
Assessing the Risk of Discriminatory Bias in

Classification Datasets

– Supplementary Materials –

Kejun Dai, Jonathan Kim, Sašo Džeroski, Jörg Wicker, Gillian
Dobbie, and Katharina Dost

1 Dataset Generation

We opt to generate synthetic datasets to support our training of meta-learning models
1. In order to generate data points that are dependent on some features and indepen-
dent of others, we first construct a hypercube whose dimensions include dependent
features. Then, we create clusters of normally distributed data points around the ver-
tices of the hypercube. At last, we assign equal numbers of clusters to each class of
label values. We also parameterize our dataset generation process to promote more
diversity among our synthesized datasets. For example, we can reduce the number
of dependent features and increase the number of independent features to generate a
richer classification dataset.

In practice, the parameters to generate synthetic datasets will be randomly drawn
from two parameter pools; one represents datasets with small size and small com-
plexity, and the other represents datasets with larger size and larger complexity. The
parameter pools for both types of synthetic datasets are detailed in Table 1. After
generation, we will then randomly mark at most half of the possible label values as
positive labels.

2 Bias Generation

When generating synthetic bias for the synthetic datasets, we alternate between the
following two methods. Patch sensitive complex generation’s intuition is to divide the
datasets into many small chunks and then assemble them into the desired output. The
algorithm first partitions the datasets into many small equal-size sensitive shapes. For
each requested sensitive complex, the algorithm will use greedy search to find the best-
performing shape from the remaining unused shape without overshooting the required
size and prevalence and add it to the complex. The end output of the algorithm will
be disjointedly connected to sensitive complexes. The results of this algorithm also do
not overlap with each other. Two examples are provided in Figure 1.

The goal of continuous sensitive complex generation is to output a singular sen-
sitive shape as the sensitive complex that closely matches the size and prevalence
requirement. For each requested sensitive complex, the algorithm will choose a set of
random features and iterate through them. For each iterated feature, the algorithm
will find the best five suitable sensitive rules that are close to the requirements but

1For our experiments, we use scikit learn’s make classification method to generate biased datasets.

1

Small dataset Large dataset

of data points 2000-10000 10000-20000

of classes 2-6 2-10

of features 2-10 10-50

of dependent features ≥ 1

< #features

≥ 1
10#features

< #features

of independent features ≥ 1

< #features

≥ 1

< #features

of repeated features 0 ≤ 1
5#features

of clusters per class 1-3 1-3

Table 1: Parameter pools for our synthetic dataset generation process.
All parameters will be validated and adjusted before running the method.

Fig. 1: Example for Patch sensitive complex generation

also overshooting to allow further dissection by other sensitive rules. After all itera-
tions of features, the algorithm will combine them into a sensitive shape as output.
The end output of the algorithm will be a continuous space that closely matches the
specified size and prevalence. However, they can overlap with each other and can
have a consequence that is unseen in sensitive attribute frameworks. See Figure 2 for
examples.

2

Fig. 2: Example for continuous sensitive complex generation

3 Hyperparameter Tuning

In our experiment, we use grid search2 to tune hyperparameters of Random Forest,
XGBoost, LightGBM, and Multi-Layered Perceptron (MLP) models. For each model
we train, we first designate the models’ baseline hyperparameters, which set up their
training procedure, such as random state or device type. Hyperparameters that influ-
ence the models’ behavior and thus performance will then be selected from ranges of
possible candidates through grid search. The search grids for each model are detailed
in Table 2.

4 Other Error Metrics for Regression Tasks

In addition to Root Mean Squared Error (RMSE), we also use error metrics of
Mean Absolute Error (MAE), Mean Squared Error (MSE), Mean Absolute Percentage
Error (MAPE), Symmetric Mean Absolute Percentage Error (SMAPE), Mean Squared
Logistic Error (MSLE) to evaluate the performance of our meta-learning models in
our experiments. However, they show similar results to RMSE and reach the same
conclusions. Note that since bias metrics are range from 0 to 2, the MAPE of our meta-
learning model sometimes explodes exponentially and is impossible to comprehend.
These error metrics’ results are detailed in Figure 3.

