
SUPPLEMENTARY INFORMATION

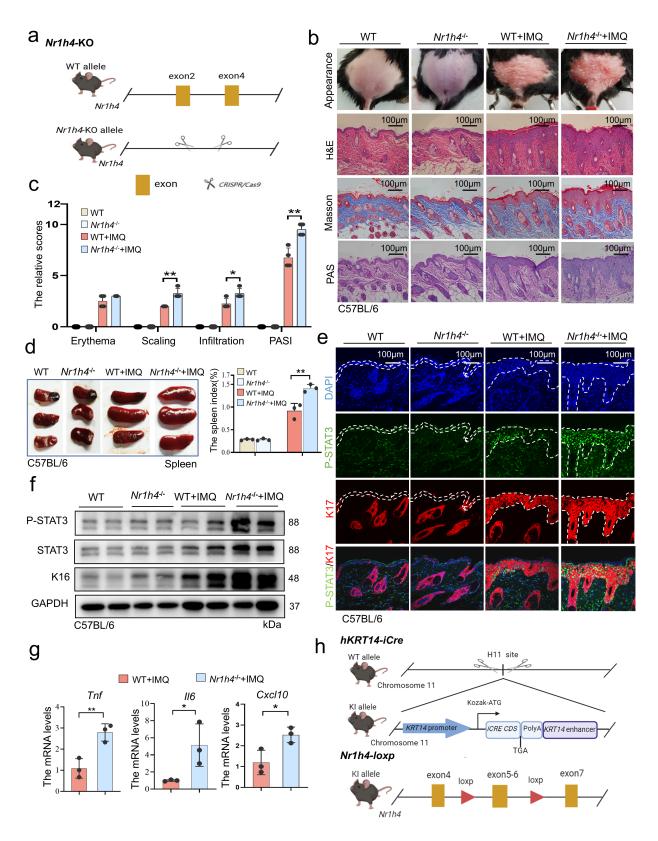

Lian et al. 2025

Fig S1

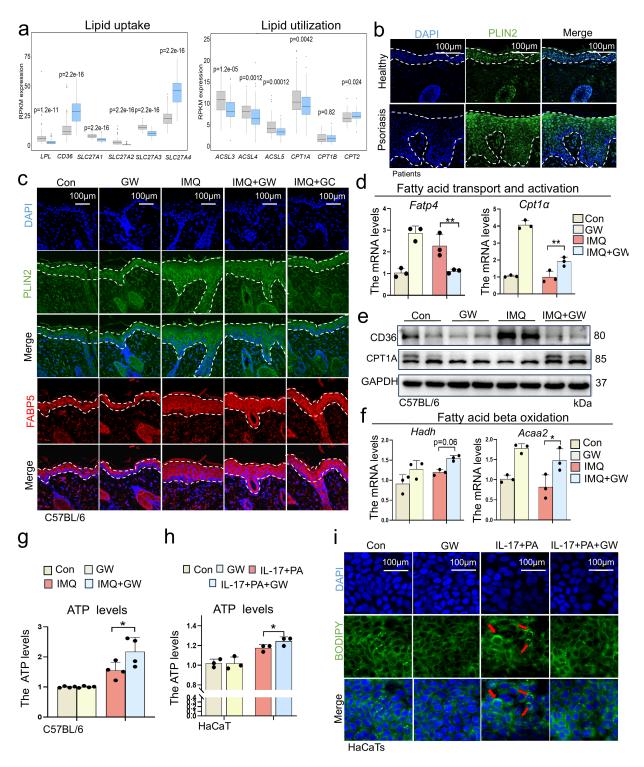

Supplementary Figure 1. Disrupted serum bile acid profile in psoriasis patients and IMQ-induced mice. a. scRNA-seq analysis showing NRIH4 expression in various skin cells in psoriasis patients. b. PASI scores accessing the erythema, scaling, and infiltration on dorsal skin from control and IMQ-induced mice with or without GW treatment (n = 3). c. Macroscopic appearance of spleen and the spleen index in from control and IMQ-induced mice with or without GW treatment (n = 3). d. IF staining of K17 in dorsal lesions of control and IMQ-induced mice with or without GW treatment. e. Western blot of Ki67, K16, P-STAT3, and STAT3 in dorsal lesions from control and IMQ-induced mice with or without GW treatment. The data are presented as the mean \pm SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Fig S2

