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Abstract

Efficient and accurate DNA sequence classification is a crucial task in genomic
data analysis. In this work, we construct a lightweight DNA classifier based on the
LZ78 lossless universal compressor, and optimize its performance through hyper-
parameter tuning. This classifier outperforms the state-of-the-art DNABERT-2
model on the Genomic Understanding Evaluation suite, while drastically reduc-
ing computational costs. Unlike DNABERT-2, which requires two weeks of
multi-GPU training, our classifier can be trained in about 30 minutes or less
on a modern CPU with a fraction of the training data. It also offers up to
128× inference time speedup. These results highlight the potential of LZ78 for
scalable and efficient genomics classification, particularly in resource-constrained
environments. Additionally, we open-source our pipeline for compression-based
classification. Future work aims to enhance its robustness and extend its
applicability to more complex genomic tasks.

Keywords: lossless compression, DNA classification, LZ78, Sequential Probability
Assignment
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1 Introduction

In the context of genomic data analysis, DNA classification is the process of assigning
a representative class to an input DNA sequence, composed of nucleotides from the
alphabet A, C, G, or T. Protein classification, which may be performed at the amino
acid level, is a closely related task. Efficient and accurate DNA classification is a crucial
task in genomic data analysis. By providing a systematic framework for the taxonomy
of species, DNA classification enables the study of biodiversity and the discovery of
evolutionary relationships among organisms [1]. In medicine, it facilitates the identi-
fication of disease markers and the influence of genetic variations on drug responses,
thus driving advancements in diagnostics, pharmacogenomics, and the development of
safer more effective treatments [2]. Examples of DNA classification tasks include iden-
tification of functional gene regions such as promoters or enhancers, detecting genetic
mutations, classifying viral variants, and taxonomic classification of organisms.

Numerous DNA classification techniques exist, including information theoretic
methods, classical machine learning, and, in recent years, deep learning-based
approaches. For instance, various ML algorithms have made considerable strides in
DNA classification tasks, ranging from traditional classifiers to deep neural networks
and billion-parameter large language models [1, 3].

Prior studies have explored various classifiers, including neural networks, KNNs,
decision trees, SVMs [4], and CNN-based techniques [5] for DNA classification, includ-
ing virus classification and disease detection. Deep learning models, such as CNNs,
RNNs, LSTMs, and SSMs, have been employed on particularly advanced classification
tasks, with applications in gene region identification, transcription factor binding site
prediction, and viral genome classification [6, 7, 8, 9].

Recently, transformer-based models have driven major breakthroughs in computa-
tional genomics [3], setting new state-of-the-art performance in genomic data classifi-
cation. Inspired by LLMs, Genomic Language Models (gLMs) leverage unsupervised
pre-training on large genomic datasets followed by finetuning for DNA classifica-
tion. Notable gLMs include AgroNT, GPN, GeneBERT, Nucleotide Transformers,
DNABERT, and DNABERT-2 [10, 11, 12, 13, 14].

Although machine learning techniques can achieve high classification accura-
cies, they require orders of magnitude more compute than, e.g., compression-based
techniques. For example, although DNABERT-2, which maintains state-of-the-art per-
formance in DNA classification, is considered to be parameter efficient, it remains very
computationally expensive. During pre-training, where LLMs learn to encode or gen-
erate genomic language, DNABERT-2 was trained on tens of GBs of unlabeled data,
and required 14 days of multi-GPU training.1 In order to use the foundation model
for classification, an additional phase of fine-tuning is required, which typically takes
at least a few additional hours.

Thus, leveraging compression for DNA classification promises very attractive
advantages in terms of both effectiveness and efficiency, particularly for compute-
constrained settings.

1Specifically, 8 NVIDIA RTX 2080Ti GPUs, each of which contains 11GB of GDDR6 memory.
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In particular, the ideas behind universal compression lend themselves well to
genomic classification. The quintessential universal compressor is Lempel-Ziv 78
(LZ78) [15], which builds a prefix tree over the input data via an incremental parsing
procedure (see Section 4 for details). LZ78 is universal in the sense that, for any input
data, it asymptotically compresses at least as well as the best finite-state compressor.
The related LZ77 [16] scheme compresses by searching for long repeated substrings.
Though LZ77 lacks the strong universality results of LZ78, it performs well in prac-
tice and is extensively used in state-of-the-art compressors (e.g., GZIP and ZSTD).
[17] interprets the universality of LZ78 via a prefix-tree-based probability model. This
probability model has formed the basis of many universal schemes, e.g., in gambling
[18], sequence prediction [19], and filtering [20].

From a probability modeling perspective, sequence classification is equivalent to
constructing a probability model for each class, and subsequently determining which
distribution best fits the test sequence. As such, universal compressors and probability
models can induce universal classifiers by acting as measures of distance between two
distributions. One key example is Ziv-Merhav cross-parsing [21], which constructs a
universal relative entropy measure via the minimum number of phrases a test sequence
can be parsed into using matches from the training data.

The idea of harnessing LZ78-based compression for genomic classification has previ-
ously appeared in the literature. [22] studies the performance of several variable-order
Markov models on different next-symbol-prediction and sequence classification tasks,
including protein classification. In this case, an LZ78-based classification outperformed
the other methods considered over all classes. More recently, [23, 24] applies an LZ78-
based normalized relative compression (NRC) measure to DNA classification, building
an LZ78 prefix tree for the training samples of each class and measuring the number of
phrases a test sequence parses into using each such tree. [25] takes a different approach
to LZ78-based DNA analysis: a set of DNA sequences are all independently parsed
into LZ78 phrases, and a graph is built where the edges represent adjacent phrases.

