Supplementary Materials for

2 Robust Flat-Magnetoresistivity in a 3D Nodal Flat-band Semimetal

3

1

- 4 Ruoqi Wang^{1,2}, Xin Gu^{1,2}, Haofu Wen^{1,2}, Bo Zhao^{3,4}, Shijun Yuan^{1,2}, Mingliang
- 5 Wu^{1,2}, Langsheng Ling⁵, Chuanying Xi⁵, Kunquan Hong^{1,2}, Ke Xia^{2*}, Taishi Chen^{1,2*},
- 6 Jinlan Wang^{1,2}
- 7 1. Key Laboratory of Quantum Materials and Devices of Ministry of Education,
- 8 2. School of Physics, Southeast University, Nanjing 211189, China
- 9 3. Shanghai Advanced Research Institute, CAS 239 Zhangheng Road, Pudong, Shanghai 201204,
- 10 China.
- 11 4. Henan Key Laboratory of Imaging and Intelligent Processing Zhengzhou, China
- 12 5. High Magnetic Field Laboratory Chinese Academy of Sciences, Hefei 230031, China

13

- 14 Ruoqi Wang, Xin Gu, Haofu Wen, and Bo Zhao contributed equally.
- *Corresponding author. E-mail: chentaishi@seu.edu.cn, kexia@seu.edu.cn

17 S1. THE SCALING PLOT FOR THE $|\sigma_{xy}|$ VERSUS σ_{xx} IN Fe₃Ga

- Intrinsic AHE originates from the Bloch electrons' scattering^{1,2}. The intrinsic AHC $\sigma_{xy}^{int.}$ at a finite
- 19 temperature is expressed as: $\sigma_{xy}^{\text{int.}} = -\frac{e^2}{h} \sum_{n,\mathbf{k}} \int \frac{d\mathbf{k}}{2\pi^3} f(\varepsilon_n(\mathbf{k})) \Omega_{n,z}(\mathbf{k})$, where $f(\varepsilon_n(\mathbf{k}))$ and
- 20 $\Omega_{n,z}(\mathbf{k})$ refer to the Fermi-Dirac distribution function and Berry curvature, respectively. The
- 21 $\Omega_{n,z}(\mathbf{k})$ is given by $\Omega_{n,\mu\nu}(\mathbf{k}) = i \sum_{n' \neq n} \frac{\langle n' | \upsilon_{\mu} | n \rangle \langle n | \upsilon_{\mu} | n' \rangle}{(\varepsilon_{n'} \varepsilon_{n})^2}$. Therefore, the $\sigma_{xy}^{\text{int.}}$ at finite
- temperature depends on the $\Omega_{n,r}(\mathbf{k})$. In the time-reversal-symmetry-breaking materials, such as
- 23 ferromagnetic compounds, the integral of the Berry curvature over the first Brillouin zone leads to
- 24 a nonzero Berry phase. When a nondegenerate band-crossing occurs, the Berry curvature increases
- significantly, leading to a large AHC on the order of 10³ S/cm, even in antiferromagnetic
- 26 compounds^{1,3-6}. Generally, a material showing a giant AHC often indicates the existence of nodal
- 27 points near its Fermi surface, making it as a highly effective strategy for exploring topological
- 28 materials⁷⁻¹⁰. In the ferromagnetic metal, the Hall resistivity ρ_{xy} can be expressed as:
- 29 $\rho_{xy} = R_0 B + R_S M_S$, where R_0 , R_S , and M_S stand for the ordinary Hall coefficient, anomalous
- 30 Hall coefficient and saturated magnetization^{1,2,6,11}, respectively. The intrinsic AHE resistivity,
- 31 $\rho_{xy}^{\text{int}r} = R_S M_S$, is quadratically proportional to the resistivity ρ_{xx} , namely $\rho_{xy}^{\text{int}r} \propto \rho_{xx}^2$. Using the
- 32 tensor relations of resistivity, $\sigma_{xy} = \frac{-\rho_{xy}}{\rho_{xy}^2 + \rho_{xx}^2}$, $|\sigma_{xy}^{int.}|$ behaves as a constant, independent of σ_{xx} ,
- resulting in the scaling relation: $|\sigma_{xy}^{\text{int.}}| \propto \sigma_{xx}^{0}$.
- 35 The scaling plot for the $|\sigma_{xy}|$ versus σ_{xx} in Fe₃Ga is shown in Supplementary Fig. 8. Due to the
- 36 high isotropy in magnetic crystalline and the nodal-web in Fe₃Ga, the AHC shows very small
- 37 diversity under different measurement configurations⁷. This is very different from the scenario in
- 38 hexagonal topological magnets such as Mn₃Sn and Co₃Sn₂S₂^{3,4,6,12}. The giant $|\sigma_{xy}|$ in all
- 39 temperatures in Fig. 2b keeps constant in the intrinsic range, although the spin fluctuation
- dominates the MR at high temperatures. This strongly supports the $|_{\sigma_{xy}}|$ in Fe₃Ga originates from
- 41 the nodal-web rather than extrinsic mechanisms, such as the side-jump^{1,2}. Furthermore, the Fe₃Ga
- samples grown by the CVT method produce giant $|\sigma_{xy}|$ more than twice larger than those grown
- by Czochralski method, despite their compositions being nearly identical. This can be attributed
- 44 to the high quality of the CVT-grown Fe₃Ga samples. The Czochralski method grew samples faster
- 45 than CVT method, but it often causes more defects. Compared the TEM images, we can clearly
- observe the satellite spots shown in the TEM image in *Ref.*7. In contrast, the patterns in this work
- 47 are sharp and clean. The defects raising additional charge carriers adjusting the Fermi level have
- been well studied in the previous work¹³.