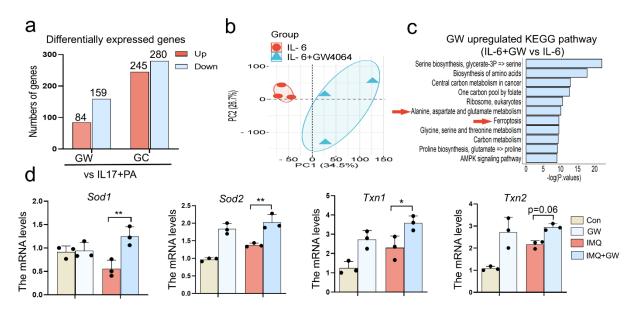
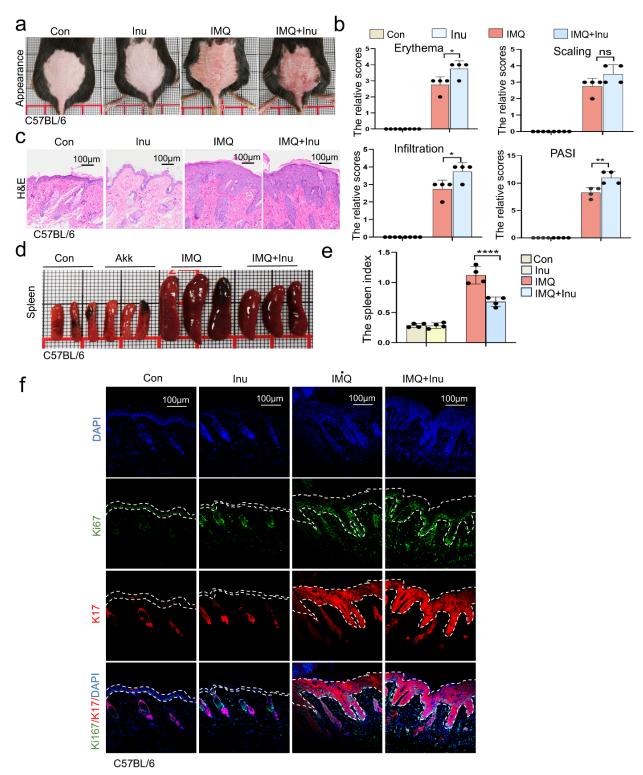

Supplementary Figure 2. Systemic *Nr1h4* knockout aggravates the IMQ-induced psoriatic lesions in Mice. a. Schematic illustration showing the strategy of constructing systemic *Nr1h4* knockout mice **b**. Representative images and histological staining (H&E staining, Masson's trichrome, and PAS) of dorsal skin from WT and *Nr1h4*-KO mice with or without IMQ treatment. **c**. PASI scores accessing the erythema, scaling, and infiltration in IMQ-induced mice (n = 3). **d**. Macroscopic appearance of spleen and the spleen index in WT and *Nr1h4*-KO mice with or without IMQ treatment (n = 3). **e**. IF staining of K17 and P-STAT3 in dorsal lesions from WT and *Nr1h4*-KO mice with or without IMQ treatment. **f**. Western blot of K16, P-STAT3, and STAT3 in dorsal lesions of WT and *Nr1h4*-KO mice with or without IMQ treatment. **g**. qRT-PCR analyzing key psoriasis-associated inflammatory mediators (*Tnf*, *Il6*, and *Cxcl10*) in dorsal skin of IMQ-induced WT and *Nr1h4*-KO mice (n = 3). **h**. Schematic illustration showing the strategy of constructing *KRT14-Cre* mice and *Nr1h4* loxp/loxp mice. The data are presented as the mean \pm SD. *p < 0.05, **p < 0.01, ****p < 0.001, ****p < 0.001, ****p < 0.001.

Fig S3

Supplementary Figure 3. FXR activation ameliorates psoriatic lesions through decreasing keratinocyte lipid accumulation. a. RPKM values of genes associated with lipid uptake and lipid utilization in psoriatic skin from GEO database (GSE54456). b. IF staining of PLIN2 in psoriatic lesions and healthy skin. c. IF staining of PLIN2 and FABP5 in the dorsal skin of control, IMQ-treated, and IMQ- treated mice with GC or GW treatment. d. qRT-PCR analyzing of key genes associated with fatty acid transport and activation (Fatp4, Cpt1a) in dorsal lesions of mice (n = 3). e. Western blot of CD36 and CPT1A in the dorsal lesions of control, IMQ-treated, and IMQ-treated mice with GC or GW. f. qRT-PCR analyzing of key genes associated with fatty acid beta oxidation (Hadh, Ehhadh, Acaa2) in dorsal lesions of mice (n = 3). g. ATP analysis of dorsal skin of control, IMQ-treated, and IMQ-treated mice with GW treatment (n = 4). h. ATP analysis of IL-17- and PA-induced HaCaTs with GW treatment (n = 3). i. BODIPY staining showing lipid droplets in IL-17- and PA-induced HaCaTs with GW treatment. The data are presented as the mean \pm SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001, ****p < 0.0001.


