Table 2: Petroleum Hydrocarbon Degradation Genes
	  S.No
	Gene
	Organism
	Reference

	1. 
	rdhAB
	Deltaproteobacteria
	[1]

	2. 
	TouADE
	Pseudomonas stutzeri OX1
	[2]

	3. 
	TbuA1/ToA
	Burkholderia pickettii PKO1
	[3]

	4. 
	aceA
	M. tuberculosis
	[4]

	5. 
	aceB
	M. tuberculosis
	[4]

	6. 
	icl
	M. avium
	[4]

	7. 
	 bssABC
	Deltaproteobacterial Strain NaphS2
	[5]

	8. 
	trfA
	C. metallidurans
	[6]

	9. 
	GcdAD
	Azoarcus evansii
	[7]

	10. 
	IpbA
	Firmicutes, Desulfobacterota_B
	[8]

	11. 
	K27540
	Firmicutes, Desulfobacterota_B
	[8]

	12. 
	AbcA_1
	Nitrospinota_B
	[8]

	13. 
	mpdBC
	M. austroafricanum.
	[8]

	14. 
	ndoBC
	Acinetobacter, Proteobacteria, Acidobacteria
	[8]

	15. 
	PoxE/DmpO
	Proteobacteria
	[8]

	16. 
	AlmA_III
	Proteobacteria
	[8]

	17. 
	TmoB_BmoB
	Proteobacteria
	[8]

	18. 
	TmoA_BmoA
	Acinetobacter, Proteobacteria
	[8]

	19. 
	tomA1
	Acinetobacter, Proteobacteria
	[8]

	20. 
	tomA3
	Acinetobacter, Proteobacteria
	[8]

	21. 
	tomA4
	Acinetobacter, Proteobacteria
	[8]

	22. 
	akbA1A2A3
	Rhodococcus sp. Strain DK17
	[9]

	23. 
	akbCD
	Rhodococcus sp. Strain DK17
	[9]

	24. 
	akbEF
	Rhodococcus sp. Strain DK17
	[9]

	25. 
	 hbs
	Geotalea daltonii strain FRC-32
	[10]

	26. 
	bmoR
	P. butanovora
	[11]

	27. 
	bbsABDHEG, 
	Thauera aromatica
	[12]

	28. 
	eps
	Geobacillus thermodenitrificans NG80-2
	[13]

	29. 
	non_NdoB_type
	Acinetobacter, Proteobacteria
	[14]

	30. 
	pdoA2
	Terrabacter sp. HH4
	[14]

	31. 
	dntAc
	Burkholderia sp.
	[14]

	32. 
	phnA1
	Cycloclasticus spp.
	[14]

	33. 
	Pah-NdoC
	Proteobacteria
	[14]

	34. 
	PahB
	Proteobacteria.
	[14]

	35. 
	PahC
	Proteobacteria.
	[14]

	36. 
	PahD
	Proteobacteria.
	[14]

	37. 
	PahF
	Proteobacteria.
	[14]

	38. 
	pahE
	Sphingomonas
	[15]

	39. 
	aupA
	Marinobacter hydrocarbonoclasticus SP1
	[16]

	40. 
	aupB
	Marinobacter hydrocarbonoclasticus SP17.
	[16]

	41. 
	tauD
	A. oleivorans DR1
	[16]

	42. 
	sadABCD
	Acinetobacter sp. strain NyZ410
	[17]

	43. 
	laoABC
	Pseudomonas aeruginosa
	[18]

	44. 
	pobMO
	Bacterial community
	[19]

	45. 
	DitA1
	Pseudomonas abietaniphila BKME-9
	[20], [21]

	46. 
	dah
	Clostridium butyricum
	[22]

	47. 
	AcsD
	Bacterial community
	[23]

	48. 
	mno
	Actinobacteria
	[24]

	49. 
	pnp
	Trichoderma virens A701
	[25]

	50. 
	cgo
	Trichoderma virens A701
	[25]

	51. 
	PXY
	Enterobacter sp. NCCP-607
	[25]

	52. 
	ECJ
	Enterobacter sp. NCCP-607
	[25]

	53. 
	ebw
	Enterobacter sp. NCCP-607
	[25]

	54. 
	AALB
	Klebsiella aerogene
	[25]

	55. 
	dnaA
	K. aerogenes
	[25]

	56. 
	ECE
	Klebsiella aerogene
	[25]

	57. 
	ECO
	Klebsiella aerogenes strain 77
	[25]

	58. 
	HAS
	Klebsiella aerogenes strain M24
	[25]

	59. 
	PON
	Klebsiella aerogenes strain M24
	[25]

	60. 
	PYG
	Klebsiella aerogenes strain M24
	[25]

	61. 
	RRO
	Klebsiella aerogenes strain M242
	[25]

	62. 
	ECD
	Klebsiella aerogenes strain UISO178
	[25]

	63. 
	CSAB
	Klebsiella aerogenes strain M242
	[25]

	64. 
	EDEM1
	Klebsiella aerogenes strain M242
	[25]

	65. 
	GGO
	Klebsiella aerogenes strain M242
	[25]

	66. 
	glgP
	Klebsiella aerogenes strain M242
	[25]