Our Method

In this work, we present a highly efficient lossless compression-based approach to DNA
classification, highlighting its potential as a lightweight alternative to computation-
ally intensive models like DNABERT-2. We leverage the LZ78 universal compression
algorithm to construct an adaptive classification scheme, and demonstrate its promis-
ing performance and dramatic computational savings. In comparison to existing
LZ78-based methods, e.g., [22, 24, 23], our classifier includes several methodological
improvements that significantly boost accuracy. It leverages a rich family of univer-
sal sequential probability assignments (SPAs) based on LZ78 and Bayesian mixtures
[26], which provides degrees of freedom that are not available in other LZ-based
approaches. We provide a comprehensive hyperparameter sweeping framework to take
advantage of these degrees of freedom. As shown in Figure 3, the optimal parameters
are dataset-dependent, necessitating the hyperparameter sweep. We also introduce
LZ78 ensemble inference, which we describe in detail in Section 4. Figure 5 demon-
strates that this ensemble is key in achieving high classification accuracy. The novel
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algorithmic enhancements and configurability we introduce to the LZ78 SPA enable
us to achieve new state-of-the-art performance in genomic data classification.

We compare this LZ78-based classifier to DNABERT-2 [14], a transformer-based
model that maintains state-of-the-art performance while being parameter-efficient. As
with DNABERT-2, performance of the LZ78 DNA classifier is shown on 28 datasets
from the Genomic Understanding Evaluation (GUE) suite [14]. The LZ78 classifier
achieves comparable or superior accuracy on 89.2% of datasets while drastically reduc-
ing computational costs. Unlike DNABERT-2, which requires training for multiple
weeks on significant GPU resources and memory, our LZ78 classifier is capable of
training in under an hour (for all datasets combined) on a modern CPU using a frac-
tion of the training data. It also offers up to 128× speedup in inference time and a
dramatic decrease in training memory. These results highlight the potential of the
LZ78 algorithm for scalable and efficient genomic data classification, particularly in
resource-constrained environments.

2 Results

A highly efficient compression-based scheme for DNA classification

In this work, we demonstrate the effectiveness of using the LZ78 compression algorithm
as a classifier for DNA data. We ground our work in the ability of a universal com-
pressor to induce an equivalent sequential probability assignment (SPA) on a parsed
sequence (from the theoretical results presented in [26] and summarized in Section 4).
Intuitively, a compressor is able to learn and predict the patterns in a data sequence
during the compression process. Then, this embedded prediction capability can be
used to correlate new seen data with learned data, which is at the core of classification.
The extent to which a probability model is able to predict or equivalently compress
sequences is measured by the model’s log loss. Given a new data sequence, the lower
the log loss (for a compressor, the better the compression rate) achieved, the closer
the new data sequence is to the learned data associated with that model. Specifically,
for a stochastic sequence, the average log loss (or compression rate) achieved is equal
to the entropy of the data sequence plus the relative entropy between the sequence
and probability model. If the probability model perfectly captures the distribution of
the sequence, then the relative entropy is zero and the average log loss matches the
fundamental limit, i.e., entropy of the sequence.

Figure 1a illustrates how to leverage this information theoretic equivalence between
compression and sequential probability assignments to construct a classifier for
genomic data. Given a classification task with α classes, the classifier for this task is
constructed by α SPAs (or equivalently compressors). To construct this classifier, the
SPAs are trained on labeled data. Each entry of the labeled data is comprised of a
DNA sequence, along with its associated class. For each entry with training sequence
seq and label ℓ, seq is passed through the SPA corresponding to label ℓ among the α
possible compressors.

During inference, the goal is to assign a class to a new unlabeled sequence. To do
so, the new DNA sequence is passed through all α trained SPAs. While parsing the
sequence, each SPA creates a sequential probability model for each symbol, according
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(a) Construction of an LZ78-based Classifier via Training Sequential Probability
Assignments on Labeled Data.

(b) Hyperparameter Space Exploration for Training an LZ78-based Classifier.

(c) Training and Validation Framework for an LZ78-based Classifier (Pretraining
only occurs in the Full training mode, and is skipped in the Minimal training mode.).

Fig. 1: Training and testing methodology for LZ78-based classification.
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to Equation (1). The normalized log losses across all SPAs, incurred from this parsing
process, are compared. A lower log loss means that the test sequence was closer to the
training distribution for the SPA, and thus more likely to be in the associated class.
The label associated with the SPA achieving the minimum log loss is outputted as the
class for that sequence by the classifier.

A streamlined and open-sourced framework for training and validation

To achieve high accuracy, our LZ78-based classifier tunes a number of configurations
that affect the training and the inference stages of the SPAs. We will refer to these
configurations as the hyperparameters of the classifier. In particular, six hyperparam-
eters were considered when tuning the LZ78 classifier: (1) the Dirichlet parameter γ,
(2) inclusion of previous samples’ context, (3) number of iterations (epochs), (4) ratio
of unlabeled pre-training symbols over the number of training symbols from labeled
data, (5) ensemble prediction heuristic, and (6) handling of nucleotide placeholders.
We explain the significance of each of these hyperparameters in Section 4.

Given the large space of possible combinations and ranges of values for these
hyperparameters, we first empirically determined reasonable ranges of values to sweep
through a Hyperparameter Exploration Study, as we illustrate in Figure 1b and
elaborate in Section 4. These ranges were kept small to maintain computational
efficiency.