5 Legend of Meta-features

When constructing our meta-dataset, we use the Python library pymfe3 to extract
meta-features. The meaning of the meta-features is as follows4:
1. Complexity meta-features

• c1: The entropy of class proportions.
• c2: The imbalance ratio .
• cls coef : Clustering coefficient.
• density: Average density of the network for synthesised datasets.
• f1.mean: Average maximum Fisher’s discriminant ratio .

2We use scikit learn’s GridSearchCV implementation to tune models’ hyperparameters
3github.com/ealcobaca/pymfe
4Further details on the meta-features can be found at pymfe.readthedocs.io/en/latest/auto pages/meta features description.html

3

https://github.com/ealcobaca/pymfe
https://pymfe.readthedocs.io/en/latest/auto_pages/meta_features_description.html

Random
Forest

n estimators: [25, 50, 75, 100, 125]

max depth: [5, 10, 20, 30, 40]

max features:[#features,#feature
2 ,

√
#feature]

XGBoost n estimators: [50, 100, 150, 200, 250]

max depth: [2, 5, 10, 15, 20]

learning rate: [0.01, 0.3, 0.5]

LightGBM n estimators: [50, 100, 150, 200, 250, 300, 500,
750, 1000]

max depth: [2, 3, 5, 7, 10, 15, 20, 30]

learning rate: [0.01, 0.1, 0.5]

MLP hidden layer sizes: [(50,), (100,), (25,25),
(75,25), (25,50,25), (10,30,10)]

solver: [Stochastic gradient descent, Adam
optimizer],

activation: [ReLu, Logistic]

learning rate init: [0.001, 0.01, 0.1]

Table 2: Hyperparameter search grids of all relevant models that
grid search selects from

• f1v.mean: Average directional-vector maximum Fisher’s discriminant ratio.
• f2.mean: Average volume of the overlapping region.
• f3.mean: Average feature maximum individual efficiency.
• f4.mean: Average collective feature efficiency.
• hubs.mean: Average hub score.
• l1.mean: Average sum of error distance by linear programming.
• l2.mean: Average OVO subsets error rate of linear classifier.
• l3.mean: Average non-Linearity of a linear classifier.
• lsc: Local set average cardinality of a linear classifier.
• n1: the fraction of borderline points.
• n2.mean: Average ratio of intra and extra class nearest neighbor distance.
• n3.mean: Average error rate of the nearest neighbor classifier.
• n4.mean: Average non-linearity of the k-NN Classifier.
• t1: Fraction of hyperspheres covering data.
• t2: The average number of features per dimension.
• t3: The average number of PCA dimensions per points.
• t4: The ratio of the PCA dimension to the original dimension.

2. Information theory meta-features
• attr conc.mean: Average concentration coef. of each pair of distinct
attributes.

• attr ent.mean: Average Shannon’s entropy for each predictive attribute.

4

Model
0.0

0.1
M

A
E

Equal
Opportunity

Model
0.0

0.1

Disparate
Parity

Model
0.0

0.2

Group
Fairness

NaiveMean

LinearRegression

Lasso

XGBoost

LightGBM

RandomForest

MLP

Model
0.00

0.02

M
S
E

Equal
Opportunity

Model
0.00

0.02

Disparate
Parity

Model
0.0

0.1

Group
Fairness

NaiveMean

LinearRegression

Lasso

XGBoost

LightGBM

RandomForest

MLP

Model
0

2

M
A

P
E

×1012

Equal
Opportunity

Model
0

2

×1012

Disparate
Parity

Model
0

5

Group
Fairness

NaiveMean

LinearRegression

Lasso

XGBoost

LightGBM

RandomForest

MLP

Model
0.0

0.5

S
M

A
P

E

Equal
Opportunity

Model
0.0

0.5

Disparate
Parity

Model
0.0

0.5

Group
Fairness

NaiveMean

LinearRegression

Lasso

XGBoost

LightGBM

RandomForest

MLP

Model
0.0

0.0

M
S

L
E

Equal
Opportunity

Model
0.0

0.0

Disparate
Parity

Model
0.0

0.1

Group
Fairness

NaiveMean

LinearRegression

Lasso

XGBoost

LightGBM

RandomForest

MLP

Fig. 3: The performance of the single-target meta-learning models in main text section
4.2 evaluated with MAE, MSE, MAPE, SMAPE and MSLE

• class conc.mean: Average concentration coefficient between each attribute
and class.