	67. 
	MCF
	Klebsiella aerogenes strain M242
	[25]

	68. 
	NLE
	Klebsiella aerogenes strain M242
	[25]

	69. 
	PTR
	Klebsiella aerogenes strain M242
	[25]

	70. 
	adh2
	Proteobacteria
	[26]

	71. 
	cpnA
	Proteobacteria
	[26]

	72. 
	carAa
	Acinetobacter baumannii
	[27]

	73. 
	poxA
	Sphingomonas paucimobilis
	[27]

	74. 
	acmAB
	Streptobacillus
	[27]

	75. 
	badA
	Bacillus cereus
	[27]

	76. 
	etbAa
	Pseudomonas putida
	[27]

	77. 
	hcaE
	Rhodococcus
	[27]

	78. 
	hmgA
	Sphingomonas
	[27]

	79. 
	nahAa
	Pseudomonas fluorescens
	[27]

	80. 
	phdF
	Rhodococcus erythropolis
	[27]

	81. 
	prmABCD
	Achromobacter
	[27]

	82. 
	tphA2
	Ralstonia eutropha
	[27]

	83. 
	chqB
	Pseudomonas aeruginosa
	[27], [28]

	84. 
	 pobA,
	Chromohalobacter sp.HS-2
	[27], [29]

	85. 
	alkS
	P. putida GPo1
	[30]

	86. 
	todC1
	P. putida F39/D
	[31]

	87. 
	 ladA
	Acinetobacter oleivorans DR1
	[32]

	88. 
	poxB/DmpL
	Bacterial community
	[33]

	89. 
	bsdCD
	Lentibacter
	[33]

	90. 
	tmoABC1C2
	Ca. Thioglobus
	[33]

	91. 
	xylAM
	Planktomarina
	[33]

	92. 
	adh
	Pseudooceanicola
	[33]

	93. 
	adhP
	Bradyrhizobium
	[33]

	94. 
	ALDH
	Roseobacter
	[33]

	95. 
	cymAab
	Sphingomonas
	[33]

	96. 
	dmpKLMNOP
	Rhodobacter
	[33]

	97. 
	hcaB
	Pelagibacter
	[33]

	98. 
	hcaCDEF
	Variovorax
	[33]

	99. 
	HPGDS
	Epibacterium
	[33]

	100. 
	pchCF
	Sulfitobacter
	[33]

	101. 
	ped
	Epibacterium
	[33]

	102. 
	rubB
	Bradyrhizobium
	[33]

	103. 
	salDH
	Colwellia
	[33]

	104. 
	sdh
	Pelagibacter
	[33]

	105. 
	todABC1C2
	Octadecabacter
	[33]

	106. 
	yaiY
	Fibrobacter
	[33]

	107. 
	chnB
	Acidovorax sp.
	[33], [34]

	108. 
	bmoBCDXYZ
	Ca. C. aromaticivorans and N. japonica.
	[35]

	109. 
	Cym
	Pseudomonas putida F1
	[36]

	110. 
	frmA
	Bacterial community
	[37]

	111. 
	ndo
	Pseudomonas putida NCIB 9816
	[38]

	112. 
	pedA
	Aromatoleum aromaticum EbN1
	[39]

	113. 
	bzdN
	Desulfosarcina ovata
	[39]

	114. 
	etbA
	Aromatoleum sp. strain HxN1
	[39]

	115. 
	mcrA
	Desulfobacterium cetonicum
	[39]

	116. 
	nmsA
	Desulfatibacillum aliphaticivorans
	[39]

	117. 
	Acx
	A. aromaticum EbN1
	[39]

	118. 
	bamB
	Pelobacter acetylenicus
	[39]

	119. 
	TutD
	T. aromatica T1
	[39]

	120. 
	ahpCF
	Bacteroides fragilis
	[40]

	121. 
	ndoB
	Burkholderia
	[41]

	122. 
	RHA1
	Rhodococcus sp.
	[42]

	123. 
	 mpdBC
	M. austroafricanum.
	[43]

	124. 
	omcS
	Anaeromyxobacter dehalogens
	[43]

	125. 
	xecADC 
	Xanthobacter autotrophicus Py2
	[43]

	126. 
	amoABCD
	Nocardia corallina B-276
	[43]

	127. 
	etnE
	Mycolicibacterium rhodesiae
	[43]

	128. 
	isoABCDEHI 
	Rhodococcus sp. AD45
	[43]