S2. THE ESTIMATION OF THE AXIAL RELAXATION TIME

- 51 The axial relaxation time T_A is an important factor when the chiral anomaly occurs, which
- represents the average time of fermions changing their handedness. In the simplified model, 52
- especially for the type-I Dirac and Weyl semimetals, the longitudinal conductivity $\sigma_{_{X\!X}}^\chi$ under 53
- 54 $\hat{\mathbf{R}} \parallel \hat{\mathbf{I}}$ is written as ¹⁴:

50

$$\sigma_{xx}^{\chi} = \frac{e^2}{4\pi^2 \hbar c} \frac{v}{c} \frac{(eB)^2 v^2}{\mu^2} \tau_A \tag{S1}$$

56 from which τ_A can be expressed as:

$$\tau_A = \sigma_{xx}^{\chi} \frac{4\pi^2 \hbar c}{e^2} \frac{c}{v} \frac{\mu^2}{(eB)^2 v^2}$$
 (S2)

58 namely,
$$\tau_A = \alpha \times 10^{60} \times \frac{\mu^2}{v^3}$$
 (S3)

- 59 where, the constants e, \hbar and c are electron charge, reduced Planck constant and light velocity,
- 60 and the U, μ and B refer to the Fermi velocity, mobility and magnetic field, respectively. The
- α in (S3) is determined by fitting the positive magnetoconductivity induced by the chiral anomaly. 61
- 62 The unit in the equation (S3) is second. The U, μ can be determined by analyzing the quantum
- oscillations in the Dirac and Weyl semimetals. Therefore, \mathcal{T}_A can be easily obtained just by fit 63
- 64 the positive magnetoconductivity for $\hat{\boldsymbol{B}} \parallel \hat{\boldsymbol{I}}$. However, by investigating the chiral-anomaly
- induced negative MR in well-known nodal semimetals (Table S1), the estimated T_A reaches up to 65
- an order of 10^{48} s, much larger than the age of the universe we are living $(4.32 \times 10^{17} \text{ seconds})$ 66
- 67 according to the Big Bang Theory).