• class ent: Target attribute Shannon’s entropy.
• eq num attr.mean: Average number of attributes equivalent for a predic-
tive task.

• joint ent.mean: Average joint entropy between each attribute and class.
• mut inf.mean: Average mutual information between each attribute and
target.

5

• ns ratio.mean: Average noisiness of attributes.
3. Landmarking Meta-features

• best node.mean: Average performance of the best single decision tree
landmarkers.

• elite nn.mean: Average performance of the Elite Nearest Neighbor land-
markers.

• linear discr.mean: Average performance of the Linear Discriminant classi-
fier landmarkers.

• naive bayes.mean: Average performance of the Naive Bayes classifier
landmarkers.

• one nn.mean: Average performance of the 1-Nearest Neighbor classifier
landmarkers.

• random node.mean: Average performance of the single decision tree node
landmarkers induced by a random attribute.

• worst node.mean: Average performance of the single decision tree node
landmarkers induced by the worst informative attribute.

4. Model-based Meta-features
• leaves: The number of leaf nodes in the trained Decision Tree model.
• leaves branch.mean: Average size of branches in the trained Decision Tree
model.

• leaves corrob.mean: Average leaves corroboration of the trained Decision
Tree model.

• leaves homo.mean: Average model homogeneity for leaf nodes of the
trained Decision Tree model.

• leaves per class.mean: Average proportion of leaves per class in trained
Decision Tree model

• nodes: The number of non-leaf nodes in the trained Decision Tree model.
• nodes per attr.mean: Average ratio of non-leaf nodes per number of
attributes in the trained Decision Tree model.

• nodes per inst.mean: Average ratio of non-leaf nodes per number of
instances in the trained Decision Tree model.

• nodes per level.mean: Average ratio of number of non-leaf nodes per tree
level in the trained Decision Tree model.

• nodes repeated.mean: Average number of repeated nodes in the trained
Decision Tree model.

• tree depth.mean: Average depth of nodes in the trained Decision Tree
model.

• tree imbalance.mean: Average tree imbalance for leaf nodes in the trained
Decision Tree model.

• tree shape.mean: Average tree shape for leaf nodes in the trained Decision
Tree model.

• var importance.mean: Average features importance of the trained Deci-
sion Tree model for all attributes.

6

0

100

Im
p

o
rt

a
n

ce

Disparate Parity

0

20

Im
p

o
rt

a
n

ce

Equal Opportunity

eq
num

attr

attr
conc.m

ean

joint
ent.m

ean

n2.m
ean

ns
ratio

cls
coef

f3.m
ean

c1 lsc
t1 f2.m

ean
best

node.m
ean

c2 class
conc.m

ean

w
orst

node.m
ean

random
node.m

ean

t3 t2 elite
nn.m

ean

t4 l3.m
ean

m
ut

inf.m
ean

leaves
hom

o.m
ean

class
ent

hubs.m
ean

l1.m
ean

linear
discr.m

ean

tree
im

balance.m
ean

n4.m
ean

f4.m
ean

l2.m
ean

leaves
branch.m

ean

nodes
per

level.m
ean

f1v.m
ean

nodes
per

attr

naive
bayes.m

ean

n1 tree
depth.m

ean

var
im

portance.m
ean

f1.m
ean

tree
shape.m

ean

attr
ent.m

ean

n3.m
ean

density
leaves
nodes

per
inst

leaves
corrob.m

ean

one
nn.m

ean

nodes
repeated.m

ean

nodes
leaves

per
class.m

ean

0

2500

Im
p

o
rt

a
n

ce

Group Fairness

Fig. 4: Feature importance for all meta-features per bias score based on the total
gains of the splits using each feature in a single-target LightGBM model

6 Additional Feature Importance Results

In addition to the feature importance results from CLUS presented in the paper, we
randomly draw 10× 1000 samples from the meta-dataset, train a single-target Light-
GBM model on each of them for each bias score, and average over the models’ feature
importance per bias score. Feature importance for a feature here is calculated as the
sum of gains of splits using this feature. We provide feature importance results based
on the number of splits using the feature in our supplementary materials, alongside
the legend of all feature names. Figure 4 shows the results.

