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SI'1. SAMPLE CHARACTERIZATION INCLUDING ELECTRICAL AND X-RAY
MEASUREMENTS

Figure SI 1 shows the resistivity measurements for all three samples used in the main article.
The metal-to-insulator transition temperature was defined as the inflection point of the resis-
tivity measurement, while the Néel temperature was obtained using dln(p)/d(1/T) [1]. From
resistivity measurements, we find Tyyr = 140 K, Tyeeq = 88 K for NNO/STO, Tygr = 150
K for NNO/LAO and Tyyr = 470 K for SNO/STO (Figure SI 1). For NNO/STO, Tyee 0b-
tained from resistivity measurements was compared with temperature dependence of the x-ray
magnetic scattering peak as discussed below. For NNO/LAO and SNO/STO, x-ray magnetic

scattering was used to determine Tyge around 120 K and 170 K, respectively (see Figure SI 3).
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FIG. SI 1. Resistivity measurements for (a) NNO/STO, (b) NNO/LAO and (c¢) SNO/STO. Tyt is
shown by the black line.

The peak parameters of the structural (1/2 1/2 3/2) Bragg peak (position, intensity and
correlation length) of the three samples were extracted from a 2D Gaussian fit of the speckle
patterns and are plotted as a function of temperature in Figure SI 2. In rare earth nickelates,
the (1/2 1/2 3/2) Bragg peak is present in both the insulating and metallic phases. However,
the MIT is accompanied by a decrease of the out of plane lattice parameter [2] which is visible
in the half order peak [3]. The transition is also accompanied by an intensity increase of the
structural peak due to a higher symmetry ordering of the octahedral tilts in the metallic phase
[4].

For NNO/STO, the peak position and the intensity follow the same trend, steadily increases
until 125K after which they plateau and slowly decrease (Figure SI 2a). The changes observed
in intensity and peak position are indicative of phase transition based on x-ray measurements

which were found to be about 15 K lower than T,;;7 from the resistivity data. At 125K, the
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FIG. SI 2. (1/2 1/2 3/2) Bragg peak (position, intensity and correlation length): Normalized inten-
sity for (a) NNO/STO, (b) NNO/LAO and (c) SNO/STO. For NNO/STO, peak position obtained
from rocking curves is also included. Correlation length for (d) NNO/STO, (e) NNO/LAO and (f)
SNO/STO. The grey lines indicate the temperatures at which slowdown of the fluctuations are ob-

served as dicussed in the main text. For SNO/STO the grey line is at Tvee=170K.

correlation length (=1/FWHM) shows a sharp increase (Figure SI 2d), also consistent with a
sudden change of the macroscopic ordering. The x-ray scattering of the magnetic peak shows
the onset of the magnetic transition at lower temperatures (~ 60 K, see SI 3) than calculated
from the resistivity measurements where T . ~ 88 K.

For NNO/LAO, the intensity and correlation length show an increase at 135 K, similar to
the trend observed for NNO/STO (Figure SI 2b, e). In this sample, the onset of the structural
change was also 15 K below T, compared to resistivity mesurements. The presence of
the strong LAO peak hindered proper estimation of peak shift of NNO. The temperature
dependence of the x-ray magnetic scattering (1/4 1/4 1/4), indicates a magnetic transition
temperature of ~120K, which is 30 K below T y.¢ calculated from the resistivity measurements.
An extremely broad low intensity peak is still observed up to 135 K, indicative of a broad
magnetic transition with some diffuse magnetic regions surviving up to near MIT.

For SNO/STO, a continous decrease of the intensity from 130K to 450K is observed as shown
in Figure SI 2c. Note that the increase in intensity at 400K was due to beamline alignment after
lost beam. No sharp changes in correlation length is observed (Figure SI 2f), but as mentioned

in main articl, we were not able to reach above T);;r due to experimental constraints at the
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FIG. SI 3. Temperature dependence of x-ray magnetic scattering (1/4 1/4 1/4) peak: Magnetic
scattering peak for (a) NNO/STO, (b) NNO/LAO and (c¢) SNO/STO as a function of temperature.

(d) Normalized intensity for all three samples plotted as a function of temperature.

Figure SI 4 shows the 6 — 20 scans of the (002) Bragg peak of all three samples.
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FIG. SI 4. 6 — 20 scans of the (002) Bragg peak of (a) NNO/STO, (b) NNO/LAO and (c) SNO/STO.



