., Ho, T.K.: How complex is
your classification problem? a survey on measuring classification complexity. ACM
Computing Surveys 52, 1-34 (2019)

[2] Michie, D., Spiegelhalter, D.J., Taylor, C.C., Campbell, J.: Machine Learning,
Neural and Statistical Classification. Ellis Horwood, USA (1995)

[3] Kalousis, A., Hilario, M.: Model selection via meta-learning: a comparative study.
In: Proceedings 12th TEEE Internationals Conference on Tools with Artificial
Intelligence, pp. 406—413 (2000)

Group Fairness (without ['eq_num_attr’])

|_"_||T|l_|l_|l_|l—u—|.

oouejrodury

Group Fairness (without ['eqnum_attr’, ’attr_conc.mean’])

|_"_|r"T||_|l_|l_|l—|.

eouejrodury

Group Fairness (without ['eq num_attr’, ’attr_conc.mean’, 'n2.mean’])

|_||_||_||_||‘|r|r||-u—|.—..—..—..—.ﬁ.

=]
n

eouejrodury

0

tance (based on gain) for iterative feature removal experiment

: Feature impor

Fig. 6

on Disparate Parity

Group Fairness (without leaves_per_cle

2000

4000

Group Fairness (without [leaves_per_class.mean’, 'class_ent’])

‘class_ent’, 'f3.mean’])

Group Fairness (without ['leaves_per_class.mean’,

2000
1000

aouejrodury

‘elite_nn.mean’])

Group Fairness (without ['leaves_per_class.mean’, 'class_ent’, "f3.mean’,

[}

2000

1000

@

tance (based on gain) for iterative feature removal experiment

: Feature impor

Fig. 7
on Group Fairness

10

	Dataset Generation
	Bias Generation
	Hyperparameter Tuning
	Other Error Metrics for Regression Tasks
	Legend of Meta-features
	Additional Feature Importance Results