	129. 
	mtaABC
	Bacterial community
	[44]

	130. 
	cdhCDE
	Bacterial community
	[44]

	131. 
	ndhABCD
	Bacterial community
	[44]

	132. 
	nuoABCD
	Bacterial community
	[44]

	133. 
	abmA
	Paenarthrobacter sp
	[45]

	134. 
	antABC
	Paenarthrobacter sp
	[45]

	135. 
	CHMO
	P. aeruginosa GOM9
	[45]

	136. 
	ahpC
	Pseudomonas aeruginosa GOM9, Alloalcanivorax xenomutans GOM5, Paenarthrobacter sp. GOM3
	[45]

	137. 
	SrfAB
	Pseudomonas aeruginosa GOM9, Paenarthrobacter sp. GOM3
	[45]

	138. 
	pacL
	Azoarcus evansii
	[46]

	139. 
	napAGH
	Pseudomonas sp. SL-6
	[47]

	140. 
	fid
	Sphingomonas sp.LB126
	[48]

	141. 
	aliB
	Pseudomonas aeruginosa
	[49]

	142. 
	pheB
	Pseudomonas spp.
	[50]

	143. 
	bcr
	Magnetospirillum sp.
	[51]

	144. 
	ahyA
	A. aromaticum strain EbN1
	[52]

	145. 
	AhyABC
	D. oleovorans
	[52]

	146. 
	dhaB1
	Clostridium butyricum
	[53]

	147. 
	dmpB
	Comamonas testosteroni TA441
	[54]

	148. 
	dmpD
	Comamonas testosteroni TA441
	[54]

	149. 
	nahI
	Pseudomonas fluorescens
	[55]

	150. 
	nahJ
	Pseudomonas fluorescens
	[55]

	151. 
	nahK
	Pseudomonas fluorescens
	[55]

	152. 
	nahM
	Pseudomonas fluorescens
	[55]

	153. 
	nahN
	Pseudomonas fluorescens
	[55]

	154. 
	nahI
	Pseudomonas
	[55]

	155. 
	xylM
	Pseudomonas putida mt-2
	[56]

	156. 
	 bphA1
	Pseudoxanthomonas
	[56]

	157. 
	 tmoA 
	Acidobacteria, Chloroflexota, Cyanobacteria,
	[56]

	158. 
	NnrA
	Tectomicrobia (Entotheonella)
	[56]

	159. 
	pheA
	Pseudomonas stutzeri
	[56]

	160. 
	dhnA1
	Sphingomonas wittichii
	[56]

	161. 
	infB
	Enterobacter turicensis
	[57]

	162. 
	rpoB
	Enterobacter pulveris
	[57]

	163. 
	 pheC
	Geobacillus thermoglucosidasius
	[58]

	164. 
	EDO
	Pseudomonas sp.
	[58]

	165. 
	nag
	Ralstonia sp. 
	[58]

	166. 
	BaaA
	Rhodococcus
	[59]

	167. 
	assABC
	Azoarcus
	[60]

	168. 
	RHD-1
	Cycloclasticus sp. P1
	[60]

	169. 
	RHD-4
	Cycloclasticus sp. P1
	[60]

	170. 
	Q91_0344
	Cycloclasticus sp. P1
	[60]

	171. 
	Q91_0507 
	Cycloclasticus sp. P1
	[60]

	172. 
	Q91_0872
	Cycloclasticus sp. P1
	[60]

	173. 
	Q91_1047
	Cycloclasticus sp. P1
	[60]

	174. 
	Q91_2224
	Cycloclasticus sp. P1
	[60]

	175. 
	Q91_2225 and Q91_2226 (RHD-3)
	Cycloclasticus sp. P1
	[60]

	176. 
	Q91_2228 
	Cycloclasticus sp. P1
	[60]

	177. 
	alkMaMb
	Acinetobacter venetianus
	[61]

	178. 
	xcpS
	A. baylyi ADP1
	[61]

	179. 
	alkB
	Rhodococcus
	[62]

	180. 
	CYP153
	R. erythropolis
	[62]

	181. 
	pAH2
	R. erythropolis
	[62]

	182. 
	pelA
	Bacteria consortia
	[63]

	183. 
	pelB
	Bacteria consortia
	[63]

	184. 
	PelC
	Bacteria consortia
	[63]

	185. 
	pelE
	Bacteria consortia
	[63]

	186. 
	PelD
	Erwinia chrysanthemi 3937
	[63]

	187. 
	phaC
	Gordonia rubripertinctus 7E1C
	[63]

	188. 
	cmdABC
	Ar. bremense PbN1 and Ar. aromaticum EbN1
	[64]

	189. 
	iod
	Desulfosporosinus youngiae
	[64]

	190. 
	bamQ
	Rhodopseudomonas palustris
	[64]

