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Abstract 17 

Background: We aimed to investigate methods to estimate the nitrogen (N) nutrition status of rice 18 

plants using data obtained using a digital camera and a spectroradiometer. The overall aim was to 19 

compare the advantages and potential of image technology and spectral technology to monitor rice 20 

N indexes accurately, inexpensively, and in real time to optimize fertilization strategies. Realizing 21 

the technical selection of definite spectrum or image diagnosis aiming at different rice nitrogen 22 

nutrition indexes. We conducted field trials of rice plants grown with different levels of N fertilizer 23 

in 2018 to 2019. Spectral information and images of the rice canopy were obtained, various image 24 

and spectral characteristic parameters were selected to construct models to estimate rice N status. 25 

Results: The determination coefficients of the models constructed using the ratio vegetation index 26 

(RVI[800,550]) and cover canopy (CC) as dependent variables were most significant. Among the 27 

models using spectral parameters, those constructed using RVI[800,550] to estimate rice N indexes had 28 

the obviously coefficient of determination (R2) values, which were 0.69, 0.58, and 0.65 for the 29 

models to estimate leaf area index(LAI), aboveground biomass(AGB), and plant N 30 

accumulation(PNA). As for image parameter, those using CC to predict rice N indexes showed the 31 

highest R2 values (0.76, 0.65, and 0.71 for the models to estimate LAI, AGB, and PNA, respectively) 32 

(P < 0.01). The model using the spectral parameter RVI[800,550] had a good fit and stability in 33 

estimating plant nitrogen accumulation (R2 = 0.65, root mean square error (RMSE) = 1.35 g·m-2, 34 

relative RMSE (RRMSE) = 14.05%), and the model using the image parameter CC had a good fit 35 

in predicting leaf area index (R2 = 0.76, RMSE = 0.28, RRMSE = 7.26%) and aboveground biomass 36 

(R2 = 0.65, RMSE = 22.03 g·m-2, RRMSE = 7.52%). Different detection technology should be 37 

adopted for different rice varieties and rice N nutrition indexes.   38 
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Conclusions: Spectral and image parameters can be used as technical parameters to estimate rice N 39 

status. The spectral parameter RVI[800,550] can be used to accurately estimate plant nitrogen 40 

accumulation, and the image parameter CC can be used to accurately estimate leaf area index and 41 

aboveground biomass.  42 

Key words: image; canopy coverage; spectral index; rice; nitrogen nutrition  43 

Background 44 

Rice (Oryza sativa L.) is one of the most important food crops both in China and around the world. 45 

It plays an important role in food security, and provides social and socioeconomic stability. Nitrogen 46 

(N) is one of the most important nutrients for the growth and development of rice plants. In China, 47 

the amount of N fertilizer applied to rice crops accounts for 37% of the N fertilizer used globally. 48 

However, the average utilization rate of N fertilizer is only 35% [1]. Increasing N applications can 49 

increase rice yield, but excessive N application causes a series of environmental problems, such as 50 

greenhouse gas emissions, soil acidification, and water pollution [2, 3]. In addition to nitrogen 51 

management, rice breeding also plays an important role in the process of increasing rice yield. GAO 52 

et al. [4]showed that hybrid rice had heterosis compared with conventional rice, the yield increase 53 

advantage mainly depends on the dry matter production advantage of aboveground plants. Therefore, 54 

the scientific and rational application of N fertilizer and study the difference of nitrogen nutrition 55 

between hybrid rice and conventional rice are of great significance for high-yielding rice. 56 

Accurate N management is an essential part of the rice production management system. 57 

Accurate determination of the N nutrition status of rice is essential for accurate N management [5]. 58 

