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S1 Supplementary Text

A. Normalized variance of PDM

To investigate the chemical short-range order of the structure, we first computed the variance of atomic pairs in the
PDM across different energy ranges. This variance reflects the uniformity and consistency of atomic pair coordination
within specific energy ranges. Specifically, atomic pairs with smaller variances exhibit better coordination consistency
within a given energy range. Atomic pairs that retain smaller variances in low-energy regions are likely to play
a significant role in the structural stability, while atomic pairs with larger variances demonstrate greater spatial
dispersion and may contribute less to structural stability.

Actually, the variance of atomic pair coordination numbers is also correlated with their mean values. To simplify
the comparison of the relative consistency of atomic pair coordination numbers, we use the variance-to-mean ratio for
subsequent statistical analysis. For structures across all energy ranges, the variance-to-mean ratios of different atomic
pairs are shown in fig. S1. Oxygen-oxygen pairs are excluded due to their significantly larger variance, which would
affect the observation of other atom pairs.

PDM is classified into self-pair interactions, intermetallic pairs, and metal-oxygen interactions. The variance-to-
mean ratio of the PDM in the energy ranges below and above −920 eV is shown in fig. S2. It can be observed that,
regardless of whether the energy is less than or greater than −920 eV, the variance of self-pair interactions is always
smaller than that of intermetallic pairs, which in turn is smaller than that of metal-oxygen pairs. However, the relative
ordering of these three atomic pair groups varies across different energy ranges. For the more stable structures with
energies below -920 eV, it is notable that some Ni-X pairs (such as Ni-Ni, Fe-Ni, and B-Ni), as well as B-B pairs, have
relatively small coordination number variances, suggesting that these atomic pairs may play a crucial role in forming
stable structures and significantly impact the chemical short-range order of the structure.
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B. Cluster expansion analysis

The high compositional complexity of the system involving six elements presents significant challenges because of the
intricate interactions and vast configurational space. In smaller atomic systems, atomic interactions may not be fully
captured, and the enumeration of configurations becomes stagnant. As the number of atoms in the system up to six,
the configurational space grows exponentially, complicating the structure search process. To address this challenge,
we utilized a set of fixed-concentration disordered models constructed using the SQS structural relaxation method
to provide input energies. A 3× 4× 5 supercell containing 120 atoms was employed, and a total of 2,500 structures
were considered in the analysis. As illustrated in fig. S3A, the fitted LOOCV scores persist at a high level (0.095 eV),
exceeding the accuracy threshold suggested by ATAT (0.02 eV). Additionally, increasing the diameter of the two-body
clusters or incorporating three-body clusters leads to an even higher CV score. For CE fitting, the two-body cluster
with the lowest LOOCV score (cutoff = 5.5 Å) was selected and fitted using the least-squares method to obtain the
ECI for further testing. Subsequent five-fold cross-validation performed with the scikit-learn method yielded a root
mean squared error (RMSE) of approximately 0.09 eV, as shown in (fig. S3B). And the predicted energies (fig. S3C)
exhibit poor agreement with an R2 value of only 0.1, which is markedly lower than the typical accuracy achieved for
alloys with crystalline structures. This poor fitting primarily arises from the significant displacement of non-metallic
atoms during structural relaxation, which disrupts the BCC symmetry of the system, as depicted in fig. S3D–E.
Therefore, for amorphous high-entropy materials with a substantial concentration of non-metallic atoms, accurately
predicting lattice site occupancy and cluster energies using the CE method is challenging.

In addition to the least-squares fitting method, two additional fitting methods were also employed to test the cluster
expansion based on the selected SQS structures. Fig. 5 shows the two-body cluster truncation radius tests for Lasso
and Ridge fitting, with RMSE values for both methods exceeding 0.09 eV (fig. S4A–B).