68

- By looking into the formula (S1), we can also estimate the up-limit of σ_{rr}^{χ} , if we set τ_A , ν to be 69 the age of our universe and the light speed, and μ being in-between $1 \sim 0.001 m^2 V^{-1} s^{-1}$, respectively.
- 70 The yielded value is in the order of $1.67 \times 10^{-17} \, S \, cm^{-1}$ (for $\mu = 1m^2 V^{-1} s^{-1}$) $1.67 \times 10^{-11} \, S \, cm^{-1}$ 71
- $(\mu = 0.001 m^2 V^{-1} s^{-1})$ when B=9 T, representing a very tiny correction to the longitudinal 72
- magnetoconductivity, which contradicts all reported chiral anomaly induced negative MRs¹⁵⁻¹⁸. 73

74 75

76

- In Fe₃Ga, we obtained the low-limit of T_A by fitting the positive magnetoconductivity shown in the Supplementary Fig. 6, and the yielded values are in the order of 10^{30} s, if the μ and v in equation (S3) are set as $0.001m^2V^{-1}s^{-1}$ and $3\times10^8m/s$, respectively. The value remains very
- 77
- 78 large.

79

- 80 In a word, the estimated T_A values in so-far reported nodal semimetals are all incompatible with
- the experimental observations. In Ref. 17, this obvious problem is attributed to the matrix element 81
- **M** in $1/\tau_A$, which was not well studied in *Refs*. 14,19. 82

S3. DISCUSSIONS ON THE PLMR

84

95

107

In the theoretical consideration of the chiral anomaly induced PLMR^{14,20}, ρ_{Theory}^{PLMR} is written as:

86
$$\rho_{Theory}^{PLMR} = \rho_0 - \Delta \rho_{\chi} \cos^2(\theta - \frac{\pi}{2}) = \rho_0 - \frac{\Delta \rho_{\chi}}{2} \left[I + \sin(2(\theta - \frac{\pi}{4})) \right]$$
 (S4)

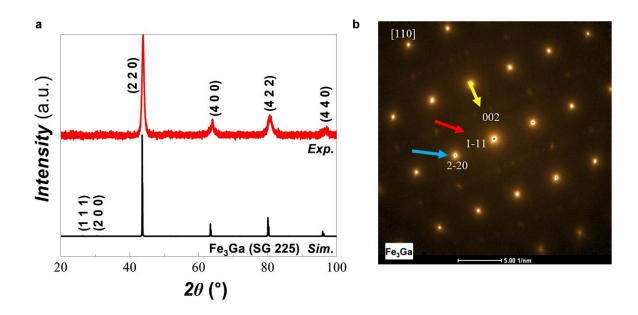
- where the θ is defined in Fig. 3b. In this expression, $\theta = 0^{\circ}$ and 90° refer to $\hat{\mathbf{B}} \perp \hat{\mathbf{I}}$ and $\hat{\mathbf{B}} \parallel \hat{\mathbf{I}}$,
- 88 respectively. In real nodal semimetals^{12,17,18}, such as Na₃Bi, TaAs, WTe₂ and Co₂MnGa, etc., the
- MRs at cryogenic temperatures are positive for $\hat{\mathbf{B}} \perp \hat{\mathbf{I}}$, which is similar with the nodal-web
- 90 ferromagnet Fe₃Ga. Consequently, the combination the positive and negative MR in PHE and
- 91 PLMR do exist in Fe₃Ga, and gives rise to the flat-MR as shown in Fig. 3a in the main text.
- 92 Therefore, the modified PLMR including both positive and negative MR is pressing needed.

$$\rho_{modified}^{PLMR} = \rho_0 - \Delta \rho_{\chi} \sin^2(2\theta - \frac{3\pi}{2})$$
 (S5)

