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[bookmark: OLE_LINK8][bookmark: OLE_LINK9]Fig.S1 The mRNA expression levels of JNK1/JNK2/JNK3 negatively correlate with the progression of Alzheimer’s disease (AD) in humans, related to Figure 1
a, Comparative analysis of JNK1 (left panel), JNK2 (middle panel), and JNK3 (right panel) mRNA expression levels in the prefrontal cortex between Alzheimer's disease patients (n=32) and age-matched healthy controls (n=50). b, Correlation analysis of JNK isoforms mRNA expression with neuropathological progression, showing JNK1 (left), JNK2 (middle), and JNK3 (right) expression patterns across different Braak stages in AD prefrontal cortex samples. c, Association between JNK isoforms mRNA expression and disease severity, demonstrating JNK1 (left), JNK2 (middle), and JNK3 (right) expression levels at varying stages of frontal atrophy in AD prefrontal cortex. For panels b and c, gene expression data (n = 360 samples) were obtained from the GEO dataset GSE44772. Statistical significance was determined using Pearson's correlation coefficient (r). All data are represented as mean ± SEM; ****p < 0.001.
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[bookmark: OLE_LINK1][bookmark: OLE_LINK6] Fig.S2 JNK activation didn’t affect insulin sensitivity or glucose tolerance in JNK1 cTg mice, related to Figure 2
[bookmark: OLE_LINK7][bookmark: OLE_LINK10]a, HE staining of inguinal white adipose tissue (iWAT) and epididymal white adipose (eWAT) tissue in 9-month-old JNK1 cTg and Ctrl mice, Scale bar, 100 μm. b, c, Frequency distribution histogram of iWAT and eWAT cell diameters. d, e, Intraperitoneal glucose tolerance test (IPGTT) and receiver operating characteristic curve (AUC) analysis for 2-month-old (c) and 12-month-old (e) JNK1 cTg and control mice (Ctrl: n = 17; JNK1 cTg: n = 17). f, g, Insulin tolerance test (ITT) and AUC analysis for 2-month-pld (d) and 12-month-old (f) JNK1 cTg and control mice (Ctrl: n = 17; JNK1 cTg: n = 12). (h) RT-qPCR analysis of mRNA expression of Lamp1, Trp53, Cdkn2a, Iba1, and Cdkn1a expression in the hippocampal tissues of the JNK1 cTg and Ctrl mice. All data are represented as mean ± SEM, n.s. p > 0.05.
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[bookmark: OLE_LINK14][bookmark: OLE_LINK15]Fig.S3 Global transcriptomeanalysisusing bulkRNA-seq in 9-month-old JNK1 cTg and control mouse brains, related to Figure 4
[bookmark: OLE_LINK20][bookmark: OLE_LINK21][bookmark: OLE_LINK4][bookmark: OLE_LINK5]a, Principal component analysis (PCA) of RNA-seq in 9-month-old JNK1 cTg and control mouse brains (each group n=3). b, Volcano plots of gene expression showing 860 upregulated and 1081 downregulated genes in RNA sequencing (RNA-seq) data from 9-month-old JNK1 cTg and control mice brains. c, GSEA revealed significant downregulation of both the 'Fridman senescence up' signature and translation-related pathways in 9-month-old JNK1 cTg mice compared to controls. d, Heatmap of genes associated with translation. e, KEGG enrichment analysis for the biological functions of upregulated genes in JNK1 cTg mouse brains (FDR < 0.05, log2FC > 0.4). f, GSEA analysis shown that hallmark pathways including oxidative phosphorylation, reactive oxygen species, mTOR1, and p53 are downregulated in JNK1 cTg mouse brains.











