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1 Sand Samples

1.1 BOOMERAMG: Variant Comparison
The results in Fig. 1 and Table 1 show that using the default parameters with one
level of aggressive aggregation is the best of the configurations tested.

1.2 DUNE ISTL: Variant Comparison
The results in Figs. 2 and 3 andTables 2 and 3 show that the iteration-optimized and
speed-optimized configuration used in the article are, indeed, the best configura-
tions regarding the specific quantity.

2 SPE10Model 2

2.1 Feature Comparisons
Here, we present the feature comparison data using SPE10Model 2, which the notes
at the start of the section on the Experimental Results for SPE10Model 2 in the article
apply to as well. Most of the optimization that LINEAL implements have a smaller
impact thanbefore due to the smaller problemsize and the resulting shorter runtime
and reduced memory consumption. In the case of mixed precision, as shown in
Fig. 4, both the solve duration and the iteration count are virtually unaffected by
switching from f64/f64 to f64/f32while thememory consumptiondropsby20%/12%
(AV-Stencil/CSR) on average. On the other hand, f32/f32 continues not to converge
to a relative residual norm of 10−10.

The differences are even less pronounced when it comes to the precision used
for the auxiliary vectors of the CGmethod, as can be seen in Fig. 5: Both the solve
duration and the iteration count are virtually the same for all precision combinations
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Figure 1 and Table 1: Results gathered using BOOMERAMGwith various numbers
of levels of aggressive coarsening using the Sand Samples.

while the memory savings when using CG<f32, f32> are 4%/2% (AV-Stencil/CSR)
compared to CG<f64, f32> and 11%/6% compared to CG<f64, f64> on average.

Figure 6 shows that different index size combinations make a comparatively
small difference as well: Both the solve duration and the iteration count are virtually
the same for all precision combinations (apart from 8B/8Bwith the CSR variant,
which is slightly slower in some cases)while thememory savings for the 4B/5B com-
bination are 1%/2% (AV-Stencil/CSR) compared to 4B/8B and 22%/23% compared
to 8B/8B on average.

Different aggregate size ranges do not influence any aspect of performance
significantly for this problem, as shown in Fig. 7.
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Figure 2 and Table 2: Setup and solve durations gathered using DUNE ISTL with
the Sand Samples using configurations characterized by three parameters: the
coarsening target, the aggregate size range, and the pre-/post-smoother iteration
count. Additionally, both 64 and 128 processes were tested (represented by the last
component of the tick labels).

Figure 8 show that explicit SIMD operations and tiling have a very small impact
on performance, too, where using 2-component SIMD vectors is slightly slower
than no explicit SIMD operations and the other SIMD variants are slightly faster for
the AV-Stencil variant.
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Figure 3 and Table 3: Iteration counts and memory consumptions gathered using
DUNE ISTL with the Sand Samples using configurations characterized by three
parameters: the coarsening target, the aggregate size range, and the pre-/post-
smoother iteration count. Additionally, both 64 and 128 processes were tested
(represented by the last component of the tick labels).

Conversely, Huge Pages have a relatively significant impact due to the miniscule
memory consumption: While the solve duration is barely affected, the memory
consumption grows by 4%/2% (AV-Stencil/CSR) on average when enabling Huge
Pages. This is because largermemory pages generally result inmore unusedmemory
around the memory areas that are actually used, which is more noticeable with a
total memory usage of less than a quarter of a gigabyte than with tens or hundreds
of gigabytes.

2.2 BOOMERAMG: Variant Comparison
The results in Fig. 10 illustrate that using the default parameters with one level
of aggressive aggregation yields the best overall results for BOOMERAMG among
the configurations tested, although all configurations result in very similar solve
durations.

2.3 GINKGO: Variant Comparison
The results in Fig. 11 demonstrate that GINKGO’s default configuration from the
article is the fastest of GINKGO’s configurations tested. These results also shows
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Figure 4: Results gathered with various mixed-precision settings using SPE10Model
2. Neither runtimes nor iteration counts are shown for f32/f32 because this variant
did not converge within 256 iterations.

that GINKGO’s implementation of the GAUß-SEIDEL method is significantly slower
than that of the JACOBI method when executed sequentially, scales very poorly with
increasing thread count, and requires 5%more memory on average.

2.4 DUNE ISTL: Variant Comparison
Figure 12 shows that none of the configurations of DUNE tested is clearly the best,
as well as problematic scaling behaviour. However, it also shows that the iteration-
optimized and speed-optimized configuration from the article perform the best
regarding the respective quantity among the configurations tested.
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Figure 5: Results gathered with various precision combinations for the auxiliary
vectors of the CGmethod using SPE10Model 2, where the first type denotes the type
used for the residual vector and the second denotes the type used for the remaining
auxiliary vectors.
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Figure 6: Results gathered with various index size combinations using SPE10 Model
2, where the first size applies to row/column indices and the second to non-zero
indices.
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Figure 7: Results gathered with various aggregate size ranges using SPE10 Model 2.
Here, the first range specified applies to the finest level, the second to the second-
finest level, and so on, while the last range specified is also applied to all coarser
levels.
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Figure 8: Results gathered with various tile and SIMD vector sizes using the AV-
Stencil variant with SPE10 Model 2.
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Figure 9: Results gathered with and without huge pages using SPE10 Model 2.
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Figure 10: Results gathered using BOOMERAMGwith various numbers of levels of
aggressive coarsening using SPE10 Model 2.
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Figure 11: Results gathered using GINKGO with various fine-/coarse-level floating
point types, smoothers, smoother iteration counts, and smoother relaxation factors
using SPE10 Model 2. The configurations “f32/f32, JACOBI, 1, 0.9” and “f64/f32,
JACOBI, 1, 1” are not included in the comparison because they did not converge to a
relative residual norm of 10−10 within 256 iterations.
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Figure 12: Results gathered using DUNE ISTL with different configurations using
SPE10 Model 2. These configurations are characterized by three parameters: the
coarsening target, the aggregate size range, and the pre-/post-smoother iteration
count.
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