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1 Supplemental Methods

1.1 Data collection

The dataset utilized in this investigation was procured from publicly accessible
databases and comprises TCR sequences extracted from the Peripheral Blood Mononu-
clear Cells (PBMCs) of 439 healthy individuals (HIs) and 877 patients diagnosed with
SLE) [1]. This data was employed for both the training and cross-validation phases of
our framework.

To rigorously assess the predictive efficacy of the model on independent sam-
ples, we included 37 samples from patients with Juvenile Idiopathic Arthritis (JIA)
and 33 samples from individuals with Autoimmune Arthritis (AutoA). Both JIA and
AutoA are autoimmune disorders that share fundamental pathophysiological similar-
ities with SLE [2, 3]. To establish negative controls, we selected three distinct cohorts
of healthy individuals, all sourced from public datasets [4]. The TCR sequences for the
independent testing cohort and the healthy controls were also derived from PBMCs.
This methodology ensures a comprehensive and robust evaluation of our model’s
performance across varied clinical contexts.

1.2 Dataset construction

All the repertoires were split into training and validation sets at a ratio of 4:1. In
the training dataset, we conducted a random selection to choose an equal number of
individuals from both healthy donors and SLE patients. Within the TCR repertoire of
each selected individual, each valid TCR CDR3 sequence underwent rigorous filtering
based on the following criteria: (i) the sequence length must be between 10 and 24
amino acids; (ii) the sequence must consist only of standard amino acids; (iii) the
sequence should start with cysteine (C) and end with phenylalanine (F); and (iv) the
variable gene locus must be identifiable. Considering computational efficiency and the
richness of information, we retained the 2,000 most frequent TCR clone types from
each individual to represent their immunological profile.

Representative CDR3 sequences were categorized as positive samples from SLE
patients (labeled “1”) or negative samples from HIs (labeled “0”). Sequences that
appeared in both patient and HI groups were classified as negative TCRs. After this
classification, excess negative sequences were discarded to balance the quantity of
positive and negative samples. The curated sequences were then shuffled to create a
training set with a 1:1 ratio of positive to negative sequences, ensuring a randomized
and duplicate-free dataset.

We then constructed two additional datasets, named CDR3-V gene and CDR3-V
gene family dataset, by following the procedures used for the CDR3-only dataset, but
with a modification: the datasets integrate V gene or V gene family information along-
side the CDR3 amino acid sequences. During the calculation of clonotype frequencies
and the deduplication process of TCR data, we considered both the V gene type
and the CDR3 sequences, rather than focusing solely on the CDR3. Consequently, we
obtained a training dataset that consists of a sequence set S = {s1, s2, s3, . . . , sn}, a
gene setG = {g1, g2, g3, . . . , gn}, and the corresponding label set T = {t1, t2, t3, . . . , tn}
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which contains the TCR-level labels. The sequence set S, gene set G, and label set T
each comprise n elements, ensuring precise one-to-one correspondence among them.

Similarly, we construct independent datasets JIA and AutoA datasets.

1.3 Model architecture

We trained the TCR classifier model using three datasets with different feature com-
binations: the first uses only amino acid sequences, the second combines these with V
gene features, and the third integrates V gene family features. The model integrates a
convolutional neural network (CNN) combined with long short-term memory (LSTM)
layers and residual connections.

The model accepts two types of inputs: CDR3 amino acid sequences and V gene
features (optional). Each input type is tokenized using respective dictionaries. An
embedding layer transforms these sequences into fixed-length vectors of 24 dimensions.
To standardize sequence lengths, a zero-padding method is applied, padding shorter
sequences at the beginning. For the V gene features, which are categorized either by
mutation type or V gene family, a linear layer converts these features into embeddings
with a dimensionality of 20.

The CNN architecture comprises four convolutional blocks, each consisting of two
convolutional layers followed by a max pooling layer. The convolutional layers use
ReLU activation and are equipped with 256 filters each. The max pooling layers have
a pool size of 5 and a stride of 1. The convolution operations are defined by:

ci,j =

K−1∑
k=0

Wk,j · si+k + bj

where Wk,j is the weight of the j-th filter, bj is the bias, and K is the filter size.
Residual connections allow each block’s input to derive from both its predecessor and
all prior blocks. Outputs from the convolutional layers are flattened and then passed
to a fully connected layer with 16 neurons and Sigmoid activation.