We observe that while Disparate Parity and Equal Opportunity use a large number
of features, Group Fairness relies heavily on “leaves per class”, the average number
of leaves dedicated to a class. Since Group Fairness seems to be strongly impacted
by the number of classes, this feature may be an adequate proxy. If we remove this
attribute and repeat the single-target training for Group Fairness, we observe an only
1.2% increase in RMSE and the model uses the features’ average Shannon entropy
(“class ent”). Removing this feature as well results in a 2.6% increase in error. The
model then relies mostly on “f3”, but considers a blend of features. f3 estimates the
average efficiency of a single feature in separating the classes [1]; a measure closely
related to both other features.

Similarly, Disparate Parity relies strongly on “eq num attr”, the number of equiv-
alent attributes for a predictive task [2]. Removing it results in a 0.3% increase in
RMSE and a focus on “attr conc”, the average concentration coefficient between pairs
of features [3]. Removing this feature as well causes a 0.5% increase in error. The
model then focuses on “n2”, the average ratio of intra/inter class nearest neighbor
distance [1], and an overall broader distribution of importance.

Equal Opportunity immediately takes a number of features into account. The most
essential ones here are “class conc”, the concentration coefficient between the features

7

0

100

Im
p

o
rt

a
n

ce

Disparate Parity

0

50
Im

p
o
rt

a
n

ce
Equal Opportunity

cls
coef

c1 attr
ent.m

ean

class
conc.m

ean

f1.m
ean

f4.m
ean

attr
conc.m

ean

t4 f3.m
ean

tree
im

balance.m
ean

t2 nodes
per

inst

f2.m
ean

nodes
per

attr

c2 var
im

portance.m
ean

eq
num

attr

w
orst

node.m
ean

l3.m
ean

naive
bayes.m

ean

t3 linear
discr.m

ean

leaves
branch.m

ean

l2.m
ean

m
ut

inf.m
ean

n4.m
ean

ns
ratio

t1 n3.m
ean

f1v.m
ean

lsc
density
leaves

hom
o.m

ean

joint
ent.m

ean

n2.m
ean

best
node.m

ean

hubs.m
ean

nodes
per

level.m
ean

one
nn.m

ean

random
node.m

ean

tree
shape.m

ean

leaves
corrob.m

ean

elite
nn.m

ean

tree
depth.m

ean

leaves
n1 l1.m

ean
class

ent
nodes

repeated.m
ean

nodes
leaves

per
class.m

ean

0

200

Im
p

o
rt

a
n

ce

Group Fairness

Fig. 5: Feature importance for all meta-feautres per bias score based on the amount
of information gained from the single-target LightGBM model by using the feature

and the target [3], “cls coef”, the clustering coefficient (a measure of neighborhood in
the dataset’s graph representation) [1], and “f1”, the maximum Fisher discriminant
ratio measuring the overlap of features in different classes [1].

Overall, the least important features are the ones generally describing the shape
of the landmarker trees. Figure 5 shows feature importance based on the number of
times the feature is used to split the space in single-target LightGBM models. Figures
6 and 7 show the described leave-one-feature-out experiments, an iterative approach of
understanding the feature dynamics, where we iteratively remove the most informative
feature (based on the cumulative gains of the splits using this feature).

References

[1] Lorena, A.C., Garcia, L.P., Lehmann, J., Souto, M.C., Ho, T.K.: How complex is
your classification problem? a survey on measuring classification complexity. ACM
Computing Surveys 52, 1–34 (2019)

[2] Michie, D., Spiegelhalter, D.J., Taylor, C.C., Campbell, J.: Machine Learning,
Neural and Statistical Classification. Ellis Horwood, USA (1995)

[3] Kalousis, A., Hilario, M.: Model selection via meta-learning: a comparative study.
In: Proceedings 12th IEEE Internationals Conference on Tools with Artificial
Intelligence, pp. 406–413 (2000)