The framework to identify the best hyperparameters for a given dataset (and
construct the classifier for that dataset accordingly) is illustrated in Figure 1c. The
framework was inspired by the conventional AI training, validation, and testing frame-
work. Under a specific hyperparameter combination, the classifier (one SPA for each
class) is first pre-trained using unlabeled data, then each SPA is trained with the
training data for the respective class. The trained classifier for each hyperparameter
combination is evaluated on validation data, and the classifier with the highest vali-
dation accuracy is chosen as the final classifier for the dataset, and evaluated on test
data to get test accuracy.

The hyperparameter combinations are explored through sweeping the hyperpa-
rameter space. We explored two training modes:

• full hyperparameter sweep training mode, where we sweep all hyperparame-
ters (except for handling nucleotide placeholders, which we always remove)

• minimal hyperparameter sweep training mode, where we only sweep the val-
ues of the Dirichlet parameter (which we refer to as γ) and the number of iterations,
and fix all other hyperparameters to default values as illustrated by Fig. 1b.

In fact, we found that the minimal hyperparameter sweep training mode provided
similar and often superior accuracy to the full training mode (due to the full sweep
overfitting to the validation set), with much faster training time (and slightly smaller
training memory requirement). Therefore, we primarily present our minimal hyper-
parameter sweep training mode results in this manuscript, and refer the readers to
Supplementary Section 1 for the results of our full training sweep.
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Our open-sourced framework, including our training scripts, inference scripts, and
saved models can be found on our GitHub repository (LZ-Genomics).

Competitive accuracy with a fraction of the training data and cost

From Table 2b and Figure 2c, the LZ78 classifier has comparable or higher accuracy
than DNABERT-2⋄ (the enhanced version of DNABERT-2, which requires even fur-
ther masked language modeling pre-training) for about 89.2% of the datasets, where
comparable performance is defined as test accuracy within 5% of DNABERT-2⋄. The
LZ78 classifier performs particularly well on problems in the EMP datasets, where we
see increases of over 47% in accuracy.

This dramatic increase in accuracy over DNABERT-2 highlights that some genomic
classification tasks are more naturally-suited to compression-based methods than deep
learning techniques. Characterizing which tasks are more well-suited to information-
theoretic classifiers is a direction for future exploration.

To this extent, there is no decisive pattern between increasing sequence length and
accuracy, at least under the GUE benchmarks. For instance, the shorter prom 300
datasets of sequence length 300 perform more poorly than the longer EMP dataset of
sequence length 500 and also more poorly than the shorter transcription factor datasets
of sequence length 101. Although most of these benchmarks test binary classification
tasks, the COVID dataset is a more challenging classification task with 9 classes and
sequence lengths of about 1000. In this task, our LZ78 classifier still outperforms
DNABERT-2⋄.

Across these 28 benchmarks, the LZ78 classifier performs significantly worse
compared to its DNABERT-2 only for three datasets: “prom 300 notata”,
“prom 300 tata”, and “splice”, with accuracy degradations of 12.98%, 24.04%, and
23.46% respectively. In these cases, the computational efficiency of LZ78 (and the fact
that it does not require GPU hardware) may make the accuracy degradation a rea-
sonable trade-off. Further algorithmic enhancements to improve the performance of
our LZ78 classifier remain for future work.

As can be shown in Fig. 3, the characteristics of various datasets may require differ-
ent configurations of the hyperparameters used for training and inference. This further
motivates our configurable LZ78 classification framework. Certain datasets may ben-
efit from more regularization through a higher Dirichlet parameter. For example, the
accuracy of most datasets increases with the Dirichlet parameter then plateaus at
around γ = 3 whereas, for the COVID dataset, a smaller Dirichlet parameter is cru-
cial for a much stronger classification accuracy. Similarly, datasets generally benefit
from multiple training iterations (or epochs). However, too many epochs can result in
overfitting, as can be seen for prom 300 all and prom 300 notata.

Computational Efficiency

A key advantage of the LZ78 classifier is its computational efficiency: it can be trained
in a matter of minutes on a modern CPU, as opposed to days or weeks on several
GPUs. Inference is also two orders of magnitude faster than DNABERT-2, running
on the order of microseconds per symbol.
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(a) Overview of dataset properties for the GUE benchmarks.

Species Task Num. Datasets Number of Classes Sequence Length

Human Core Promoter Detection 3 2 70
Transcription Factor Prediction 5 2 100
Promoter Detection 3 2 300
Splice Site Detection 1 3 400

Mouse Transcription Factor Prediction 5 2 100

Yeast Epigenetic Marks Prediction 10 2 500

Virus COVID Variant Classification 1 9 1000

(b) Accuracy results (expressed as percent correct).

mouse tf
0 1 2 3 4 0 1 2 3 4

DNABERT-2 56.26 84.77 79.32 66.47 52.66 71.99 76.06 66.52 58.54 77.43

DNABERT-2⋄ 64.23 86.26 81.28 73.49 50.8 69.12 71.87 62.96 55.35 74.94

LZ78 (ours) 75.19 85.1 85.98 76.99 68.83 80.00 82.40 78.90 71.20 86.00

prom core prom 300 EMP H4
all tata notata all tata notata splice H4 ac

DNABERT-2 74.17 69.37 68.04 71.59 86.77 94.27 84.99 80.71 50.43

DNABERT-2⋄ 76.18 67.5 69.53 68.79 88.31 94.34 85.93 81.86 50.35

LZ78 (ours) 71.88 75.04 73.96 78.72 64.27 81.36 62.47 88.77 89.88

EMP H3
H3 K14ac K36me3 K4me1 K4me2 K4me3 K79me3 K9ac COVID

DNABERT-2 78.27 52.57 56.88 50.52 31.13 36.27 67.39 55.63 71.02

DNABERT-2⋄ 80.17 57.42 61.9 53.0 39.89 41.2 65.46 57.07 68.49

LZ78 (ours) 87.64 92.50 89.28 83.18 84.42 88.78 88.70 86.79 72.20

(c) Radar plot comparison of LZ78 and the two DNABERT-2 variants.