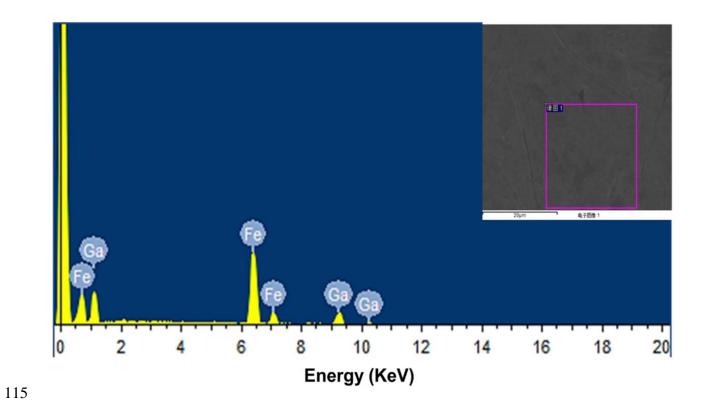
- Indeed, the modified formulas perfectly fit the PHE and PMLR in the main text.
- 96 S4. EXCLUDING THE CRYOGENIC AMR IN Fe₃Ga
- 97 To confirm the PLMR and PHE originating from the chiral anomaly, one must be cautious about
- the conventional AMR involved, as Fe₃Ga is a typical 3d magnetic compound^{21,22}. In conventional
- 99 3d transition metals, the well-established formula for the planar AMR has been given²²:

100
$$\rho_{Planar}^{AMR}(\frac{\pi}{2} - \theta) = \rho(0) + [\rho(\frac{\pi}{2}) - \rho(0)]\cos^2(\frac{\pi}{2} - \theta)$$
 (S6)

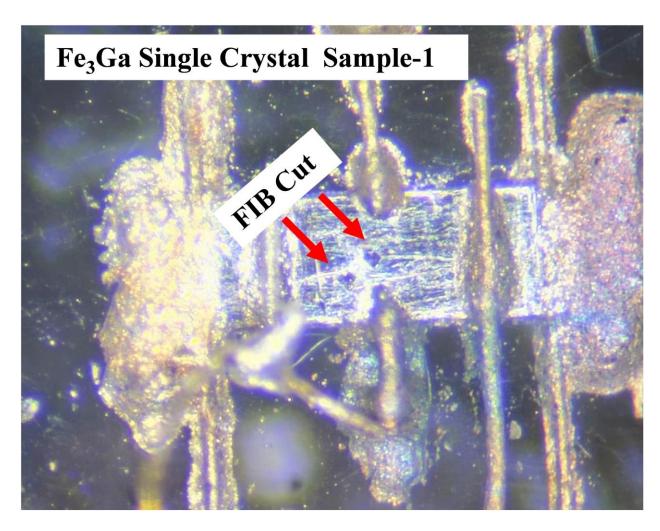
- where $\rho(0)$ and $\rho(\frac{\pi}{2})$ refer to the magnetoresistivity for $\hat{\mathbf{B}} \perp \hat{\mathbf{I}}$ and $\hat{\mathbf{B}} \parallel \hat{\mathbf{I}}$, respectively.
- Obviously, the formula (S6) shows the $\rho_{chiral\ anomaly}^{PLMR}$ shows the maximum for $\hat{\pmb{B}} \perp \hat{\pmb{I}}$ and the
- minimum under $\hat{\boldsymbol{B}} \parallel \hat{\boldsymbol{I}}$, while the $\rho_{3d\,Transition\,Metal}^{PHE}$ is totally opposite. The simulated $\rho_{chiral\,anomaly}^{PLMR}$ and
- $\rho_{3d \, Transition \, Metal}^{PHE}$ are shown in Supplementary Fig. 9 and Supplementary Fig. 10. In Fe₃Ga, the PMLR
- at 2 K is totally different from 300 K, which strongly supports the PHE and the PMLR below 50K
- originating from the chiral anomaly.