Leaf area index (LAI), aboveground biomass (AGB), and plant nitrogen accumulation (PNA) are 59 

important indicators that are used to characterize rice growth and N status [6]. They are usually 60 
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determined by chemical analyses, which provide accurate results [7]. However, the disadvantages 61 

of chemical analyses are their high cost, lengthy and complex operation, and the need for expensive 62 

and potentially harmful chemical reagents. For these reasons, chemical analyses are insufficient to 63 

meet the needs of real-time monitoring of N nutrition in large-scale crops [8]. One alternative is to 64 

use near-ground hyperspectral equipment to monitor the N status of crops in a large area. Willkomm 65 

et al. used low-cost unmanned aerial vehicles to generate a high-resolution crop surface model 66 

(CSM) for rice. On the basis of comparisons of agronomic parameters (fresh and dry AGB, LAI, 67 

and plant nitrogen concentration) measured using hyperspectral methods and direct methods, it was 68 

concluded that the plant height of rice was significantly correlated with fresh AGB and LAI 69 

(coefficient of determination, R2>0.8) [9]. He et al. accurately estimated N distribution in the vertical 70 

leaves of the rice canopy using a knapsack spectrometer, and the hyperspectral model was shown to 71 

have good predictability [10]. In addition, some special instruments for plant nutrition diagnosis 72 

have been developed, such as the SPAD chlorophyll meter [11] and the GreenSeeker spectrometer 73 

[12]. A portable spectrometer is easy to carry and use, but one of its disadvantages is that the 74 

diagnostic results are not reliable for crops with excess N absorption [13]. Consequently, this method 75 

cannot be used to evaluate crops growing with an excess of N. 76 

Digital cameras are a common and inexpensive piece of equipment. They can collect image 77 

and spectral information with sufficient quality to use in predictions of crop nutrition status [13, 14] 78 

and yield [15] [16], and to monitor pests [17]. Li et al. extracted the dark green color index (DGCI) 79 

of image features, and concluded that DGCI was significantly correlated with the SPAD value of 80 

rice leaves. Thus, DGCI could be used to estimate the chlorophyll value of rice leaves and indirectly 81 

evaluate the growth and nutrition status of rice [18]. Jia et al. used a digital camera and a 82 
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Greenseeker hand-held sensor to monitor cotton growth and N status[19]. The results revealed an 83 

exponential relationship between the image parameter canopy cover (CC) and aboveground total N 84 

content. The R2 value of the model was 0.926, and the root mean square error (RMSE) value was 85 

1.631 g·m−2. Lee et al. used image red-green-blue (RGB) parameters and CC to monitor rice 86 

nutrition status in real time [13, 20]. They established a stepwise multiple linear regression model 87 

based on a non-linear relationship between rice color indexes and CC. Using this model, information 88 

about the nutrient status of crops could be obtained quickly and non-destructively using image 89 

technology [21]. Models to predict leaf area index (LAI), biomass, and plant N accumulation (PNA) 90 

have been constructed using various methods. However, less attention has been paid to the 91 

advantages and disadvantages of spectral and image techniques in monitoring nitrogen nutrition in 92 

rice. Rice yield is affected by many factors, among which the succession of rice varieties and the 93 

improvement of fertilization measures play an important role in the formation of rice yield. 94 

Hence, the objectives of this study were to: (1) assess the potential of rice canopy image 95 

parameters to monitor hybrid rice and conventional rice N status; (2) compare and analyze models 96 

based on image and spectral parameters to estimate rice N status; and (3) determine the accuracy, 97 

advantages, and disadvantages of the models constructed using different image and spectral 98 

parameters. The overall aim of our research was to provide a reference for the fast, inexpensive, and 99 

non-destructive monitoring of the N status of rice crops. 100 

Results 101 

Relationships Between Rice N Nutrition Indexes and Image/Spectral parameters 102 

During the whole growth period of rice, the correlations between image or spectral parameters and 103 

N nutrition indexes of the whole growth period of rice were analyzed (Table 1). There were 104 