Fig. 2: Accuracy results on the GUE benchmark dataset (presented for the minimal
hyperparameter sweep training mode)
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(a) Dataset Test Accuracy vs. Dirichlet Hyperparameter (“Gamma”) Chosen by the Training/Valida-
tion Framework under Minimal Sweep.

(b) Dataset Test Accuracy vs. Number of Iterations Chosen by the Training/Validation Framework
under Minimal Sweep.

Fig. 3: Hyperparameter Trends: Dataset Accuracy Variations with Dirichlet (Gamma)
Parameter and Number of Iterations under Minimal Sweep.
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The efficiency of such compression-based methods can enable real-time DNA clas-
sification in edge settings, where low latency and reduced infrastructure costs are
critical. By eliminating the reliance on expensive GPUs and extensive computational
resources, LZ78 facilitates genomic analysis in remote or resource-limited settings,
and can also preserve data privacy by processing locally. These attributes make
LZ78, and other compression-based classifiers, a powerful solution for time-sensitive
applications,2 bridging the gap between computational genomics and real-world needs.

(a) Efficiency of LZ78 Classifier Training; aver-
age training time of ≈2.3 minutes per dataset
on a modern CPU.

(b) Inference time speedup of Using an LZ78-
Based classifier compared to DNABERT-2.

(c) LZ78 Classifier Training Memory. (d) LZ78 Classifier Inference Memory.

Fig. 4: Computational and memory efficiency of the LZ78-based genomic classifier
(presented for the minimal hyperparameter sweep training mode).

Training Time: LZ78 demonstrates significant advantages in training time com-
pared to DNABERT-2. Our current LZ78 training script is highly optimized, and
requires less than 6 minutes for datasets with 107 symbols and about 33 minutes for
1.1 ∗ 108 symbols when trained on an Intel Xeon Silver 4216 CPU @ 2.10GHz, as
demonstrated by Figure 4a.

2Including, e.g., point-of-care diagnostics, outbreak management, and precision medicine.
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In stark contrast, DNABERT-2 demands a much longer training duration, requir-
ing 14 days on 8 NVIDIA RTX 2080Ti GPUs for pre-training and additional few
hours for fine-tuning the model for each classification task. This substantial gap high-
lights the lightweight computational requirements of LZ78, making it suitable for
resource-constrained environments, where extended training durations are impractical.

Inference Time: LZ78 achieves a remarkable speedup during inference com-
pared to DNABERT-2, as illustrated by Figure 4b. LZ78 processes symbols at an
average rate of approximately 41.3, µs/symbol on an Intel Xeon Silver 4216 CPU @
2.10GHz. In contrast, DNABERT-2 requires around 5.3ms/symbol when running on a
high-performance NVIDIA RTX 4090 GPU. This translates to an impressive ∼ 128×
speedup for LZ78. Additionally, LZ78 operates on far more affordable and accessi-
ble hardware, such as standard CPUs, while DNABERT-2 relies on costly, specialized
GPUs. This highlights LZ78’s practicality for real-world applications, particularly in
resource-constrained settings.

Memory Footprint: LZ78 is also far more memory-efficient than DNABERT-
2 in training, as illustrated by Figure 4c. For training, LZ78 uses less than 1.6 GB
of memory, even for the largest datasets, whereas DNABERT-2 was trained with a
memory capacity of about 88 GB. The LZ78 classifier can be trained entirely on
consumer hardware, or even edge devices. During inference, the memory requirement
of our LZ78 classifier depends on the depths of the trees constructing the SPAs, which
in turn depend on the richness of the training dataset. This is illustrated by Figure
4d. For DNABERT-2, the profiled inference memory requirement exhibits an average
maximum GPU memory allocation of 500MB with a CPU RAM overhead of about
900MB, with little variance for sequence lengths ranging from 70 to 1000 symbols.
Although the LZ78 classifier requires slightly more CPU RAM than DNABERT-2 for
richer datasets, the memory usage is reasonable for modern CPUs.

Training Data: Our LZ78 classifier requires a fraction of the training data com-
pared to deep learning models in general. For example, DNABERT-2 was pre-trained
on ∼30GB of unlabeled data and fine-tuned on ∼ tens of MB of labeled data per
dataset. In stark contrast, our LZ78 classifier only requires a few ∼ tens of MB of
training data. This is because pre-training on unlabeled data is not needed (the case
of minimal hyperparameter sweep training mode), and even when enabled (an option
in the full hyperparameter sweep training mode), only a few MBs of unlabeled data
are used. This drastic decrease in the classifier’s need for data directly contributes
to the small training memory footprint and time, but also highlights the outstanding
expressive capability of our classifier.

On Backshifting, Ensemble Prediction, and Algorithmic Enhancements

Our LZ78 classifier underwent multiple algorithmic enhancements that allowed us to
improve its classification accuracy. The hyperparameter space and its effects on the
classification accuracy is one such contribution, where we identified a set of tunable
parameters and enabled their configuration in our open-sourced training and inference
framework. Another contribution is our backshifting and ensemble prediction feature.
Since the sequential probability assignment (ie, prediction) of our classifier depends
on the traversal of the compressor’s tree, as we explain in Section 4, the classification
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Fig. 5: The effect of backshifting and ensemble prediction on the accuracy of our LZ78
classifier (LZ78: No Ensemble is our LZ78 classifier with backshifting and ensemble
prediction disabled).

accuracy may suffer from the classifier reaching suboptimal parts of the tree: a root,
where it lacks previous context, or a leaf, where the probability distribution of the
next symbol is uniform. Backshifting and ensemble prediction are features that we
used to significantly enhance the accuracy of our classifier as shown in Fig. 5, as they
allow the classifier to be repositioned in a more effective part of the tree by considering
a subset of the phrase. We elaborate on these enhancements in Section 4. We also
provide further discussion of our backshifting and ensemble prediction ablation study
as well as a tree structure analysis in Supplementary Section 2.