SI 2. TWO-TIME CORRELATION FUNCTION DATASETS

Two time correlation plots at all temperatures are plotted for NNO/STO, NNO/LAO and
SNO/STO in Figures SI 5, SI 6 and SI 7 respectively. We observed non-equilibrium dynamics
at all temperatures for all three samples, albeit weakly for the SNO/STO sample. We also note
that the data for the NNO films have a much better signal to noise (SNR) than the SNO films,

potentially due to experimental conditions.
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FIG. SI 5. Normalized two-time correlation plots for NNO/STO for all measured temperatures.
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FIG. SI 6. Normalized two-time correlation plots for NNO/LAO for all measured temperatures
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FIG. SI 7. Normalized two-time correlation plots for SNO/STO.



SI 3. INTERMEDIATE SCATTERING FUNCTION DATASETS

Figure SI 8 shows the intermediate scattering function (gy) obtained at zero wait time for
all measured temperatures for (a) NNO/STO, (b) NNO/LAO and (c¢) SNO/STO. The contrast

of the g, function are plotted in the insets.
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FIG. SI 8. ISF at zero wait time for all measured temperatures for (a) NNO/STO (b) NNO/LAO and

(c) SNO/STO. The insets shows the contrast of the gs function.

SI 4. NON-EQUILIBRIUM DYNAMICS IN NNO

Figure SI 9 shows the ISF of NNO/LAO at different wait times t,, for (a) 120K and (b) 175K.
NNO/LAO behaves in a similar manner as NNO /STO for most of the temperature range except
for 110 to 140 K. This is also clear from ISF plotted at at 175K (Figure SI 9b), where the decay
constant 7 increases with ¢, and  remains constant for the entire ¢,,. However, in 110 to 140 K
regime, the shape of the ISF changes as a function of wait time, illustrated by the change in
(inset of Figure SI 9a). Normalized time constants as discussed in main article are also plotted
for NNO/LAO in Figure SI 9c. For most temperatures, except 110 to 140 K, the normalized
time constant is fitted as discussed in the main article for NNO/STO film. For temperatures
110 to 140 K, the reduced decay constant does not vary exponentially with wait time, and
decreases with time and thus was not fitted. The obtained 77;, is shown in Figure SI 9d.

Figure SI 10 summarizes decay constants for different wait times as a function of temperature
for (a) NNO/STO, (b) NNO/LAO and (c) SNO/STO. For all temperatures for NNO/STO and
most temperatures for NNO/LAO, decay constants increase with wait times as discussed in
the main article. For NNO/LAO, in the temperature range of 110-140 K, change in [ results
influences T and results in a decrease of 7. For SNO/STO, there is no clear trend as a function

of wait time, highlighting yet a differences compared to NNO films.
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FIG. SI 9. Non-equilibrium behavior of NNO/LAO. ISF for different wait times at (a) T=120K and

(b) T=175K. Inset shows (3 as a function of ¢,. (c) Evolution of the normalized decay constant for

different wait times showing exponential behavior. (d) obtained Tt as a function of temperature.
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FIG. SI 10. Decay constants at different wait times: Decay constant for (a) NNO/STO, (b) NNO/LAO

and (c¢) SNO/STO, for different wait times and for zero wait time, as a function of temperature

SI 5. Q-DEPENDENCE OF THE FLUCTUATION DYNAMICS

Figure SI 11 shows all measured temperatures for the g-dependence of the fluctuations in
NNO/STO. Figure SI 11a presents the decay constant at different wavevectors, clearly showing
that the slowdown is observed at higher wavevectors. Figure SI 11b shows the normalized
g-dependence for all temperatures as discussed in the main article. These datasets were fitted
using, 7/70 = K(q/q0)* — 2(K + €1)(q/q0) + (K + €2) ~ K(q/q0 — (1 + €'))? as discussed in the
main article. Figure SI 11b shows the normalized decay constant which is normalized by 7y and
K, to highlight the obtained quadratic dependence for all measured temperatures.

Figure SI 12 also confirms g-dependence for NNO/LAO. Figure SI 12a shows the g-
dependence of the decay constant as function of temperature, clearly indicating that fluc-
tuations slow down at higher g-values. This is also visible from Figure SI 12b which shows

the normalized decay constant as a function of q, for selected temperatures. Note that for

NNO/LAO peak, only three ROIs were used to obtain good SNR.
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FIG. SI 12. qg-dependence of the fluctuation dynamics in NNO/LAO: (a) Decay constants 7 as a

function of temperature for different wavector q. (b) q-dependence of the normalized decay constant
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