6 
 

significant differences in the correlation coefficients between image and spectral parameters. The 105 

spectral parameters were all positively correlated with rice N indexes. RVI[800,550] was most 106 

correlated with PNA, DVI[800,720] was most correlated with LAI and AGB, and that the correlation 107 

coefficients ranged from 0.419 to 0.645. Different from spectral indexes, canopy coverage (CC), 108 

red normalized value (NRI) and hue (H) were significantly correlated with aboveground biomass, 109 

nitrogen accumulation and LAI of rice (P < 0.01), and the correlation coefficients ranged from 0.427 110 

to 0.831. Among them，NRI was negatively correlated with rice N indexes, while Hue and CC were 111 

positively correlated with rice N indexes. The correlation coefficient between NRI and aboveground 112 

biomass, plant nitrogen accumulation and LAI was the highest, with an average of 0.74 (P < 0.01). 113 

Although there was a significant correlation between other parameters and N nutrition index of rice, 114 

the correlation coefficient was very low. Therefore, the image parameters CC, NRI, Hue and spectral 115 

index RVI[800,550] and DVI[800,720] were selected as sensitive parameters to construct rice N nutrition 116 

monitoring model furthermore.  117 

Table 1 118 

Correlations between rice N indexes (LAI, biomass, PNA) and image/spectral parameters 119 

Image  

parameter 

LAI AGB PNA 

Spectral  

parameter 

LAI AGB PNA 

NRI -0.685** -0.828* -0.698** RVI[800，550] 0.572** 0.064** 0.574** 

NGI -0.071* -0.311** -0.316* RVI[800，720] 0.504** 0.248* 0.512** 

GDR 0.549 0.758 0.135 DVI[800，720] 0.645** 0.462** 0.419** 

GMR -0.109* -0.493** -0.088* NDVI[800，680] 0.493** 0.158** 0.438** 

Hue 0.707* 0.685* 0.427* λrep 0.298** 0.069** 0.275** 
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CC 0.619** 0.831** 0.595**     

Note: ** correlation significant at the 0.01 level, * correlation significant at the 0.05 level. 120 

Construction of Rice N Nutrition Models Based on Image/Spectral Parameters 121 

1) Models based on spectral parameters 122 

Select the data of jointing period to build the model. The spectral parameters (RVI[800,550] and 123 

DVI[800,720]) calculated in experiment 1 and experiment 2 were used as independent variables to 124 

predict N indexes of rice. The relationships between RVI[800,550] ,DVI[800,720]and N nutrition indexes 125 

of rice were all polynomial functions. The R2 values for models using RVI[800,550] to predict LAI, 126 

AGB, and PNA were 0.69, 0.58, and 0.65, respectively (P < 0.01). And for DVI[800,720] the coefficient 127 

were 0.54, 0.55, and 0.55, respectively (P < 0.01)(Fig.2). 128 

Take DVI[800,720] as an example, there were significant differences between conventional rice and 129 

hybrid rice in the application of spectral parameters to predict rice nitrogen status. The relationships 130 

between DVI[800,720] and the N indexes of rice were all polynomial functions, the accuracy of 131 

monitoring rice N indexes by DVI[800,720] in Zhongjiazao 17 was higher than that in hybrid rice 132 

Changliangyou173(Fig.3).  133 
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 134 
Fig. 2 Relationships between RVI[800,550] ,DVI[800,720] and rice N indexes 135 
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 136 

Fig. 3 Relationships between DVI[800,720] and rice N indexes 137 

2) Models based on image parameters  138 

The relationships between CC and N nutrition indexes of rice were all polynomial functions. The 139 
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R2 values for models using CC to predict LAI, AGB, and PNA were 0.76, 0.65, and 0.71, 140 

respectively (P < 0.01). LAI, aboveground biomass and plant nitrogen accumulation of rice 141 

increased with the increase of CC, while the correlation coefficients between NRI, Hue and rice N 142 

indexes were not significant(R2<0.5), the average correlation coefficient of NRI model was 0.16, 143 

and that of hue was 0.10. As for conventional rice and hybrid rice in the application of CC to predict 144 

rice nitrogen status, the average coefficient of models based on CC in hybrid rice Changliangyou173 145 

was 0.74, which was higher than that in conventional rice Zhongjiazao17. 146 

It can be seen from the above that the models based on RVI [800,550] and CC had good prediction 147 

effect for rice N indexes, and there were significant differences among different gene varieties. 148 
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149 