3 Discussion

In this work, we presented an LZ78-based classification algorithm for genomic data,
and compared its performance and computational efficiency against DNABERT-2.
The results highlight significant advantages of LZ78 in terms of computational require-
ments, training memory, and inference speed while maintaining accuracy. Specifically,
LZ78 sets new state-of-the-art accuracy in DNA classification, and achieves compa-
rable or higher accuracy than DNABERT-2⋄ for 89.2% of the datasets in the GUE
benchmark, demonstrating its effectiveness. Our classifier outperforms the state-of-
the-art DNABERT-2⋄ by as much as 47% difference in accuracy eg. epigenetic mark
prediction (EMP) tasks, while falling short on classification accuracy (a degradation
in accuracy of over 5% compared to DNABERT-2) on only 3 datasets out of the
28-dataset suite.
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LZ78 requires only minutes of training on a modern CPU, whereas DNABERT-
2 demands over 14 days on 8 GPUs, emphasizing the computational efficiency of
LZ78. During training, LZ78 uses less than 1.6GB of memory, while DNABERT-2
consumes 88GB. Moreover, LZ78 processes symbols at 41.3 microseconds per symbol
using a standard CPU, achieving a remarkable 128× speedup over DNABERT-2. LZ78
can run on standard consumer CPUs, making it accessible and cost-effective, while
DNABERT-2 relies on specialized hardware such as GPUs.

These results demonstrate that LZ78 provides a lightweight, scalable, and efficient
solution for genomic data classification, particularly in resource-constrained environ-
ments. Although DNABERT-2 may offer improved accuracy for a small number of
datasets, LZ78’s efficiency and overall comparable or superior performance make it a
practical alternative for a wide range of applications.

While we have demonstrated the potential of an LZ78-based classifier for genomic
data, several avenues for further exploration remain. To the extent of improving LZ78
classifier performance, improvements can be made to the LZ78 SPA (Equation (1)
from Section 4) itself, and to how the SPA is leveraged in classification. For instance,
it could be interesting to explore adaptive SPA regularization, where the Dirichlet
smoothing parameter is a function of the depth of the current node. Intuitively, nodes
close to the root have less context to use for prediction and could benefit from more
regularization than nodes deeper in the tree. This is a challenge we addressed by intro-
ducing backshifting and ensemble prediction, but it would be worthwile to continue
exploring further enhancements such as adaptive regularization. Another important
aspect to study is the LZ78-based classifier’s limitations on context length. As the
context length that is being used by the LZ78 SPA is equal to the depth of the current
node, the maximum context length of any prediction is the depth of the tree. Whereas
the tree grows infinitely deep with an infinite amount of data, a crucial future direction
is to improve the context length as much as possible in the finite-sample regime.

In addition, motivated by results in Figure 2c, it would be interesting to combine
LZ78 with neural networks in genomic classification and beyond to achieve accuracy
commensurate with the maximum of the two methods. For example, validation can
be used to determine which tasks a neural network is more well-suited for. For those
tasks, a mixture of the SPA log losses and output class probabilities from the neural
network can be used for classification. For example, for our case of DNA classification,
tasks like EMP, where LZ78 achieves higher accuracy, the BERT classification can be
skipped entirely for computational efficiency. This will be studied in future work.

4 Methods

Project Codebase

Our full codebase, including training scripts, inference scripts, and saved models can
be found on our GitHub repository (LZ-Genomics). We hope our work can catalyze
further advancements in genomic data analysis and beyond.
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Universal Compression via Lempel-Ziv 78

A universal compressor, loosely speaking, is one that performs well on all finite-
alphabet individual sequences (i.e., any arbitrary, deterministic sequence where each
symbol is from some finite set A) of sufficient length. We denote an individual sequence
xn = (x1, x2, · · · , xn), where xi ∈ A.

The LZ78 incremental parsing algorithm [15] is as follows for sequence xn over
alphabet A:

1. Denote the list of phrases seen so far as Z, which starts out as the empty list.
2. Repeat until the end of the sequence:
(a) Starting after the previously-parsed phrase, find the prefix of xn that consists

of some phrase in Z, plus one new symbol. This is a new phrase, which is added
to Z.

(b) Encode the new symbol using ⌈log2(|A|)⌉ bits, and encode the index of Z
corresponding to the beginning of this phrase using ⌈log2(|Z|)⌉ bits.

This, equivalently, can be viewed as the creation of the following prefix tree, where
each node except the root corresponds to a phrase from Z:3

1. Start off with a singular root node.
2. Repeat until the end of the sequence:
(a) Starting at the root, traverse the prefix tree using the next symbols of xn until

we reach a leaf. Add a new node branching off of the leaf for the next symbol in
the input sequence.

(b) The new phrase in Z is defined as the slice of the input sequence used in
traversing the tree and creating the new leaf.

As an example of building an LZ78 prefix tree, consider the following nucleotide
sequence

xn = ATTGCTGCTA.