Fig S4

Supplementary Figure 4. FXR upregulates NQO1 expression to enhance antioxidative ability.

a. Bar-chart showing differentially expressed genes (DEGs) in IL-17/PA-induced HaCaTs with GW or GC treatment. **b.** PCA plot of RNA sequencing in IL-6-induced HaCaTs with GW treatment (n = 3). **c.** KEGG enrichment analysis of upregulated genes in in IL-6-induced HaCaTs treated with GW. **d.** RT-PCR analyzing of the antioxidative genes (Sod1, Sod2, Txn1, Txn2) in dorsal skin of IMQ-induced mice with GW treatment. The data are presented as the mean \pm SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Fig S5

Supplementary Figure 5. Inulin feeding exacerbates IMQ-induced psoriatic lesions in mice.

a. Macroscopic images of dorsal skin from control and IMQ-induced mice with or without inulin (inu) treatment. **b.** PASI scores assessing the erythema, scaling, and infiltration on dorsal skin from control and IMQ-induced mice with or without inu treatment (n = 4). **c.** Histological H&E staining of dorsal skin from control and IMQ-induced mice with or without inu treatment. **d-e.** Macroscopic images of spleen and the spleen index in control and IMQ-induced mice with or without inu treatment (n = 4). **f.** IF staining of K17 and Ki67 in the dorsal lesions of control and IMQ-induced mice with or without GW treatment. The data are presented as the mean \pm SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001, ****p < 0.0001.

Supplementary table 1: Primers used in this study

RT-qPCR primers	Forward Primer (5'-3')	Reverse Primer (5'-3')
Mouse		
116	TAGTCCTTCCTACCCCAATTTCC	TTGGTCCTTAGCCACTCCTTC
Cxcl10	ATGAGTTTTTCCCTTATGGGGAC	GCTGGAAGTTGGACACCTCAA
II17a	TGACCCCTAAGAAACCCCCA	TCATTGTGGAGGGCAGACAA
ll1b	GCAACTGTTCCTGAACTCAACT	ATCTTTTGGGGTCCGTCAACT
Tnf	CAGGCGGTGCCTATGTCTC	CGATCACCCCGAAGTTCAGTAG
S100a9	ACTCTTTAGCCTTGAAGAGCAAG	TTCTTGCTCAGGGTGTCAGG
1/23	CAAAGGATCCGCCAAGGTCT	GGAGGTGTGAAGTTGCTCCA
Fatp4	GATGAAGACCCGGATGAAACG	GATGAAGACCCGGATGAAACG
Cpt1α	CTCCGCCTGAGCCATGAAG	CACCAGTGATGATGCCATTCT
Hadh	TCAAGCATGTGACCGTCATCG	TGGATTTTGCCAGGATGTCTTC
Acaa2	CTGCTACGAGGTGTGTTCATC	AGCTCTGCATGACATTGCCC
Sod1	AACCAGTTGTGTTGTCAGGAC	CCACCATGTTTCTTAGAGTGAGG
Sod2	CAGACCTGCCTTACGACTATGG	CTCGGTGGCGTTGAGATTGTT
Txn1	CATGCCGACCTTCCAGTTTTA	TTTCCTTGTTAGCACCGGAGA
Txn2	TGGGCTTCCCTCACCTCTAAG	CCTGGACGTTAAAGGTCGTCA
Human		
SLC7A11	TGCAGTGGCAGTGACCTTTT	AAGCAGGAGAGGCAACAAA
NQO1	CCTTGTGATATTCCAGAGTGGCA	CCAGGCGTTTCTTCCATCCT
Primers for Nr1h4-KO mice	Forward Primer (5'-3')	Reverse Primer (5'-3')
K14_Cre_KI	ATATCCCCTTGTTCCCTTTCTGC	ATATCCCCTTGTTCCCTTTCTGC
K14_Cre_WT	CAGCAAAACCTGGCTGTGGATC	ATGAGCCACCATGTGGGTGTC
Nr1h4_Floxp	TGTAGGCTTCTAGGTGTTGGC	ACCCTTCACATGGTGGGAGAT
Nr1h4_KO	GGCTATTAGAGTTTTAAGTGCTGGAGG	GCTGTTCCCTCACTCTGTCTTTAG
Nr1h4_WT	CTTCCGAAGAAGCATTACCAAG	CGTCCGACATAGCTCATTAAAGC
NQO1 siRNA	Forward Primer (5'-3')	Reverse Primer (5'-3')
NQO1	UAUAUGUCAGUUGAGGUUCUU	UAUAUGUCAGUUGAGGUUCUU
Scramble	UUCUCCGAACGUGUCACGU	ACGUGACACGUUCGGAGAA
ChIP-qPCR	Forward Primer (5'-3')	Reverse Primer (5'-3')
NQO1_site1	GAATAGCCAAAACGGGACCAG	GTACAGACGGGGCTTCACCA
NQO1_site2	TGGGTGACGAAGTGAGACTC	CTTTTGCACTGGAGGGACAA