Fig. 4 Relationships between CC and rice N indexes. 150 
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 151 

Fig. 5 Relationships between NRI and rice N indexes. 152 
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153 

Fig. 6 Relationships between Hue and rice N indexes. 154 

3) Regression validation 155 

To test the accuracy of the models, those based on the spectral parameter RVI[800,550] and the image 156 
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parameter CC were tested and evaluated using data from experiment 3 obtained at the jointing stage 157 

(Fig. 7, Fig.8). The RMSE, RRMSE, and r2 values were calculated to evaluate the accuracy and 158 

stability of the models. The result showed that the r2 from RVI[800,550] regression equations were 159 

0.51,0.47 and 0.86 respectively, and that the RMSE values were 0.77, 42.18 and 1.35, respectively 160 

(Fig. 7a, 7b, 7c). As shown in Fig. 8, there was good consistency between the observed value and 161 

the value predicted by the model constructed using the image parameter CC as the independent 162 

variable except for predict PNA (r2 values of 0.86, 0.77, and 0.52 for LAI, AGB, and PNA, 163 

respectively; P < 0.05). The RMSE values from CC regression equations were 0.28, 22.03 and 2.38, 164 

respectively (Fig. 8a, 8b, 8c). Among all the models, the PNA model based on RVI[800,550] showed 165 

ideal test result, with a higher r2 and smaller RMSE , RRMSE values than that from CC regression 166 

equations, while the test result of LAI and AGB equations based on CC showed better result with 167 

higher r2 and smaller RMSE , RRMSE values than that from RVI[800,550] regression equation. 168 

 169 

Fig. 7. Relationship between observed values in rice plants and predicted values from models based on 170 

RVI[800,550].  171 

 172 

 173 
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Fig. 8 Relationship between observed values in rice plants and predicted values from models based on CC. 174 

Discussion 175 

Comparison of Methods to Estimate Rice N Status  176 

In recent years, accurate and non-destructive spectral and image techniques have been developed 177 

for the real-time monitoring of crop growth and N nutrition[21, 22]. However, few studies have 178 

compared and contrasted models constructed using data obtained using these two techniques. 179 

Hyperspectrometry has many advantages, including precise measurements and abundant spectral 180 

data [23, 24]. Single bands readily become saturated, it is better to use data from two or more bands 181 

as spectral parameters to create models to estimate the biochemical parameters of vegetation [25]. 182 

In the present study, RVI[800,550], a dual-band vegetation index at the jointing stage, was used as an 183 

independent variable in models to estimate the N status of rice. The R2 values of models using 184 

RVI[800,550] to estimate LAI, AGB, and PNA were 0.69, 0.58, and 0.65, respectively. While the 185 

models using DVI[800,720] had poor fitting abilities. Different spectral parameters have different 186 

effects in different application environments. Zhao et.al. [26]constructed a regression model of a 187 

maize N nutrition index using a dual-band spectral index (R710, R512), and it was proven to be a very 188 

good predictor. Sun et al . [27] used hyperspectral technology and BP neural network to establish 189 

the estimation model of nitrogen concentration in rice leaves , which was better than the traditional 190 

multiple linear regression model. The results showed that the dual-band vegetation index model and 191 