We start at the beginning of the sequence and add the first symbol, A, as a branch
to the root node. A is then the first phrase. We then do the same thing with the next
symbol, T, which becomes the second phrase. After encoding the first two phrases, the
tree is as follows:

root

A T

The next symbol is T, which is already present as a branch off of the root. So, we
traverse from the root to the node T and move onto the next symbol, G, resulting in
the phrase TG. By the process of LZ78 parsing, xn is overall divided into the phrases
A,T,TG,C,TGC,TA, forming the tree:

3This description, and the following example, are adapted from [26].
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root

A C T

TG

TGC

TA

In the limit as the number of symbols in xn goes to infinity, the compression ratio

approaches |Z| log
2
|Z|

n log
2
|A| . Consider an infinite-length sequence, denoted x (of which xn

is a prefix). The finite-state compressibility of this sequence, ρ(x), is the fundamental
limit of the class of compressors that depend only on a finite-state mechanism (i.e.,
have finite memory, though the memory may be of an arbitrary size). For any infinite-
length individual sequence, the LZ78 does at least as well as the best finite-state
compressor: its compression ratio is upper-bounded by ρ(x).

A LZ78-Based Universal Sequential Probability Assignment

In general, universal compression is tied to universal probability modeling in that
good compression requires, implicitly or explicitly, a good probability model of the
data being compressed. Intuitively, when compressing, more bits should be assigned to
more “surprising” features in the data, whereas frequent or common patterns should
be represented with fewer bits. Achieving this can be seen as distinguishing “high-
probability” features from “low-probability” features.

A sequential probability assignment is a mapping from the prefix of a sequence,
xt−1, to a probability model on the next symbol, xt. [26] shows that LZ78 induces
a family of universal sequential probability assignments (SPAs) that are efficient to
compute. Essentially, it is derived from the empirical distribution of symbols seen
while traversing the current node of the LZ78 tree. The relevant form of this SPA is

qLZ78,γ(xt = a|xt−1) =
N(a|xt−1, zc(x

t−1)) + γ
∑

b∈A N(b|xt−1, zc(xt−1)) + γA
, (1)

where the notation being used is:

• zc(x
t−1): the prefix of the current LZ78 phrase (up to and not including xt). This is

the node of the LZ78 tree that we reach after parsing xt−1, or the root of the tree
if xt−1 is the end of a phrase.

• N(a|xt−1, zc(x
t−1)): the number of times (up to index t− 1) that we have seen the

symbol a ∈ A while at node zc(x
t−1) of the LZ78 tree.

• γ: this is a positive hyperparameter called the Dirichlet smoothing parameter (see
[26] for more details). Smaller values of γ mean that the SPA tends more strongly
towards the empirical distribution.

This form of the LZ78 SPA is referred to as the LZ78 SPA induced by a Dirichlet prior.
Theoretical results from [26] establish that:

1. The normalized self-entropy log loss of this SPA asymptotically approaches log2 |A|
times the LZ78 compression ratio.
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2. On any individual sequence, the optimal log loss over the class of finite-state
sequential probability assignments is equal to log2 |A|ρ(x).

3. The previous two statements, plus the universality of LZ78 compression, imply that
the LZ78 SPA is universal (with respect to the class of finite-state SPAs). That is,
its asymptotic log loss will be at most that of any finite-state SPA.

Refer to [26] for more details on the construction and theoretical results of this SPA.

Improvements to the Base LZ78 SPA

Although the LZ78 SPA is universal and therefore will do as well as the best finite-
state SPA when applied to infinite data, if applied naively, its accuracy can suffer in
the finite-data regime. This is because, at any point, the quality of the SPA qLZ78,γ

(i.e., how closely it models the true distribution of symbol xt, conditioned on xt−1)
depends on the location of the current node of the LZ78 tree. Specifically:

• If the node is too close to the root, then the LZ78 SPA is only using a short context
of data before the current symbol. As a result, the SPA does not have access to
potentially-predictive information from farther back in the past.

• If the node is too close to a leaf, then the node has not been visited that many times.
Then, the counts N(a|xt−1, zc(x

t−1), for a ∈ A, are small and likely sparse: the SPA
has not seen enough data at that node to make a good probability estimate.

We mitigate these issues via the following heuristics:

• Backshift Parsing: This is a technique to avoid making predictions too close to
the root or a leaf of an LZ78 prefix tree, as proposed in [22].
When we reach the root or the leaf of the tree, we attempt to “re-seed” the tree
by taking a length-Lback context before the current symbol (i.e., xt−1

t−Lback
), and

traversing from the root with xt−1
t−Lback

. If the traversal reaches a leaf at any point, we
decrement the backshift context length (Lback ← Lback−1) and try again, repeating
until the backshift traversal does not reach a leaf.

• Ensemble Prediction: Instead of evaluating the SPA at a single point, we can
get improved accuracy by taking a weighted average of SPA values, evaluated at
different depths within the LZ78 tree.
Assume that, at timepoint t in evaluating the SPA for sequence xn, we are at node
z of the LZ78 tree with depth d. We then construct a ensemble of target size Nens

as follows:

1. We first form the ensemble, which is a set of nodes Zens ⊆ Z at which we evaluate
the LZ78 SPA. Zens starts out as the singleton set {z}. For each k ∈ {1, . . . , d−1},
we traverse from the root with sequence xt−1

t−k, reaching node zk. This means
that subsets of the current phrase are used to traverse the tree, by removing the
left-most symbol for each new sub-phrase considered in the ensemble. Each tree
traversal (resulting from considering a sub-phrase) results in a prediction, that
gets considered along with other sub-phrase predictions to make the final overall
prediction of the next symbol in the phrase. If no returns to the root occurred
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in this parsing, zk is added to Zens. If, at the end of the process, |Zens| > Nens,
the deepest nodes are retained.4

2. For each z ∈ Zens, compute

qz,γ(xt = a|xt−1) =
N(a|xt−1, z) + γ

∑

b∈A N(b|xt−1, z) + γA
, ∀a ∈ A.