[bookmark: OLE_LINK16][bookmark: OLE_LINK17][image: G:\JNK manuscript 2024 1128\Figure S4.jpg]Fig.S4 Targeted metabolomics analysis of brain tissues in JNK1 cTg and Ctrl mouse brains, related to Figure 5
[bookmark: OLE_LINK11][bookmark: OLE_LINK12](a) Orthogonal partial least squares-discriminant analysis (OPLS-DA) score plot showing the separation between Ctrl and JNK1 cTg mice. Each point represents an individual sample. (b) Heatmap of relative abundance of metabolites, grouped by class, in control (Ctrl) and JNK1 cTg mice. Rows represent individual metabolites, and columns represent samples. Color intensity indicates normalized metabolite levels. Group and class annotations are provided. (c) Dot plot of significantly enriched KEGG pathways based on differential metabolites
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[bookmark: OLE_LINK198]Fig.S5 Low dosage of anisomycin treatment causes down-regulation of ribosome-associated genes in HEK293 cells
[bookmark: OLE_LINK291][bookmark: OLE_LINK199][bookmark: OLE_LINK200][bookmark: OLE_LINK206]a, Diagram of HEK293 cells were treated with different concentrations of anisomycin (ANS) and analyzed by bulk RNA-seq and Western blot. b, Immunoblots for phosphorylation of p-JNK and puromycin-based metabolic labeling of protein synthesis in HEK293 cells treated with ANS (0.001, 1, and 100 mg/L, 15 min) compared to vehicle. c, Heatmap of genes associated with ribosomal (RPL and RPS) and mitoribosmal (MRPL and MRPS) genes in HEK293 cells treated with different concentrations of ANS. d, Heatmap of genes associated with translation initiation factor (eIF) and (eEF).
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[bookmark: OLE_LINK208][bookmark: OLE_LINK209][bookmark: OLE_LINK210][bookmark: OLE_LINK211]Fig.S6 JNK activation didn’t induce mitochondrial unfolded protein response mtUPR response in different stages of JNK1 cTg mouse brains
[bookmark: OLE_LINK216][bookmark: OLE_LINK217][bookmark: OLE_LINK212][bookmark: OLE_LINK213][bookmark: OLE_LINK214][bookmark: OLE_LINK215][bookmark: OLE_LINK220][bookmark: OLE_LINK221][bookmark: OLE_LINK218][bookmark: OLE_LINK219]a, Heatmap of mitochondrial-encoded OXPHOS genes in E16.5 and 9-month-old JNK1 cTg and Ctrl mouse brains. b-d, RT-qPCR analysis of mtDNA/nDNA ratios by amplification DNA levels of Nd1, Co3, and Cytb normalized with the nuclear 18S gene in different stages of JNK1 cTg and Ctrl mouse brains. e, RT-qPCR analysis indicated no significant change in the mRNA level of mitochondrial chaperon (hspd1 and Tid1), and mitochondrial protease (Lonp1, Parl, Spg7, Atp23, and Usp30). All data are represented as mean ± SEM, n.s. p > 0.05, *p < 0.05, **p < 0.01.
.
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Table S1 Comparative survival characteristics of JNK1CA cTg and WT mice.

	Genotype
	Median
	Mean s.e.m
	Min-Max
	Oldest 10%
	Youngest 10%
	N

	Ctrl
	749
	749±26
	522-989
	926±32
	549±21
	24

	JNK1 cTg
	766
	766±40
	558-1079
	1019±61
	558±0
	16


Lifespan is reported in days (±s.e.m, where appropriate) for Control and JNK1 cTg male mice. The oldest (youngest) 10% are the mean lifespan of the longest (or shortest) living 10% of animals within a genotype. N = Sample size.

Table S2 Primers for genotyping and QPCR analysis 
	Primer
	Sequence (5’-3’)