BP neural network model were better than the traditional multiple linear regression model, but the 192 

cost of hyperspectral technology was high and the operation was complicated. 193 

Compared with spectral technology, image technology does not need special equipment to 194 

diagnose crop N status. This greatly reduces the cost of detection and provides a reliable basis for 195 
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precision agriculture. The intensity of R, G, and B colors in the canopy image provides information 196 

about most plant organs. The quantification of the intensity values of these visible colors (R and G) 197 

can describe plant color [28], which can reflect its nutrient status, especially N content and 198 

absorption. Several studies have shown that RGB color space parameters extracted from vegetation 199 

canopy images can be used to predict vegetation yield and nutrient status [15, 19, 20]. Among the 200 

models constructed with image parameters in this study, those constructed using NRI were unstable, 201 

possibly because the parameters of NRI were obtained by extracting RGB values from images. 202 

These values can be affected by the time and the weather when the image was acquired. The model 203 

constructed using CC had a good fitting effect. The R2 values of the models using CC to estimate 204 

LAI, AGB, and PNA were 0.76, 0.66, and 0.71, respectively, consistent with the conclusion that CC 205 

is a reliable parameter to estimate vegetation N content [29]. The CC value is obtained by removing 206 

the influence of soil and water in the image. Compared with other image parameters, CC is obtained 207 

more easily and is not affected by weather or light intensity.  208 

Advantages and Disadvantages of Models using Spectral and Image Parameters 209 

The results of previous studies indicated that the booting stage is the peak period of rice plant growth, 210 

when the LAI is the highest. The booting stage is considered as the best time and cut-off point for 211 

estimating rice yield using remote sensing. However, some other studies have found that the early 212 

heading stage is the best time to use the spectral index RVI and color indexes to estimate rice LAI 213 

[30, 31]. In our study, through the correlation analysis of spectral parameters and image parameters 214 

with the nitrogen nutrition index of the whole growth period of rice, the parameters with larger 215 

correlation value were selected for modeling. According to the practice of fertilization in the double 216 

cropping rice region of southern China, the last fertilizer, panicle fertilizer, must be applied before 217 
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booting stage to supply the nutrition needed after booting. Therefore, in order to achieve accurate 218 

fertilization before booting, the data of jointing stage were used for modeling. The results of the 219 

comparative analysis of the constructed models (Table 2) showed that the stability (RMSE value) 220 

of the model using CC to predict PNA was lower than that using RVI[800,550]. While to predict LAI 221 

and AGB, they were higher than that using RVI[800,550]. Among all the constructed models, the model 222 

to estimate LAI using CC had a high fitting ability and good stability (higher R2 value, small RMSE 223 

value). The fitting ability of the model to predict AGB using CC was also high(higher R2 value, 224 

small RMSE value). In general, the model using the spectral parameter RVI[800,550] to predict PNA 225 

had a good fitting ability and good stability, while the model using the image parameter CC to 226 

predict LAI and AGB had a good fitting ability and stability. From the viewpoint of LAI, AGB 227 

prediction, CC can be used as alternative technical parameters for estimating, and RVI[800,550] can be 228 

used as alternative technical parameters for estimating PNA. 229 

Table 2 Comparison of model test results 230 

Dependent 

variable 

Independent 

variable 

Estimation model  R2 

RMSE RRMSE(%) r2 

RVI[800,550] 

LAI y= 2.31-0.03x+0.03x2 0.69 0.77 20.01 0.51 

AGB y = 162.72+6.55x+1.93x2 0.58 42.18 14.37 0.47 

PNA y= 9.26-1.58x+0.27x2 0.65 1.35 14.05 0.86 

CC 

LAI y = 3.34-8.08x+19.75x2 0.76 0.28 7.26 0.86 

AGB y =-88.71+1022.24x-403.05x2 0.65 22.03 7.52 0.77 

PNA y = 3.11-4.40x+46.88x2 0.71 2.38 24.85 0.52 

In addition, different rice varieties also had influence on model construction. The difference in 231 
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nitrogen nutrition diagnosis between hybrid rice and conventional rice may also be related to 232 