The LSTM component includes three bidirectional layers with a dropout rate of
0.2 to mitigate overfitting.

Outputs from the CNN and LSTM feature extractors are concatenated, either with
or without the V gene feature embedding, and then passed through a connected layer
with Sigmoid activation for binary classification to fit the assigned TCR labels.

1.4 Model training and evaluation

The TCR classifiers were trained using the RMSprop optimizer, initiated with a learn-
ing rate of 0.0001. Binary cross-entropy was employed as the loss function, and the
models achieved convergence after five epochs.

For model validation, we employed 5-fold cross-validation using 439 HI samples and
439 SLE patient samples, which were randomly selected from the total patient popu-
lation. For each individual, the DeepTAPE classifier aggregated the results from the
top 2,000 most frequent representative TCRs in an individual’s repertoire to compute
an autoimmune risk score (ARS), which indicates the probability of the individual
having SLE. The ARS is calculated using the following expression:
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ARS =

∑n
i=1 TCR classifier(tcri)

n
. (1)

Here, tcri denotes the i-th TCR in the individual’s set of n representative TCRs,
where n equals 2,000. The TCR classifier represents a well-trained classifier at the
TCR level, which assesses each TCR for its association with SLE.

The threshold for ARS was determined using the training dataset. In the validation
phase, individuals with ARS values exceeding this threshold were classified as having
SLE, while those below were considered healthy.

The model’s performance metrics, including accuracy, precision, recall, F1-score,
and the area under the curve (AUC), were calculated using the following formulas:

Accuracy =
TP + TN

TP+ TN+ FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score = 2 · Precision · Recall
Precision + Recall

AUC =
1

P ×N

P∑
i=1

N∑
j=1

1(pi > nj)

(2)

In these formulas, TP, TN, FP, FN represent true positives, true negatives, false
positives, and false negatives, respectively. P and N are the counts of positive and
negative individuals. Indices i and j refer to these individuals, with pi denoting the
predicted probability that the i-th individual is positive, and nj the probability that
the j-th individual is negative.

1.5 Baseline models

To establish the effectiveness of TCR classifier, we compared its performance against
several benchmark classifiers, each also utilizing amino acid sequences and gene
frequency information.

CNN-LSTM: Similar in structure and hyperparameters to DeepTAPE, but lacks
residual connections.

CNN: Comprising four convolutional layers paired with max-pooling layers, this
model utilizes a kernel size of 5.

Bi-LSTM: This model features three layers of bidirectional LSTM, each with a
dropout rate of 0.2.

SimpleRNN: Composed of two layers of recurrent neural networks (RNN), with
a dropout rate of 0.2.

The diagnostic performance of DeepTAPE was also evaluated in comparison to the
Random Forest (RF) classifier, as proposed in a previous study [1]. The RF classifier
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has demonstrated effectiveness in distinguishing between SLE patients and healthy
individuals by analyzing variations in individual V gene frequencies. We implemented
the RF model adhering to the parameters specified in the original publication to ensure
a consistent and fair comparison.

1.6 Independent test on non-SLE autoimmune diseases

The model underwent independent testing using external datasets from other autoim-
mune diseases, including JIA and AutoA datasets. Negative samples used for
independent testing came from the external HI repertoires [5–7]. Considering the
potential differences in the V gene and V gene family distributions of TCRs from other
diseases compared to SLE, a self-adaptive mechanism based on the Pearson Correla-
tion Coefficient (PCC) was introduced. This mechanism determines whether to utilize
a specific gene feature based on the ratio of the gene frequency distribution correlation
coefficient between the target disease and SLE samples versus the correlation coeffi-
cient between HI samples. The standard frequency distributions are derived from the
average frequency distributions of 10 samples each from HI and SLE patients. For a
sample’s gene frequency distribution fSA and a standard frequency distribution fST,
the Pearson correlation coefficient formula is given by:

cor(fSA, fST) =

∑n
i=1(fSA,i − f̄SA)(fST,i − f̄ST)√∑n

i=1(fSA,i − f̄SA)2
√∑n

i=1(fST,i − f̄ST)2
(3)