3. Perform a weighted average of qz,γ(xt = a|xt−1) for z ∈ Zens to get the final SPA:

qens(xt = a|xt−1) =
∑

z∈Zens

wzq
z,γ(xt = a|xt−1),

for some set of weights that sum to 1. There are two heuristics for the weighted
average: a depth-based heuristic and an entropy-based heuristic.
Depth-based : Let d(z) be the depth of node z. Then, the weights are

wz =
ŵz

∑

z′∈Zens
ŵz′

, ŵz = exp

(

d(z)−minz′∈Zens
d(z′)

maxz′∈Zens
d(z′)−minz′∈Zens

d(z′) + 10−6

)

,

where the 10−6 (and the 10−10 in the subsequent equation) is a small constant
to prevent the denominator from becoming zero.
Entropy-based : Let H(·) be the Shannon entropy of a probability model, and
Hz = H

(

qz,γ(·|xt−1)
)

. Then,

wz =
ŵz

∑

z′∈Zens
ŵz′

, ŵz = exp

(

−
1

2
·

Hz −minz′∈Zens
Hz′

maxz′∈Zens
Hz′ −minz′∈Zens

Hz′ + 10−10

)

.

Intuition for weighted average heuristics: Both heuristics attempt to more heavily
weight the “better” SPAs in the ensemble and put less weight on the “worse”
SPAs. As we do not directly know which SPAs in the ensemble are closest to the
true distribution of the data, we need to heuristically determine which SPAs to
weight more. For the depth-based weighted average, we assume that deeper nodes
produce better SPAs, because they have access to more information (a longer
context). For the entropy-based average, we assume that SPAs with lower entropy
are better. A high-entropy SPA is close to uniform, which is not typically very
predictive. The high-entropy nodes tend to be those close to the root, which only
use low-order information to make a prediction, or those that have not seen many
symbols, where the Dirichlet smoothing parameter dominates the SPA value.

• SPA Lower Bound: If the SPA value is too close to 0 for any symbol, it can incur
very large log loss. Although this can be correctly indicative of large relative entropy
between the SPA and test sequence, it can also lead to spuriously large log losses.
So, at all timepoints, we set qLZ78,γ(xt = a|xt−1) to be at least ϵLB, scaling the rest
of the values such that the SPA still sums to 1.

4Computationally, we iterate k backwards from d − 1 to 1, stopping ensemble construction when Zens

reaches the desired size.
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These heuristics introduce hyperparameters, only one of which is added to the
hyperparameter sweep. The rest of the parameters are set to the following defaults:

• Backshift Parsing: Lback = 20.
• Ensemble Prediction: Nens = 10. The weighted average of the ensemble (depth-
based versus entropy-based) is part of the hyperparameter sweep in the full
hyperparameter sweep training mode, and is set to entropy-based in the mini-
mal hyperparameter sweep training mode, as we further explain in Supplementary
Section 1.

• SPA Lower Bound: = 10−5.

Memory Efficiency of the LZ78 SPA

The simplest implementation of the LZ78 SPA is to directly implement a tree structure,
where each node is an object that stores the number of times it has been traversed and
a mapping to child nodes. Empirically, this incurs a large amount of overhead in the
large number of small hashmaps (or an equivalent data structure to store branches in
the tree) and node objects.

To maintain memory efficiency, we use an data structure inspired by the Lempel-
Ziv-Welch compressor [27]. We implicitly assign each node an ID based on the order
that it was added to the tree (the root always has ID 0, the first node added has ID
1, etc.). The LZ78 SPA is stored using two basic data structures:

1. An array of the number of times that each node was traversed, ordered by ID.
2. A hashmap mapping the tuple (parent node ID, symbol) to the ID of the

corresponding child node.

Both data structures can be accessed and modified (including insertions) in amortized
constant time, and avoid the overhead of many small objects.

Parallelization

Though the process of building an LZ78 prefix tree is inherently serial, there are several
opportunities to leverage CPU parallelism. Inference over batches of sequences can be
directly parallelized over sequences, which we apply to the validation component of
the hyperparameter sweep (over 48 CPU threads). When classifying a single sequence,
the computation of the SPA log loss can be parallelized over classes (by running
inference on each SPA in parallel), which we apply to the inference time measurement.
SPA training can also be parallelized across classes in the same manner. We do not
implement this, as building the SPAs is fast compared to the validation process.

DNABERT-2 and the Genomics Understanding Benchmark

DNABERT-2 is a large language model that maintains state-of-the-art performance
in DNA classification tasks on the Genomic Understanding Evaluation (GUE) suite.
The GUE benchmarking suite is a multi-species genome classification suite curated
by [14]. It includes 36 different datasets evaluating classification tasks on sequences
ranging from 70 to 10000 symbols. 28 of these datasets have been open-sourced with
sequence lengths ranging from 70 to 1000 symbols, and are used as the benchmarking
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reference in this work. The 28 datasets from the GUE benchmarking suite used in the
project are outlined in Table 2.

Compared to Nucleotide Transformer, DNABERT-2 is considered 3x more compu-
tationally efficient, as it achieves comparable performance to Nucleotide Transformer
with 21x less parameters and about 92x less GPU pre-training time.