Furthermore, by scanning the hyperparameter alpha for these two methods using the same two-body cluster trun-
cation radius (5.5 Å) as the least squares fitting, it was found that the RMSE values converge near 0.1 eV (fig S4C–D),
which is slightly higher than the least-squares fitting results via ATAT. Note that the Lasso and Ridge fitting were
conducted using the ICET package [1]. Similar results obtained from these two additional methods indicate that
their fitting performance is comparable to that of the least squares method, further suggesting that the amorphous
high-entropy ceramic systems studied in this paper are not suitable for investigation via cluster expansion methods.
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C. Diffusion rate analysis

The diffusion rate (D) can be inferred from the slope of the MSD curve, which can be calculated as:

⟨(r(t)− r(0))2⟩ = 6Dt (S1)

As the boron content increases, the overall diffusion rate of the system decreases, as shown in fig. S5A. This trend is
also observed for metal and boron species (Fig. 3C in the main text) and oxygen components (fig. S5B). Additionally,
oxygen atoms exhibit higher diffusion rates compared to metals and boron, with boron being the most sluggish
component. Consequently, boron plays a key role in determining the crystallization rate, which in turn influences the
degree of amorphization.
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D. Synthesis method of FeCoNiMoBOx

Equimolar amounts of Fe(NO3)3, Co(NO3)2, Ni(NO3)2, and (NH4)6Mo7O24 (ammonium molybdate) were first
prepared and dissolved in an equal volume of solvent to achieve a final concentration of 0.2 M, after which the solution
was stored at 4 ◦C. Meanwhile, a 5 M NaBH4 solution was prepared and refrigerated under the same conditions for
72 hours.

Subsequently, the metal salt solutions were combined in an ice bath, and a 5 M NaBH4 solution, with twice the
total volume of the metal salt solution, was rapidly added under vigorous stirring while maintaining the ice bath
throughout the process. After reaction times of 3, 6, and 18 hours, three distinct catalysts, designated as Group-1,
-2, and -3 FeCoNiMoBOx, were obtained.
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E. Catalytic descriptor calculation

The unoccupied d-band state parameter (λ1) and the active d-band state parameter (λ2) for Co ions are employed
to characterize, respectively, the degree of unoccupied d-band states at active sites and the number of active states
available for electron transfer. These parameters are essential for evaluating the oxygen evolution reaction (OER)
performance of FeCoNiMoBOx catalysts with varying boron (B) content. Specifically, λ1 and λ2 are calculated by
integrating the projected density of states (PDOS) corresponding to the relevant electronic bands, as follows:

λ1 = NCo3dunoccupied
+

NCod
x2−y2 ,d

z2
unoccupied

NO2punoccupied

,

λ2 = NCo3d ×
NCod

x2−y2 ,d
z2
unoccupied

NO2punoccupied

,

(S2)

where NCo3d , NCo3dunoccupied
, NCod

x2−y2 ,d
z2
unoccupied

, and NO2punoccupied
represent, respectively, the total number of states

in the Co 3d band, the number of unoccupied states in the Co 3d band, the number of unoccupied states specifically
within the Co dx2−y2 and dz2 orbitals, and the number of unoccupied states in the O 2p band. The parameter λ1

quantifies the extent of unoccupied d-band states at Co active sites; higher λ1 values indicate fewer electrons occupying
the d-band and lower d-band electron energy levels, facilitating electron transfer from adsorbates to metal active sites
and thereby reducing OER overpotential. Meanwhile, the parameter λ2 quantifies the number of active d-band states
at the Co site capable of participating in electron transfer interactions with the O 2p orbital under conditions of weak
metal–oxygen interaction. Higher λ2 values indicate a greater number of active states available for electron transfer,
also leading to a reduction in OER overpotential.