Here, f̄SA and f̄ST represent the mean of fSA and fST respectively, and the summa-
tion is performed over all n gene types. The Correlation Ratio (CR) is defined as the
ratio of the correlation coefficient between fSA and the standard SLE frequency distri-
bution fSLE to the correlation coefficient between fSA and the standard HI frequency
distribution fHI:

CR =
cor(fSA, fSLE)

cor(fSA, fHI)
(4)

Here, fSA, fSLE, and fHI represent the gene frequency distributions of the sample,
standard SLE, and standard HI respectively. CR determines which frequency distribu-
tion, SLE or HI, is closer to the sample. Similarly, an individual’s disease probability
was also assessed though ARS.

2 Supplemental Results

2.1 Diagnostic efficacy of CDR3 amino acid sequences and
gene frequencies in SLE

Previous investigations have established the feasibility of utilizing the gene informa-
tion within TCR repertoire for SLE diagnosing. This was achieved through a Random
Forest (RF) algorithm that effectively distinguished between SLE patients and healthy
individuals based on V gene frequencies, yielding promising outcomes. Moreover, sev-
eral effective models have been developed for diagnosing various diseases by leveraging
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the amino acid sequences of the CDR3 in TCR’s β chain. In light of these findings, we
adopted a neural network approach to diagnose autoimmune diseases, including SLE,
by integrating information from both amino acid sequences and gene frequencies.

When compared to other diagnostic models that utilize TCR β CDR3 amino acid
sequences and gene frequency information (see Method), the DeepTAPE model, built
on a CNN-LSTM architecture with residual connections, demonstrated superior diag-
nostic performance across five metrics. The minimal performance variance observed
during the 5-fold cross-validation indicates the model’s stability (Tab. 1). According to
the confusion matrix, all three DeepTAPE input modes, which utilize different feature
combinations, exhibited commendable diagnostic capabilities. Notably, the DeepTAPE
input mode that additionally incorporated V gene and V gene family features dis-
played a lower misdiagnosis rate compared to the model utilizing only amino acid
sequences, indicating enhanced accuracy. Most misdiagnoses across the three models
were categorized as false negatives (Fig. 1F, G, H).

2.2 Assessing the cross-disease generalizability of DeepTADE
in autoimmune disorders

The three input versions of the DeepTAPE model were initially trained using data
derived from SLE patients and HIs. The performance of these models varies markedly
depending on the feature combinations implemented. While they exhibit strong diag-
nostic capabilities for SLE, they also demonstrate some level of diagnostic proficiency
for other autoimmune disorders. In this context, samples from juvenile idiopathic
arthritis (JIA) and autoimmune arthritis (AutoA), alongside samples from healthy
individuals (HIs), were utilized to establish an external independent test set.

Equal quantities of patient samples and HI samples were randomly selected and
input into the model for prediction, with this procedure repeated five times to derive
average results. The findings revealed that for JIA, the AUC of the DeepTAPE model
employing exclusively amino acid sequences achieved a value of 86.98%. However,
when gene frequency data was included, the average AUC for the DeepTAPE model
that integrated amino acid sequences with V genes and those combined with V gene
families decreased to 64.22% and 63.33%, respectively (shown in Fig. 2A). A similar
trend was noted for AutoA, where the average AUC utilizing amino acid sequences
was higher at 85.78%, compared to average AUCs of 74.89% and 77.62% for the
models that incorporated amino acid sequences with V genes and V gene families,
respectively (Fig. 2B and Tab. 2). Moreover, the confusion matrix results indicated
that the diagnostic performance of the DeepTAPE model based solely on amino acid
sequences was significantly superior for both JIA and AutoA (Fig. 2C, D).

Despite the DeepTAPE model being primarily trained on SLE data, it retains a
degree of classification capability for both JIA and AutoA. This observation suggests
that SLE and other autoimmune diseases, such as JIA and AutoA, may share common
pathogenic mechanisms, given their categorization as autoimmune disorders. Conse-
quently, analogous features within the CDR3 amino acid sequences of TCR’s β chain
may be relevant for diagnostic purposes. However, the addition of gene frequency data
appeared to detract from diagnostic performance, indicating that the incorporation
of gene frequency features might have introduced confusion in the diagnosis of JIA
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and AutoA. Analytical assessments revealed significant discrepancies in the frequency
distributions of V genes and V gene families between the TCR β CDR3 of JIA and
AutoA patients and that of SLE patients, adversely impacting diagnostic accuracy
(Fig. 2E, F).