nitrogen use efficiency. Previous studies have shown that the nitrogen accumulation in hybrid rice 233 

is significantly higher than that in conventional rice as the nitrogen supply level increases[4]. Peng 234 

et al. [32]indicated that the application ratio of panicle fertilizer should be increased to promote 235 

nutrient absorption and accumulation in the middle and late growth stage of hybrid rice. There was 236 

a significant correlation between vegetation reflection and nitrogen accumulation, which could be 237 

analyzed using multi-term linear regression method[33], consistent with this study. Moreover, the 238 

correlation between crop population reflection spectrum and nitrogen accumulation was better than 239 

that between digital image and nitrogen accumulation. The two-band combination has advantages 240 

in the inversion of nitrogen accumulation. 241 

An effective strategy to optimize N use for rice should be suitable for the methods used by farmers, 242 

while taking account of factors such as cultivars that affect the N requirements of rice and the 243 

efficiency of its use. There are still many uncertain factors in remote sensing of crop N status. In 244 

this study, we did not consider the effects of several imaging factors (shooting angle, storage format, 245 

shooting time, and camera resolution). To obtain a reliable and universal model, it is necessary to 246 

further standardize imaging factors, test varieties, growth period, and test points, and to integrate 247 

soil and climate data. This will improve the accuracy of models so that they can be used to quickly 248 

diagnose the nutrient status of field crops and establish a tailored fertilization system.  249 

Conclusion 250 

In this study, we constructed models to estimate rice N indexes with the image parameter and 251 

the spectral parameter. We analyzed the accuracy and stability of the models to predict LAI, AGB, 252 

and PNA. The results showed that the R2 values of the models constructed with the image parameter 253 
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CC and the spectral parameter RVI[800,720] were very significant. Compared with other models, the 254 

polynomial model constructed using CC to predict LAI ,AGB and the model constructed using 255 

RVI[800,550] to predict PNA during the jointing stage had better prediction and test results. Our results 256 

showed that image parameters can be used to estimate rice N status (especially LAI and AGB). We 257 

conclude that image technology can be used as a low-cost, non-destructive, and rapid method to 258 

monitor rice N status instead of spectral technology, which could be suitable for the methods used 259 

by farmers. 260 

Materials and Methods 261 

Study Area and Experimental Details 262 

Three independent experiments were performed in this study. 263 

Experiment 1 (Exp. 1): This experiment was carried out at the Gao’an base of Jiangxi Academy 264 

of Agricultural Sciences (28°25′27″ N，115°12′15″ E), Jiangxi Province, China, in 2018. This area 265 

is in a mid-subtropical monsoon climate zone, with an annual average temperature of 17.6 °C, 266 

annual average sunshine of 1668.2 h, and annual precipitation of 1718.4 mm. The soil properties 267 

were as follows: 38.80 g·kg-1 organic matter, 2.53 g·kg-1 total N, 42.4 mg·kg-1 ammonium N, 1.04 268 

mg·kg-1 nitrate N, 16.78 mg·kg-1 rapidly available phosphorus (P), 120.1 mg·kg-1 rapidly available 269 

potassium (K), and pH 5.5. A split-plot design was used with cultivar as the main plot and N 270 

treatment as the sub-plot with three replications. The experiment included two rice cultivars 271 

(Conventional rice: Zhonjiazao17; Hybrid rice: Changliangyou173) and four N application levels 272 