S7

S2 Supplementary Figures

FIG. S1. Variance-to-mean ratio of PDM across all energy ranges.
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FIG. S2. Normalized variance analysis of pair distributions. (A) Variance of elemental pairs. (B) Variance of inter-
metallic pairs. (C) Variance of metal-oxygen pairs. (D) Variance of all elements in the pair distribution matrix. The variance
is normalized by dividing it by the corresponding mean value.
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FIG. S3. The fitting information of clusters expansion using ATAT program. (A) The leave-one-out cross validation
(LOOCV) scores for the test cluster diameters. All LOOCV scores exceed the acceptable values (0.02 eV) recommended by
ATAT, nevertheless, the cluster corresponding to the lowest LOOCV score (a cutoff distance of 5.5 Å for two-body clusters)
was selected for ECI fitting. (B) Learning curves for the selected model with least-squares fitting of ECIs. (C) Comparison
between input energies obtained via MLP relaxation and the predicted energies from the CE model. (D–E) One of the states
of SQS configuration before and after relaxation used for fitting the ECIs, with the amount of distortion annotated as 0.0128
by ATAT.
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FIG. S4. The cluster expansion fitting method using ICET package. (A) The cluster diameter test of two-body (pair)
clusters fitting with lasso method. (B) The cluster diameter test of two-body (pair) clusters fitting with ridge method. (C)
The hyperparameter scan of lasso method. (D) The hyperparameter scan of ridge method.
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FIG. S5. Diffusion rate analysis across groups with different boron contents. a Total Mean Squared Displacement
(MSD) of all elements. b MSD of oxygen atoms.
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FIG. S6. Catalytic descriptor calculation. (A) Calculated λ1 and (B) λ2 values for Co in relation to experimentally
measured OER overpotentials in FeCoNiMoBOx catalysts across three groups with varying boron (B) content (6%, 9%, and
12%). The calculation method is described in the recent study on multi-element oxides for OER performance.[2]
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FIG. S7. Catalytic performance. (A) OER overpotentials across different groups at varying current densities. (B) Linear
sweep voltammetry curves of Group-1, -2, and -3, compared with commercial IrO2.
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FIG. S8. Catalytic stability. (A) Stability test at 0.5 A/cm2 using an anion exchange membrane (AEM) device for different
groups, compared with IrO2. (B) In-situ Raman spectra of FeCoNiMoBO3 (Group-3).
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FIG. S9. Accuracy analysis of DPA-2. Compared the energy differences between DFT and DPA-2 for structures within
different energy intervals to evaluate the accuracy of the MLP. The horizontal axis represents the number of structures, while
the vertical axis shows the energy discrepancy between DFT and DPA-2 for each respective structure.
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S3 Supplementary Tables

TABLE S1. Hyperparameters of Cond-CDVAE model used in this work. Each element type is embedded by a vector of
length 50. MLPzc is a multi-layer perceptron for concatenated latent vector and condition embedding vector. DimeNet++ [3, 4]
and GemNet-dQ [5] are used as PGNNEnc and PGNNDec, respectively.

Model Value
Element type embedding 50
vectorized PDM dimension 197
MLPzc number of layers 3
MLPzc number of hidden channels 64
MLPL number of layers 1
MLPL number of hidden channels 256
PGNNEnc number of blocks 4
PGNNEnc number of hidden channels 128
PGNNEnc interaction embedding size 128
PGNNDec number of blocks 4
PGNNDec number ofhidden channels 128
Loss weight λL 10
Loss weight λX 10
Loss weight β 0.01
Optimizer Value
Optimizer type Adam
Learning rate 1e-4
Learning rate scheduler ReduceLROnPlateau
Scheduler patience (epoch) 30
Scheduler factor (epoch) 0.6
Minimal learning rate 1e-5
Data Value
Batch size 128
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TABLE S2. Elemental compositions of catalysts estimated from ICP and element analysis. Metallic contents were
determined by ICP, and O contents were detected by difference subtraction of mass conservation.

Catalyst Fe (mol %) Co (mol %) Ni (mol %) Mo (mol %) B (mol %) O (mol %)
Group-1 8.74 8.23 8.26 6.93 5.87 61.98
Group-2 9.02 8.65 8.62 6.45 8.47 58.79
Group-3 10.36 10.03 9.94 7.23 11.68 50.76
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[3] Gasteiger, J., Groß, J. & Günnemann, S. Directional message passing for molecular graphs. In International Conference on
Learning Representations (ICLR, 2020).
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