To resolve this challenge, the DeepTAPE model incorporated a self-adaptive
mechanism based on the Pearson correlation coefficient (PCC), which facilitates a
comparison between the frequency distributions of V genes or V gene families in the
independent test set and those of SLE patients and HIs. The results indicated that
the correlation coefficients for the V gene or V gene family distributions between JIA
patients and HIs were significantly greater than those between JIA patients and SLE
patients (p < 0.001), a similar observation is noted for AutoA, which complicates
effective diagnosis (Fig. 2G, H). The self-adaptive mechanism utilizing PCC enables
the model to autonomously select the most appropriate feature combinations tailored
to each specific disease. Thus, this mechanism is essential for the automatic deter-
mination of diagnostic feature compositions for each condition, as evidenced by the
model’s choice to rely solely on amino acid sequences for diagnosing JIA and AutoA.
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3 Supplemental Tables

Table 1: Comparison of the SLE diagnosis performance using 5-fold cross-
validation

Model AUC Accuracy Precision Recall F1-score

Only V Gene Frequency

VGene-RF[1] 96.11% ± 1.70% 88.97% ± 3.38% 91.23% ± 4.49% 86.41% ± 4.26% 88.68% ± 3.47%

CDR3 Amino Acid Sequence

CNN-LSTM 97.46% ± 0.69% 92.82% ± 1.53% 91.21% ± 2.68% 93.87% ± 1.81% 92.97% ± 1.43%

CNN 95.65% ± 2.10% 90.39% ± 3.01% 90.71% ± 4.78% 90.26% ± 4.85% 90.37% ± 3.02%

Bi-LSTM 97.30% ± 0.80% 92.69% ± 1.40% 91.44% ± 3.77% 91.03% ± 5.59% 92.53% ± 1.67%

SimpleRNN 96.25% ± 1.64% 91.41% ± 1.73% 90.07% ± 3.63% 93.33% ± 4.29% 91.56% ± 1.74%

DeepTAPE 97.52% ± 0.68% 92.82% ± 1.39% 91.84% ± 4.74% 94.36% ± 3.46% 92.95% ± 1.21%

CDR3 Amino Acid Sequence + V Gene

CNN-LSTM 97.43% ± 0.83% 92.95% ± 4.33% 92.30% ± 3.26% 93.85% ± 2.07% 93.02% ± 3.45%

CNN 94.36% ± 5.94% 88.85% ± 2.74% 88.86% ± 5.08% 89.49% ± 7.77% 88.86% ± 2.98%

Bi-LSTM 96.85% ± 2.43% 92.05% ± 9.02% 91.43% ± 2.93% 92.05% ± 3.92% 92.05% ± 9.40%

SimpleRNN 97.67% ± 0.89% 93.33% ± 2.06% 92.01% ± 4.09% 95.28% ± 9.02% 93.48% ± 8.45%

DeepTAPE 97.70% ± 0.86% 93.56% ± 1.80% 92.38% ± 3.69% 95.15% ± 1.78% 93.69% ± 1.57%

CDR3 Amino Acid Sequence + V Gene Family

CNN-LSTM 97.85% ± 0.76% 93.46% ± 1.05% 92.82% ± 2.91% 94.36% ± 2.95% 93.52% ± 1.04%

CNN 94.16% ± 1.71% 88.46% ± 2.48% 89.32% ± 4.17% 87.69% ± 5.26% 88.35% ± 2.58%

Bi-LSTM 97.37% ± 1.19% 93.33% ± 2.01% 92.80% ± 3.48% 94.10% ± 2.14% 93.40% ± 1.87%

SimpleRNN 97.26% ± 0.83% 92.95% ± 1.63% 92.08% ± 3.13% 94.10% ± 1.46% 93.05% ± 1.52%

DeepTAPE 97.99% ± 0.82% 93.97% ± 1.61% 93.70% ± 2.57% 94.36% ± 2.14% 94.00% ± 1.57%

The table outlines the effectiveness of various predictive models in diagnosing SLE on the validation
dataset. Bold values represent the best performance, while underlined values indicate the second-best
performance within each metric across methods.