	Rosa 26 JNK1 P1
	AAAGTCGCTCTGAGTTGTTAT

	Rosa 26 JNK1 P2
Rosa 26 JNK1 P3
Nestin Cre Forward
Nestin Cre Reverse
Mouse Gapdh QPCR-Forward
Mouse Gapdh QPCR-Reverse
Mouse Jnk1 QPCR-Forward
Mouse Jnk1 QPCR-Reverse
Mouse Jnk2 QPCR-Forward
Mouse Jnk2 QPCR-Reverse
Mouse Jnk3 QPCR-Forward
Mouse Jnk3 QPCR-Reverse
Mouse Cdkn2a QPCR-Forward
Mouse Cdkn2a QPCR-Reverse
Mouse Cdkn2b QPCR-Forward
Mouse Cdkn2b QPCR-Reverse
Mouse Cdkn1a QPCR-Forward
Mouse Cdkn1a QPCR-Reverse
Mouse Trp53 QPCR-Forward
Mouse Trp53 QPCR-Reverse
[bookmark: OLE_LINK258][bookmark: OLE_LINK267]Mouse IL6-Forward
Mouse IL6-Reverse
[bookmark: OLE_LINK268][bookmark: OLE_LINK269][bookmark: OLE_LINK270][bookmark: OLE_LINK271]Mouse IL1β-Forward
Mouse IL1β- Reverse
[bookmark: OLE_LINK272][bookmark: OLE_LINK283]Mouse TNF-α-Forward
[bookmark: OLE_LINK298][bookmark: OLE_LINK299]Mouse TNF-α-Reverse
[bookmark: OLE_LINK300][bookmark: OLE_LINK301]Mouse Nd1-Forward
[bookmark: OLE_LINK302][bookmark: OLE_LINK303]Mouse Nd1-Reverse
[bookmark: OLE_LINK304][bookmark: OLE_LINK305]Mouse Co3-Forward
[bookmark: OLE_LINK306]Mouse Co3-Reverse
[bookmark: OLE_LINK307][bookmark: OLE_LINK308]Mouse Cytb-Forward
[bookmark: OLE_LINK309]Mouse Cytb-Reverse
[bookmark: OLE_LINK310]Mouse Hspd1-Forward
[bookmark: OLE_LINK311]Mouse Hspd1-Reverse
Mouse Tid1-Forward
Mouse Tid1-Reverse
Mouse Lonp1-Forward
Mouse Lonp1-Reverse
Mouse Parl-Forward
Mouse Parl-Reverse
Mouse Spg7-Forward
Mouse Spg7-Reverse
Mouse Atp23-Forward
Mouse Atp23-Reverse
Mouse Usp30-Forward
Mouse Usp30-Reverse
Mouse Rpl6 QPCR-Forward
[bookmark: OLE_LINK289][bookmark: OLE_LINK290][bookmark: OLE_LINK239]Mouse Rpl6 QPCR-Reverse
Mouse Rplp2 QPCR-Forward
Mouse Rplp2 QPCR-Reverse
Mouse Rpl38 QPCR-Forward
Mouse Rpl38 QPCR-Reverse
Mouse Rps15 QPCR-Forward
Mouse Rps15 QPCR-Reverse
Mouse Rps28 QPCR-Forward
Mouse Rps28 QPCR-Reverse
Mouse Rps29 QPCR-Forward
Mouse Rps29 QPCR-Reverse
Mouse Mrpl12 QPCR-Forward
Mouse Mrpl12 QPCR-Reverse
Mouse Mrpl14 QPCR-Forward
Mouse Mrpl14 QPCR-Reverse
Mouse Mrpl41 QPCR-Forward
Mouse Mrpl41 QPCR-Reverse
Mouse Mrps5 QPCR-Forward
Mouse Mrps5 QPCR-Reverse
Mouse Mrps11 QPCR-Forward
Mouse Mrps11 QPCR-Reverse
Mouse Mrps26 QPCR-Forward
Mouse Mrps26 QPCR-Reverse
	GCGAAGAGTTTGTCCTCAACCGGAGCGGGAGAAATGGATATG
CGATGCAACGAGTGATGAGG
GCATTGCTGTCACTTGGTCGT
TGATGACATCAAGAAGGTGGTGAAG
TCCTTGGAGGCCATGTAGGCCAT
TCATTCTCGGCATGGGCTAC
AGCACATCGGGGAACAGTTT
CTGTTTGGTATGACCCCGCT
ACTGCTGCATCTGTGCTGAA
GGGAGCACACCATCGAAGAA
CGGTGGACATGGAGGAGATG
ACATCAAGACATCGTGCGATATT
CCAGCGGTACACAAAGACCA
GGCCTTGCAGGTCATGATGTT
GGAGCTAGGAAGCTGACCAC
TGTCCAATCCTGGTGATGTCC
CACGGGACCGAAGAGACAAC
TGAGGTTCGTGTTTGTGCCT
CTTCAGGTAGCTGGAGTGAGC
CCAAGAGGTGAGTGCTTCCC
CTGTTGTTCAGACTCTCTCCCT
GCAACTGTTCCTGAACTCAACT
ATCTTTTGGGGTCCGTCAACT
CCCTCACACTCAGATCATCTTCT
GCTACGACGTGGGCTACAG
TCCGAGCATCTTATCCACGC
GTATGGTGGTACTCCCGCTG
AAGGCCACCACACTCCTATT
ATCATGTGTTGGTACGAGGC
ACCTCAAAGCAACGAAGCCT
TGGGTGTTCTACTGGTTGGC
CACAGTCCTTCGCCAGATGAG
CTACACCTTGAAGCATTAAGGCT
GCTCGGGCATGGAAACTATCA
TCTGCACCCTGAATGTGACAA
CGGATGTGTTTCCTCACCTG
ACGCCAACATAGGGCTGTG
CCTATAAGAACACTCGTGAAGCC
ACCAGTCAGCTTTTATGCCATC
TTGCTATTGCGAATACTGACCC
CTGCTTCATCCTTGAGGTGTT
CTATGAAACACTCAGGTTGTGCT
GGTGAACCAGTGGACGTGA
CCTCCACTTTGCGAGCCTC
CAATCCCACCGATCACTCCC
AAGCCCAAGAAGGCGAAGC
GCAGCCGAGTATTTCCTTTTGTA
CGCTACGTCGCCTCTTACC
CTTGTTGAGCCGATCATCGTC
AGGATGCCAAGTCTGTCAAGA
TCCTTGTCTGTGATAACCAGGG
ACCTACCGTGGCGTAGACC
ATGTCCCTCAGGTGAGTCTTC
ATCAAGCTGGCTAGGGTAACC
GGCCTTTGACATTTCGGATGA
GTCTGATCCGCAAATACGGG
AGCCTATGTCCTTCGCGTACT
GCCACCGAAGGAGTGAAGC
GGAGCGTAAGGCTGGCAAT
CCATGTCAGCAGAGCATTCAG
GGGCGCTGTTGTCCACTAC
CTGACTGCCGTGACTCAAGG
GGACGACAAATTCTGGAACCA
AACCACTGTCTGACCAGCTTG
AGTCTCTGCTAATGCGCCTTT
CATGGAATGACCAGGTTTGTGG
AAAGGCTGAAGCGACTTGGAG
CATGACCCGCCTGCCAAAT
TCTCCCGGTACTGTCGGTAG
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