	191. 
	CHCoA dehydrogenase 
	G. metallireducens
	[64]

	192. 
	DrsA
	Geobacteraceae
	[64]

	193. 
	pimB
	R. palustri
	[64]

	194. 
	pimE
	R. palustri
	[64]

	195. 
	alkB1
	Rhodococcus spp.
	[65]

	196. 
	alkB2
	Rhodococcus spp.
	[65]

	197. 
	alkBFGHJKL
	Pseudomonas putida GPo1
	[65]

	198. 
	soxXYZABC
	Alphaproteobacteria
	[65]

	199. 
	AlkT
	Alphaproteobacteria
	[65]

	200. 
	ompS
	A. dieselolei
	[65]

	201. 
	norBC
	Dokdonia
	[65]

	202. 
	aprAB
	 Syntrophales, Desulfobacteraceae, Abyssubacteria
	[66]

	203. 
	dsrAB
	Desulfatiglandales, Abyssubacteria
	[66]

	204. 
	tsdA
	Flavobacteria
	[66]

	205. 
	oleC 
	Deltaproteobacteria
	[66]

	206. 
	nagL
	Shewanella
	[67]

	207. 
	qui
	Cobetia
	[67]

	208. 
	fadL
	A. dieselolei B-5
	[68]

	209. 
	tlpS 
	Pseudomonas aeruginosa PAO1
	[68]

	210. 
	arhABC
	Pseudomonas stutzeri ZWLR2-1
	[68]

	211. 
	alkN
	P. putida GPo1
	[68]

	212. 
	Cyo
	P. putida.
	[68]

	213. 
	nabK
	P. pudida
	[68]

	214. 
	tnpA6
	P. pudida
	[68]

	215. 
	nar 
	Pseudomonas sp.
	[69]

	216. 
	 PdoAB
	Mycobacterium sp
	[69]

	217. 
	phdJ 
	Mycobacteriaceae sp.
	[69]

	218. 
	nahF
	Comamonadaceae sp
	[69]

	219. 
	alkM
	Acinetobacter sp. ADP1
	[70]

	220. 
	acr
	Syntrophoarchaeales, Alkanophagales
	[71]

	221. 
	Tol4
	Azoarcus tolulyticus
	[71]

	222. 
	hdrABCD 
	C. Argoarchaeum ethanivorans
	[71]

	223. 
	frdA
	Geobacter metallireducens
	[72]

	224. 
	hadA
	Syntrophus aciditrophicus
	[72]

	225. 
	cpnA
	Rhodococcus, Mycolicibacterium, Nocardioides
	[73]

	226. 
	RAG-1
	Acinetobacter sp
	[74]

	227. 
	ituABCD
	Bacillus subtilis
	[75]

	228. 
	AlnABC
	Acinetobacter radioresistens, Bacillus sp
	[75]

	229. 
	SrfAaAbAcAd
	Acinetobacter radioresistens, Bacillus sp.
	[75]

	230. 
	SrfA-TE
	Acinetobacter
	[75]

	231. 
	 BAS-Cr1
	Pseudomonas aeruginosa
	[75]

	232. 
	ViscAcBCR
	Pseudomonas fluorescens
	[75]

	233. 
	amsY
	Pseudomonas syringae
	[75]

	234. 
	GacA/GacS 
	Pseudomonas syringae
	[75]

	235. 
	arfABC
	Pseudomonas sp. MIS38
	[75]

	236. 
	psoA
	Pseudomonas putida
	[75]

	237. 
	psoB
	Pseudomonas putida
	[75]

	238. 
	psoC
	Pseudomonas putida
	[75]

	239. 
	fae-hps
	Methane oxidizing Bacterial community
	[76]

	240. 
	mtd
	Methane oxidizing Bacterial community
	[76]

	241. 
	fto
	Methane oxidizing Bacterial community
	[76]

	242. 
	mch
	Methane oxidizing Bacterial community
	[76]

	243. 
	ftr
	Methane oxidizing Bacterial community
	[76]

	244. 
	frhB
	Methane oxidizing Bacterial community
	[76]

	245. 
	myhD
	Methane oxidizing Bacterial community
	[76]

	246. 
	cdhCDG
	Methane oxidizing Bacterial community
	[76]

	247. 
	mcrABCG
	Methane oxidizing Bacterial community
	[76]

	248. 
	mtrABCDEFGH
	Methane oxidizing Bacterial community
	[76]

	249. 
	 AlmA
	Acinetobacter baylyi ADP1
	[77, p. 024]

	250. 
	acrA
	Ca. Methanoliparum
	[78]

	251. 
	 bphA1A2A3A4
	Sphingobium yanoikuyae B1 
	[78]

	252. 
	bphBC
	Sphingobium yanoikuyae B1 
	[78]

	253. 
	metF
	Desulfobacteraceae
	[79]
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