Table 2: Performance of the DeepTAPE model across different input modes on non-SLE
autoimmune disease datasets.

Input modes AUC Accuracy Precision Recall F1-score

AutoA

DeepTAPE (AA Seqs + V Gene Families) 77.62% ± 1.25% 80.33% ± 0.67% 93.44% ± 1.91% 65.33% ± 2.67% 76.83% ± 1.26%

DeepTAPE (AA Seqs + V Genes) 74.89% ± 0.78% 76.00% ± 0.82% 90.86% ± 3.21% 58.00% ± 2.67% 70.70% ± 1.43%

DeepTAPE (Only AA Seqs) 95.78% ± 0.19% 90.33% ± 1.94% 92.18% ± 4.83% 88.67% ± 5.42% 90.14% ± 2.04%

JIA

DeepTAPE (AA Seqs + V Gene Families) 63.33% ± 1.84% 62.00% ± 2.45% 71.47% ± 8.13% 44.67% ± 15.00% 52.50% ± 9.65%

DeepTAPE (AA Seqs + V Genes) 64.22% ± 1.26% 71.00% ± 1.33% 86.40% ± 4.14% 50.00% ± 0.00% 63.31% ± 1.08%

DeepTAPE (Only AA Seqs) 86.98% ± 1.47% 82.67% ± 3.09% 82.67% ± 2.08% 82.67% ± 6.46% 82.55% ± 3.81%

Bold values represent the best performance, while underlined values indicate the second-best performance within each metric
across three encoding modes. AA seq, amino acids sequence.
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4 Supplemental Figures
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Fig. 1: Diagnostic efficacy of TCRβ CDR3 amino acid sequences and gene
frequencies in SLE. (A) The ROC curve of DeepTAPE only input AA seqs, which
performs better than other models with the same features. (B) The ROC curve of
DeepTAPE using the combination of AA seq and V-genes, which performs better than
other models with the same features. (C) The ROC curve of DeepTAPE using the
combination of AA seq and V-gene families, which performs better than other mod-
els with the same features. (D) The ROC curves of the DeepTAPE on three input
combinations, which use different features and perform better than the comparison
RF-VGene. (E) Box plots comparing the performance of DeepTAPE and other models
under various feature combinations.(F) Confusion matrix of DeepTAPE applied with
only AA Seq features. (G) Confusion matrix of DeepTAPE applied with the combi-
nation of AA Seq and V Genes. (H) Confusion matrix of DeepTAPE applied with the
combination of AA Seq and V Gene families. ROC, receiver operator curve; AA seq,
amino acids sequence.
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Fig. 2: Independent testing performance of TCRβ CDR3 Diagnostic Effi-
cacy on exogenous autoimmune disease datasets and presentation of gene
differences in autoimmune diseases. (A) ROC curves of the three versions of
DeepTAPE for JIA diagnosis, with the version using only amino acid sequences per-
forming the best. (B) ROC curves of the three versions of DeepTAPE for AutoA
diagnosis, with the version using only amino acid sequences performing the best. (C)
Heatmap of confusion matrices of the three versions of DeepTAPE for JIA diagno-
sis. (D) Heatmap of confusion matrices of the three versions of DeepTAPE for AutoA
diagnosis. (E) Clustered bar chart showing significant frequency differences in the V
gene family of CDR3 in TCR among SLE, HI, JIA, and AutoA samples. (F) Clus-
tered bar chart showing significant frequency differences in the V gene of CDR3 in
TCR among SLE, HI, JIA, and AutoA samples. (G) Violin plot comparing the Pear-
son correlation coefficients of V gene family frequencies between JIA and SLE, JIA
and HI, and between AutoA and SLE, AutoA and HI. The correlations with HI are
significantly stronger for both JIA and AutoA (p < 0.001). (H) Violin plot comparing
the Pearson correlation coefficients of V gene frequencies between JIA and SLE, JIA
and HI, and between AutoA and SLE, AutoA and HI. The correlations with HI are
significantly stronger for both JIA and AutoA (p < 0.001).
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