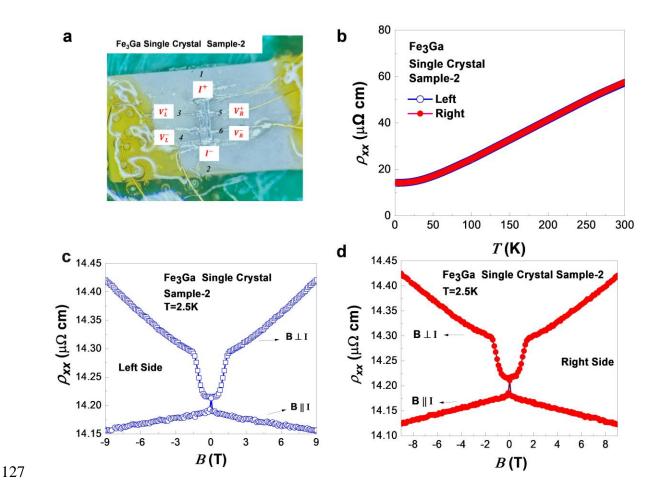
Supplementary Fig. 1. Powder XRD and TEM results for Fe₃Ga single crystals. a, The XRD result from the Fe₃Ga powder filed from single crystal Fe₃Ga grains. b, TEM image collected from the crystallographic [110] direction. The yellow, red and blue arrows refer to (002), $(1\bar{1}1)$ and $(2\bar{2}0)$, respectively.



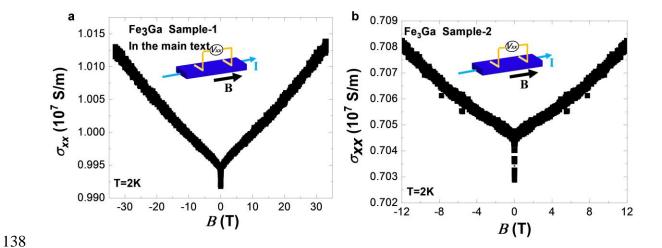
Supplementary Fig. 2. SEM/EDS analysis. The average atomic ratio over 10 spots on the polished bulk yields the composition of iron and gallium 3.07:0.97.



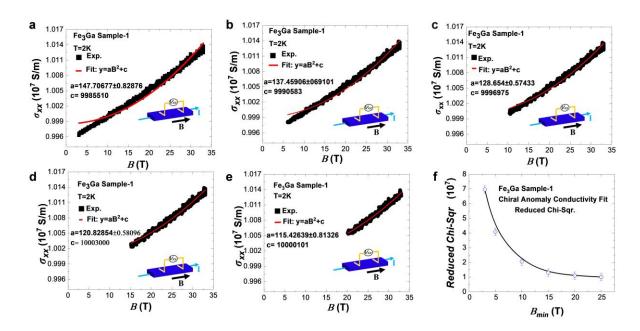
Supplementary Fig. 3. Fe₃Ga single crystal sample-1 studied in the main text. The two pits instructed by two arrows were made by a FIB-cut for TEM measurements, and these results are shown in Fig. 1c and Supplementary Fig. 1.



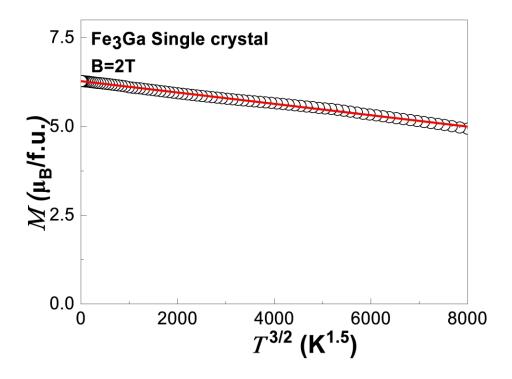
Supplementary Fig. 4. Excluding the inhomogeneous effect in Fe₃Ga single crystal sample-2. a, Six electric contacts were made along two sides. Contacts 1 and 2 were used for electron current -in and -out, respectively. The edge contacts 3 and 4 were used for longitudinal voltage drop collection on the left side, and the contacts 5 and 6 were used for longitudinal voltage collection on the right side. **b,** The RT curves for the left and right sides. **c,** and **d,** show the MR results for the left and right side under $\hat{\boldsymbol{B}} \perp \hat{\boldsymbol{I}}$ and $\hat{\boldsymbol{B}} \parallel \hat{\boldsymbol{I}}$, perfectly reproducing the results presented in the main text and excluding the current jetting effect in Fe₃Ga.