(0, 75, 150, 225 kg·hm-2). The row and plant spacing was 24 cm × 14 cm. Three seedlings were 273 

planted in each hole in the north-south direction. The plots were separated by ridges and were 274 

irrigated independently. The plot area was 30 m2. Seeds were sown on 23 March and seedlings were 275 
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transplanted on 23 April at three planting densities. All experimental plots were also supplemented 276 

with 75 kg·hm-2 P2O5 as P fertilizer and 150 kg·hm-2 K2O as K fertilizer. The P fertilizer was added 277 

as base fertilizer, and N and K fertilizers were applied at three stages: 40% as base fertilizer, 30% 278 

at the tillering stage, and 30% at the ear-filling stage. Other cultivation measures were consistent 279 

with local high-yielding cultivation practices. 280 

Experiment 2 (Exp. 2): This experiment was carried out at the Gao’an base of Jiangxi Academy 281 

of Agricultural Sciences in 2019. The soil properties were as follows: 38.60 g·kg-1 organic matter, 282 

2.51 g·kg-1 total N, 42.0 mg·kg-1 ammonium N, 1.09 mg·kg-1 nitrate N, 16.88 mg·kg-1 rapidly 283 

available P, 120.3 mg·kg-1 rapidly available K, and pH 5.5. A split-plot design was used with cultivar 284 

as the main plot and N treatment as the sub-plot with three replications. Seeds were sown on 25 285 

March and seedlings were transplanted on 24 April at three planting densities. The four N 286 

application levels, row spacing, row direction, plot area, and types and amounts of NPK fertilizers 287 

were the same as those in Exp. 1.  288 

Experiment 3 (Exp. 3): This experiment was carried out at Jiebu, Xingan County (28°25′27″ 289 

N, 115°12′15″ E), Jiangxi Province, China in 2019. This area is in a humid subtropical monsoon 290 

climate zone, with an annual average temperature of 20.4 °C, annual average sunshine of 1684.8 h, 291 

and annual precipitation of 1520 mm. The soil properties were as follows: 28.20 g·kg-1 organic 292 

matter, 127.1 mg·kg-1 available N, 29 mg·kg-1 rapidly available P, and 120.0 mg·kg-1 rapidly 293 

available K. This experiment included two rice cultivars (Conventional rice: Zaoxian618; Hybrid 294 

rice: Xiangzaoxian45) and four N application levels. The four N application levels, row spacing, 295 

row direction, plot area, and types and amounts of NPK fertilizers were the same as those in Exp. 1.  296 
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Field Data Collection 297 

Repeated destructive sampling was carried out in each plot for Exp. 1 and Exp. 2 Three rice plants 298 

from each experimental plot were randomly selected to determine LAI. For each sample, the green 299 

leaves were separated from the stems, and the leaf area (LA) was immediately determined by 300 

multiplying length by width. The LAI for each plot was calculated based on the planting densities. 301 

After bagging, the plant samples were heated in an oven at 105 °C for 30 min, dried to constant 302 

weight at 80 °C, and then weighed to determine the dry weight per unit area. Samples were crushed 303 

before determining N content using the Kjeldahl method. The PNA value was calculated as follows:  304 

PNA (g N·m-2) = LNC (%) × LDW (g DW·m-2) + SNC (%) × SDW (g DW·m-2) + PNC (%) × PDW (g 305 

DW·m-2),                  (1) 306 

Where LNC is leaf N content, LDW is leaf dry weight, SNC is stem N content, SDW is stem 307 

dry weight, PNC is plant N content, and PDW is plant dry weight. Before sampling, images of the 308 

rice canopy were obtained using a Canon EOS 100D digital camera (resolution, 72 DPI) (Canon, 309 

Tokyo, Japan) . The camera lens was about 1.0 m away from the rice canopy at an angle of 60° 310 

relative to the ground. The camera was set to auto mode to control the color balance automatically. 311 

The images were stored in JPEG format with a resolution of 5184 × 3456 pixels. 312 

A FieldSpec Handheld 2 spectroradiometer (Analytical Spectral Devices, Boulder, CO, USA) 313 

was used to measure the spectra of the rice plant population. The band range was 325~1075 nm. 314 