8

attr
conc.m

ean

n2.m
ean

t1 ns
ratio

lsc
cls

coef
joint

ent.m
ean

class
conc.m

ean

c1 f3.m
ean

t3 f2.m
ean

f1.m
ean

c2 m
ut

inf.m
ean

linear
discr.m

ean

nodes
per

level.m
ean

tree
im

balance.m
ean

leaves
hom

o.m
ean

best
node.m

ean

naive
bayes.m

ean

density
hubs.m

ean

n4.m
ean

elite
nn.m

ean

w
orst

node.m
ean

class
ent

f4.m
ean

t4 one
nn.m

ean

n1 l3.m
ean

random
node.m

ean

tree
shape.m

ean

attr
ent.m

ean

n3.m
ean

t2 l1.m
ean

leaves
branch.m

ean

f1v.m
ean

var
im

portance.m
ean

tree
depth.m

ean

nodes
per

attr

l2.m
ean

nodes
per

inst

leaves
leaves

per
class.m

ean

nodes
repeated.m

ean

nodes
leaves

corrob.m
ean

0

50

100

Im
p

o
rt

a
n

ce

Group Fairness (without [’eq num attr’])

n2.m
ean

joint
ent.m

ean

f1.m
ean

t1 cls
coef

ns
ratio

random
node.m

ean

class
conc.m

ean

w
orst

node.m
ean

t3 lsc
f3.m

ean
c1 best

node.m
ean

class
ent

f2.m
ean

m
ut

inf.m
ean

c2 naive
bayes.m

ean

elite
nn.m

ean

density
l1.m

ean
hubs.m

ean

one
nn.m

ean

tree
im

balance.m
ean

t4 linear
discr.m

ean

nodes
per

level.m
ean

nodes
per

attr

l3.m
ean

t2 leaves
hom

o.m
ean

n4.m
ean

f4.m
ean

l2.m
ean

n1 tree
shape.m

ean

attr
ent.m

ean

n3.m
ean

var
im

portance.m
ean

leaves
corrob.m

ean

leaves
branch.m

ean

nodes
per

inst

leaves
per

class.m
ean

f1v.m
ean

leaves
nodes

repeated.m
ean

tree
depth.m

ean

nodes

0

50

100

Im
p

o
rt

a
n
ce

Group Fairness (without [’eq num attr’, ’attr conc.mean’])

t1 joint
ent.m

ean

f1.m
ean

cls
coef

class
conc.m

ean

random
node.m

ean

lsc
f3.m

ean
t3 m

ut
inf.m

ean

ns
ratio

class
ent

elite
nn.m

ean

c1 c2 best
node.m

ean

f2.m
ean

w
orst

node.m
ean

l3.m
ean

l1.m
ean

linear
discr.m

ean

density
nodes

per
attr

nodes
per

level.m
ean

n4.m
ean

tree
shape.m

ean

one
nn.m

ean

hubs.m
ean

tree
im

balance.m
ean

leaves
hom

o.m
ean

t2 t4 n1 f4.m
ean

attr
ent.m

ean

l2.m
ean

naive
bayes.m

ean

nodes
per

inst

leaves
branch.m

ean

var
im

portance.m
ean

f1v.m
ean

n3.m
ean

leaves
per

class.m
ean

tree
depth.m

ean

leaves
corrob.m

ean

leaves
nodes

repeated.m
ean

nodes

0

50

Im
p

o
rt

a
n
ce

Group Fairness (without [’eq num attr’, ’attr conc.mean’, ’n2.mean’])

Fig. 6: Feature importance (based on gain) for iterative feature removal experiment
on Disparate Parity

9

class
ent

f3.m
ean

linear
discr.m

ean

naive
bayes.m

ean

f1v.m
ean

density
nodes

per
inst

l2.m
ean

l1.m
ean

n4.m
ean

l3.m
ean

one
nn.m

ean

c1 hubs.m
ean

tree
im

balance.m
ean

m
ut

inf.m
ean

f4.m
ean

elite
nn.m

ean

n1 random
node.m

ean

f1.m
ean

best
node.m

ean

eq
num

attr

nodes
per

level.m
ean

joint
ent.m

ean

attr
conc.m

ean

tree
shape.m

ean

t3 w
orst

node.m
ean

t2 f2.m
ean

leaves
hom

o.m
ean

cls
coef

t4 c2 leaves
corrob.m

ean

leaves
branch.m

ean

nodes
per

attr

lsc
n3.m

ean
tree

depth.m
ean

attr
ent.m

ean

class
conc.m

ean

leaves
var

im
portance.m

ean

t1 n2.m
ean

ns
ratio

nodes
nodes

repeated.m
ean

0

2000

4000

Im
p

o
rt

a
n
ce

Group Fairness (without leaves per class)