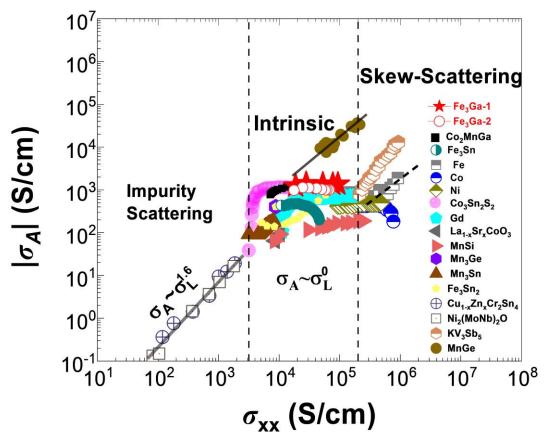
Supplementary Fig. 5. The chiral anomaly induced positive magnetoconductivity in Fe₃Ga single crystal sample-1 and sample-2. a, The positive magnetoconductivity in Fe₃Ga single crystal sample-1 under the configuration $\hat{\boldsymbol{B}} \parallel \hat{\boldsymbol{I}}$ at 2 K was measured up to 33 T by a steady high-magnetic field apparatus. b, The positive magnetoconductivity in Fe₃Ga single crystal sample-2 under $\hat{\boldsymbol{B}} \parallel \hat{\boldsymbol{I}}$ at 2 K.



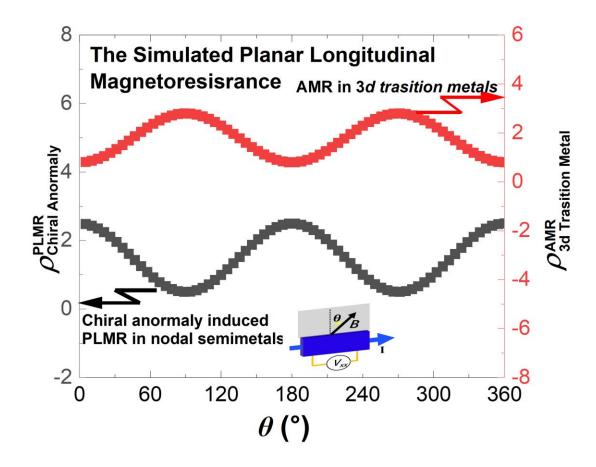
Supplementary Fig. 6. The fit on the magnetoconductivity in Fe₃Ga single crystal sample-1. The fit function is $y = aB^2 + c$. a, b, c, d and e refer to the results under the magnetic field range $3\sim33$ T, $5\sim33$ T, $10\sim33$ T, $15\sim33$ T and $20\sim33$ T, respectively. f, shows the Reduced Chi-Sqr. verses minimum magnetic field (B_{\min}) for the fits. The smaller Reduced Chi-Sqr means the better fit results.