Spectral data were obtained at the same time as agronomic sampling and image sampling. The 315 

vertical height between the probe and the canopy was 1 m. The field of view angle was 25° and 316 

reference plate correction was carried out before and after acquiring each target spectrum. The 317 

average value was calculated from 10 repeated measurements within the field of view. Five fields 318 
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of view were analyzed for each plot. 319 

Data Processing and Analysis 320 

1) Image data processing 321 

In the periods of rice growth, the canopy does not completely obscure the ground, so images contain 322 

soil, water, and other non-canopy items. Consequently, it is necessary to segment and extract the 323 

canopy part from the image. Image segmentation eliminates interference from non-canopy items so 324 

that data for the crop canopy can be extracted and analyzed. We used the Otsu threshold 325 

segmentation algorithm to segment images. This image segmentation method is based on the 326 

difference of reflectance spectra between green vegetation and soil in the visible light region. 327 

Figures 9a and 9b show the original and segmented images of the rice canopy, respectively (Fig. 9b 328 

shows the rice canopy area in white).  329 

 330 

 331 

 332 

 333 

 334 

    (a)           (b) 335 

Fig. 9. Canopy images of rice before (a) and after (b) applying Otsu threshold 336 

segmentation algorithm. 337 

At the same time, the histogram program in Adobe Photoshop 7.0 software was used to obtain 338 

the red, green, and blue intensity values of the image. Using combinations of these three color 339 

parameters, a variety of color parameters can be obtained. Table 3 showed that the references of 340 
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image parameters previous researchers used to indirectly characterize crop nitrogen nutrition. In this 341 

study, eight color parameters including image R-G-B were selected. 342 

Table 3 Image characteristic values and calculation methods 343 

Parameter Abbreviation Algorithm formula Reference 

Normalized value of red band NRI NRI=R/R+G+B 

[21] 

Normalized value of green band NGI NGI=G/R+G+B 

Green blue band ratio index GDR GDR=G/R 

Green blue band difference index GMR GMR=G−R 

Hue Hue 

if R=max, 

H=(G−B)/(max−min)*60 

if G=max, 

H=120+(B−R)/(max−min)*60if 

B=max, 

H=240+(R−B)/(max−min)*60 

if H<0, H=H+360 

2) Spectral data processing 344 

Table 4 showed that the references of spectral reflectance parameters previous researchers used to 345 

indirectly characterize crop nitrogen nutrition. 346 

Table 4 Algorithms for different spectral parameters 347 

Spectral parameter Abbreviation Algorithm formula Reference 

Reflectance Rλ   

Ratio vegetation index RVI(λ1, λ2) Rλ1/ Rλ2 [34] 
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Differential vegetation index DVI(λ1, λ2) Rλ1－ Rλ2 [34] 

Normalized difference vegetation index NDVI (λ1, λ2)   [35] 

Red edge position wavelength λrep  [36] 

3) Data analysis 348 

In the models, the rice N nutrition index was set as the dependent variable, and image 349 

parameters and spectral parameters were set as independent variables. The quantitative relationships 350 

between rice N nutrition indexes and parameters in Exp. 1 and Exp. 2 were fitted and analyzed using 351 

Microsoft Excel 2010 software. We tested various relationships between them (linear function, 352 

exponential function, logarithmic function, polynomial function, and power function), and the 353 

function with the highest R2 value was selected as the estimation model. Data from Exp. 3 were 354 

used to test the predictive ability of the models. The reliability of each model was evaluated by 355 

calculating the RMSE, relative root mean square error (RRMSE), and R2 values. A 1:1 relationship 356 

between observed and simulated values was drawn to show the fitting degree and the predictive 357 

effect of the model. The following formulae were used to calculate RMSE and RRMSE: 358 

,                            (2)  359 

.                            (3)  360 

In the above formulae, n is the number of samples tested for model test; Pi is the predicted value 361 

of the model,  is the average value of the predicted value; Oi is the measured value; and is 362 

the average value of the measured values. 363 
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