However, even with this significant computational efficiency improvement,
DNABERT-2 and other large language model solutions remain very computation-
ally expensive. During pre-training, where LLMs learn to represent genomic language,
DNABERT-2 was trained on tens of GBs of unlabeled data, and required 14 days on
8 NVIDIA RTX 2080Ti GPUs, each of which contains 11GB of GDDR6 memory. In
order to use the foundation model for classification, an additional phase of fine-tuning
is required, which typically takes at least a few additional hours to cover all datasets.
The model is comprised of 117M weights, each stored using 2 bytes, resulting in a
memory requirement of 234MB for weight storage.

Profiling and Computing Platforms Used

Apart from aiming for high accuracies with the LZ78 classifier, a crucial goal is to
develop a classifier that is computationally efficient as well. As such, we characterize
the computational cost of the classifier is profiled during training and inference. The
key efficiency metrics are training time, inference time, and memory footprint. These
are compared to DNABERT-2.

The computational measurements for the LZ78 classifier were performed on an
Intel Xeon Silver 4216 CPU @ 2.10GHz. The training and inference time were tracked
using the perf counter function from the time library in Python. The Python
memory profiler was used to estimate the total memory allocated by the program
during runtime.

The total training time DNABERT-2 is obtained from [14], and the training mem-
ory footprint is estimated based on the number of GPUs used and the memory capacity
of each. For characterizing the inference time per symbol and the peak memory usage
during inference, a fine-tuned version of DNABERT-2 (available at [28]) was profiled.
In order to use DNABERT-2 for classifying a dataset, the foundation model available
on Hugging Face by [14] should be fine-tuned to classify the target dataset. The pro-
filed version of DNABERT-2 was fine-tuned on the EMP H3 dataset, which means
it is suited for correctly classifying the EMP H3 dataset (per the dataset accuracy).
However, if the DNABERT-2 model was fine-tuned to classify each dataset, the model
architecture would stay primarily unchanged. Typically, a softmax layer is added to
the foundational model to predict the class, and this layer would change depending on
the number of classes. However, the model architecture is otherwise maintained during
the fine-tuning process, and only the values of the weights are updated. Given the high
computational cost associated with fine-tuning all possible DNABERT-2 models, the
available EMP H3 fine-tuned model was evaluated for a different variety of sequence
lengths, with the understanding that it presents a good estimate for computational per-
formance regardless of the specific dataset. DNABERT-2 was profiled on an NVIDIA
RTX 4090 GPU, using torch.cuda.memory allocated for GPU memory allocation
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estimates, memory profiler for CPU RAM estimates, and time.perf counter for
time measurements.

LZ78 Hyperparameter Space and Exploration Study

As specified in Section 2, we enhance our LZ78 classification scheme through a
set of hyperparameters, most of which are learned during trained from a reduced
configuration space. We defined six hyperparameters:

• Dirichlet parameter γ: the perturbation parameter used for computing the log
loss when parsing data. The higher the Dirichlet parameter, the more the SPA is
perturbed from the empirical distribution, i.e., the more each node tends towards
a uniform distribution.

• Ensemble Prediction Heuristic: determines whether entropy-based weighting
or depth-based weighting is used for ensemble prediction, as explained in Section 4
in the subsection on Improvements to the Base LZ78 SPA.

• Inclusion of previous samples’ context: when parsing the subsequent sam-
ple during training, or whether the SPA returns to the root in between separate
sequences. Including the previous context is equivalent to concatenating the last
phrase of each sequence to the beginning of the next sequence with the same label
during training. Including the previous context means that all training samples are
viewed as one long sequence, as opposed to separate samples.

• Number of iterations (epochs): the number of times the labeled data is passed
through the SPAs during training. Since LZ78 requires a long sequence length to
converge to the true distribution, these iterations over the training data can filling
more branches of the tree with the same data. It is reasonable to expect iterating
over the training data to increase our classifier accuracy, as long as it is done with
moderation to avoid overfitting.

• Ratio of unlabeled pre-training symbols over the number of training
symbols from labeled data: this unlabeled data is used to initialize all SPAs
with the same backbone. This hyperparameter was used to assess the impact of a
pre-training stage on LZ78 classifier accuracy.

• Handling of “N” placeholders: some DNA data includes Ns (and sometimes
other nucleotide placeholders), apart from A, G, C, T. These placeholders typ-
ically indicate uncertainty in the DNA sequence (eg. that any nucleotide can
appear at a specific position. These nucleotide placeholders were simply omitted,
as they were negligible in the training dataset. In more general cases where these
nucleotide placeholders may be more prominent, an augmentation technique might
prove beneficial.

The Dirichlet parameter and the ensemble prediction heuristic are primarily relevant
during inference (so it can be tuned for validation or testing without re-building the
SPAs), whereas the rest directly impact training.

In order to achieve high classification accuracy, it is important to make our classifier
configurable, in order to enable higher expressive power based on the dataset. At the
same time, this hyperparameter space needs to remain small in order to maintain low
training complexity. To determine the ranges, a broad range of values were explored
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for the Mouse 0 dataset, informing the process of narrowing the hyperparameter space
small discrete sets of values per hyperparameter.

From the broader exploration of hyperparameters, it was found that larger numbers
of epochs or iterations cause the training loss to plateau and the validation loss to
degrade. As such, the number of epochs was constrained to 10. In addition, values
of γ throughout the range between 0.1 to 5 achieved reasonable performance. For
the pre-train to train symbols ratio, as the pre-training sequences were simply added
to the training sets, high percentages of unlabeled data could result in underfitting
of the training set. As such, the amount of pre-training data was swept from 0 to
0.25. Backshifting and ensemble prediction heuristics were formulated as algorithmic
enhancements to our classifier to mitigate degradations caused by supotimal parts of
the LZ78 tree.
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