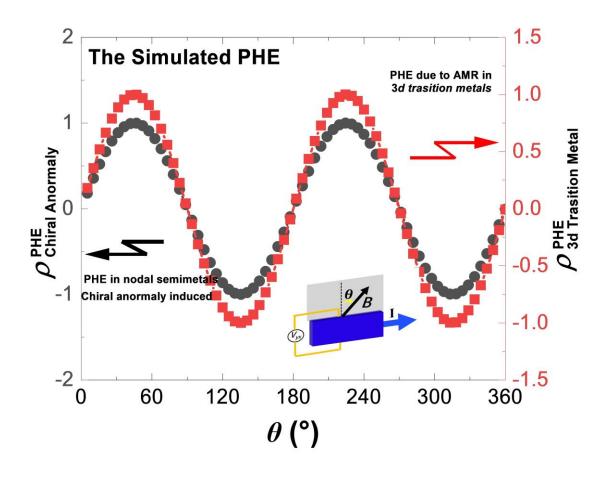
Supplementary Fig. 7. Magnetization changing with $T^{3/2}$. Below 400 K, the saturated magnetization changing with the temperature in the Bloch's $T^{3/2}$ law^{24,25}, namely $M = M_0 - \alpha T^{3/2}$, strongly supporting the large NMR above 50 K resulting from the scattering between electrons and spin-fluctuation.



Supplementary Fig. 8. The scaling plot for the anomalous Hall conductivity and longitudinal conductivity.



Supplementary Fig. 9. The simulated $\rho_{chiral\ anomaly}^{PLMR}$ and $\rho_{3d\ Transition\ Metal}^{AMR}$ based on the formula (S5) and (S6), respectively. The inset shows the configuration.



Supplementary Fig. 10. The simulated $\rho_{Chiral\ Anormaly}^{PHE}$ and $\rho_{3d\ Transition\ Metal}^{PHE}$ induced by the chiral anormal and AMR. The inset shows the configuration.

Table S1. The estimated $\tau_{\scriptscriptstyle A}$ from the previous literatures, using the formula (S2) in the Supplementary

Nodal Semimeta ls	Type (μ_B m ² ·V ⁻¹ ·s ⁻¹)	E _F (meV)	V _F (m/s)	$\sigma_{\chi\chi}^{\chi} \ (\Omega^{\text{-}1} \cdot \text{m}^{\text{-}1})$	τ _a (s)	Reference (s)
Cd ₃ As ₂	Dirac	900	232	9.3×10^{5}	1.67×10^6	1.19×10^{52}	25
Na ₃ Bi	Dirac	3.5	30	8.05×10^{5}	1.56×10^{7}	2.58×10^{48}	26
NbP	Weyl	500	98	4.8×10^{5}	1.59×10^{8}	2.53×10^{54}	27
TaAs	Weyl	50	11.48	1.16×10^{5}	1.87×10^{6}	2.11×10^{52}	28
WTe ₂	Weyl-II	3.5	244.5	3.09×10^{5}	9.98×10^{7}	2.92×10^{50}	29-31
$Co_3Sn_2S_2$	Weyl	~0.074	12.3,5.9	$\sim 26.6 \times 10^4$	4.2×10^4	$\sim 2.26 \times 10^{45}$	12
Co ₂ MnGa	Nodal Line, Weyl	0.0035	80	2.7×10^4	2.75×10^4	4.33×10^{43}	32,33
Fe ₃ Ga	Nodal web	0.433- 0.001	74	$<3 \times 10^{8}$	9.2×10^4	>10 ³⁰	⁷ and this work