f3.m
ean

best
node.m

ean

linear
discr.m

ean

n4.m
ean

density
elite

nn.m
ean

w
orst

node.m
ean

f4.m
ean

c2 random
node.m

ean

nodes
per

inst

class
conc.m

ean

naive
bayes.m

ean

c1 cls
coef

attr
ent.m

ean

f1.m
ean

one
nn.m

ean

nodes
per

level.m
ean

m
ut

inf.m
ean

ns
ratio

hubs.m
ean

eq
num

attr

l1.m
ean

lsc
f1v.m

ean
joint

ent.m
ean

tree
im

balance.m
ean

n2.m
ean

t2 attr
conc.m

ean

leaves
hom

o.m
ean

t3 l3.m
ean

l2.m
ean

nodes
per

attr

n1 leaves
corrob.m

ean

leaves
branch.m

ean

var
im

portance.m
ean

tree
depth.m

ean

tree
shape.m

ean

leaves
t4 f2.m

ean
n3.m

ean
nodes
t1 nodes

repeated.m
ean

0

2000

Im
p

o
rt

a
n
ce

Group Fairness (without [’leaves per class.mean’, ’class ent’])

elite
nn.m

ean

density
best

node.m
ean

f4.m
ean

c1 n4.m
ean

joint
ent.m

ean

one
nn.m

ean

m
ut

inf.m
ean

nodes
per

inst

class
conc.m

ean

f1.m
ean

l2.m
ean

linear
discr.m

ean

cls
coef

ns
ratio

random
node.m

ean

l3.m
ean

nodes
per

attr

c2 w
orst

node.m
ean

l1.m
ean

t2 naive
bayes.m

ean

f1v.m
ean

hubs.m
ean

nodes
per

level.m
ean

t4 t1 var
im

portance.m
ean

eq
num

attr

lsc
tree

im
balance.m

ean

n1 attr
conc.m

ean

t3 leaves
branch.m

ean

n3.m
ean

leaves
hom

o.m
ean

leaves
corrob.m

ean

n2.m
ean

tree
depth.m

ean

attr
ent.m

ean

f2.m
ean

nodes
repeated.m

ean

leaves
tree

shape.m
ean

nodes

0

1000

2000

Im
p

o
rt

a
n

ce

Group Fairness (without [’leaves per class.mean’, ’class ent’, ’f3.mean’])

best
node.m

ean

density
c1 f4.m

ean
n4.m

ean
class

conc.m
ean

nodes
per

inst

joint
ent.m

ean

one
nn.m

ean

m
ut

inf.m
ean

linear
discr.m

ean

f1.m
ean

cls
coef

ns
ratio

l2.m
ean

c2 random
node.m

ean

l3.m
ean

n1 w
orst

node.m
ean

l1.m
ean

nodes
per

level.m
ean

nodes
per

attr

n3.m
ean

naive
bayes.m

ean

var
im

portance.m
ean

t1 t4 t2 hubs.m
ean

leaves
hom

o.m
ean

attr
conc.m

ean

f2.m
ean

attr
ent.m

ean

eq
num

attr

tree
im

balance.m
ean

t3 leaves
corrob.m

ean

f1v.m
ean

leaves
leaves

branch.m
ean

lsc
tree

shape.m
ean

n2.m
ean

tree
depth.m

ean

nodes
repeated.m

ean

nodes

0

1000

2000

Im
p

o
rt

a
n

ce

Group Fairness (without [’leaves per class.mean’, ’class ent’, ’f3.mean’, ’elite nn.mean’])

Fig. 7: Feature importance (based on gain) for iterative feature removal experiment
on Group Fairness

10

	Dataset Generation
	Bias Generation
	Hyperparameter Tuning
	Other Error Metrics for Regression Tasks
	Legend of Meta-features
	Additional Feature Importance Results