182 References and Notes

- Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H., & Ong, N. P. Anomalous Hall effect. *Rev. Mod. Phys.* 82, 1539–1592 (2010).
- 185 2. Xiao, D., Chang, M. C., & Niu, Q. Berry phase effects on electronic properties. *Rev. Mod. Phys.* 82, 1959–2007 (2010).
- 187 3. Nakatsuji, S., Kiyohara, N., & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. *Nature* 527, 212–215 (2015).
- 4. Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn₃Ge. *Sci. Adv.* 2, e1501870 (2016).
- 5. Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. *Science* 302, 92–95 (2003).
- 6. Chen, T. et al. Large anomalous Nernst effect and nodal plane in an iron-based kagome ferromagnet. Sci. Adv. 8, eabk1480 (2022).
- 7. Sakai, A. et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. *Nature* 581, 53–57 (2020).
- 8. Železný, J., Yahagi, Y., Gomez-Olivella, C., Zhang, Y., & Sun, Y. High-throughput study of the anomalous Hall effect. *npj Comput. Mater.* 9, 151 (2023).
- 9. Xu, Y. et al. High-throughput calculations of magnetic topological materials. *Nature* 586, 702–707 (2020).
- 201 10. Noky, J. et al. Giant anomalous Hall and Nernst effect in magnetic cubic Heusler compounds. *npj Comput. Mater.* 6, 77 (2020).
- 203 11. Nagaosa, N. Anomalous Hall effect—A new perspective. J. Phys. Soc. Jpn. 75, 042001 (2006).
- 12. Liu, E. K. et al. Giant anomalous Hall effect in a ferromagnetic Kagome-lattice semimetal. *Nat. Phys.* 14, 1125–1131 (2018).
- 206 13. Scanlon, D. O. et al. Controlling bulk conductivity in topological insulators: Key role of anti-site defects. Adv. Mater. 24, 2154–2158 (2012).
- 208 14. Burkov, A. A. Negative longitudinal magnetoresistance in Dirac and Weyl metals. *Phys. Rev.* B 91, 245157 (2015).
- 210 15. Ong, N. P., & Liang, S. H. Experimental signatures of the chiral anomaly in Dirac-Weyl semimetals. 211 *Nat. Rev. Phys.* 3, 394–404 (2021).
- 212 16. Liang, S. H. et al. Experimental tests of the chiral anomaly magnetoresistance in the Dirac-Weyl semimetals Na₃Bi and GdPtBi. *Phys. Rev. X* 8, 031002 (2018).
- 214 17. Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na₃Bi. *Science* 350, 413–416 (2015).
- 18. Huang, X. C. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. *Phys. Rev. X* 5, 031023 (2015).
- 218 19. Burkov, A. A., Hook, M. D., & Balents, L. Topological nodal semimetals. *Phys. Rev. B* 84, 235126 (2011).
- 220 20. Son, D. T., & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. *Phys. Rev. B* 88, 104412 (2013).
- 222 21. McGuire, T., & Potter, R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).
- 224 22. Florio, G. in Encyclopedia of Smart Materials (Ed. Olabi, A.-G.) 24–31 (Elsevier, Oxford, 2022).
- 225 23. Burkov, A. A. Giant planar Hall effect in topological metals. *Phys. Rev. B* 96, 041110 (2017).
- 24. Brommer, P. E. in Encyclopedia of Materials: *Science and Technology* (Eds. Buschow, K. H. J. et al.) 1–6 (Elsevier, Oxford, 2005).
- 228 25. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the dirac semimetal Cd₃As₂. *Nature* 229 *Mater.* 14, 280–284 (2015).
- 230 26. Xiong, J. et al. Anomalous conductivity tensor in the Dirac semimetal Na₃Bi. *Europhys. Lett.* 114, 27002 (2016).

- 27. Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. *Nat. Phys.* 11, 645–649 (2015).
- 28. Zhang, C. L. et al. Tantalum Monoarsenide: an Exotic Compensated Semimetal. *arXiv*: 1502.00251 (2015).
- 29. Ali, M. N. et al. Large, Non-saturating magnetoresistance in WTe₂. *Nature* 514, 205–208 (2014).
- 30. Li, P. et al. Evidence for topological type-II Weyl semimetal WTe₂. *Nat. Commun.* 8, 2150 (2017).
- 31. Wang, Y. L. et al. Origin of the turn-on temperature behavior in WTe₂. *Phys. Rev. B* 92, 180402 (2015).
- 32. Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. *Nat. Phys.* 14, 1119–1124 (2018).
- 33. Belopolski, I. et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. *Science* 365, 1278–1281 (2019).