

Table 1 Petroleum Hydrocarbon Degradation Genes 
	S. No
	Gene
	Organism
	Reference

	1. 
	acxABC
	Xanthobacter autotrophicus
	[1]

	2. 
	bagI
	P. putida
	[1]

	3. 
	bagK
	P. putida
	[1]

	4. 
	bphB
	Pseudomonas pseudoalcaligenes KF707.
	[1]

	5. 
	bphC
	Pseudomonas pseudoalcaligenes KF707.
	[1]

	6. 
	bphD
	Pseudomonas pseudoalcaligenes KF707.
	[1]

	7. 
	bphX0
	Pseudomonas pseudoalcaligenes KF707.
	[1]

	8. 
	bphX1
	Pseudomonas pseudoalcaligenes KF707.
	[1]

	9. 
	bphX2
	Pseudomonas pseudoalcaligenes KF707.
	[1]

	10. 
	bphX3
	Pseudomonas pseudoalcaligenes KF707.
	[1]

	11. 
	cddA
	Rhodococcus ruber SC1
	[1]

	12. 
	cddB
	Rhodococcus ruber SC1
	[1]

	13. 
	cddC
	Rhodococcus ruber SC1
	[1]

	14. 
	cddD
	Rhodococcus ruber SC1
	[1]

	15. 
	chnB
	Acinetobacter SE19
	[1]

	16. 
	chnE
	Acinetobacter SE19
	[1]

	17. 
	chnR
	Acinetobacter SE19
	[1]

	18. 
	cph I
	Arthrobacter chlorophenolicus A6
	[1]

	19. 
	cphR
	Arthrobacter chlorophenolicus A6
	[1]

	20. 
	cphS
	Arthrobacter chlorophenolicus A6
	[1]

	21. 
	dntAaAbAcAd
	Acidovorax sp. JS42, B. cepacia R34
	[1]

	22. 
	dntB
	Acidovorax sp.  JS42, B. cepacia R34
	[1]

	23. 
	dntC
	Acidovorax sp. JS42, B. cepacia R34
	[1]

	24. 
	dntD
	Acidovorax sp. strain JS42, B. cepacia R34
	[1]

	25. 
	dntE
	Acidovorax sp. strain JS42, B. cepacia R34
	[1]

	26. 
	dntG
	Acidovorax sp. strain JS42, B. cepacia R34
	[1]

	27. 
	ebdABC
	D. alkenivorans AK-01
	[1]

	28. 
	fabK1
	D. alkenivorans AK-01
	[1]

	29. 
	fabK2
	D. alkenivorans AK-01
	[1]

	30. 
	geoA
	Castellaniella defragrans
	[1]

	31. 
	geoB
	Castellaniella defragrans
	[1]

	32. 
	mcrBGAC
	Methanotrophic bacteria
	[1]

	33. 
	npdA1
	Arthrobacter sp. JS443
	[1]

	34. 
	npdA2
	Arthrobacter sp. JS443
	[1]

	35. 
	npdB
	Arthrobacter sp. JS443
	[1]

	36. 
	npdR
	A. chlorophenolicus A6
	[1]

	37. 
	nphA1
	Pseudomonas
	[1]

	38. 
	todA
	P. putida Fl
	[1]

	39. 
	todB
	P. putida Fl
	[1]

	40. 
	todC1
	P. putida Fl
	[1]

	41. 
	todC2
	P. putida Fl
	[1]

	42. 
	todD
	P. putida Fl
	[1]

	43. 
	todE
	P. putida Fl
	[1]

	44. 
	todF
	P. putida Fl
	[1]

	45. 
	mmoX
	Methylococcus
	[2]

	46. 
	bzlA
	Unclassified clostridia
	[3]

	47. 
	pimBE
	Clostridium
	[3]

	48. 
	dmpF
	Azoarcus sp. BH72
	[3]

	49. 
	dmpG
	Limnobacter sp. MED105
	[3]

	50. 
	dmpI
	Desulfosporosinus orientis
	[3]

	51. 
	dmpL
	Dechloromonas aromatica
	[3]

	52. 
	dmpP
	Azoarcus toluclasticus
	[3]

	53. 
	hcrL
	Unclassified Clostridia
	[3]

	54. 
	ppcC
	Unclassified Clostridia
	[3]

	55. 
	hcrA
	Unclassified Clostridia
	[3]

	56. 
	paaF
	Desulfosporosinus youngiae
	[3]

	57. 
	badF
	Desulfotomaculum gibsoniae
	[3]

	58. 
	bzdQ
	Desulfotomaculum gibsoniae
	[3]

	59. 
	dmpH
	Thermincola potens
	[3]

	60. 
	dmpM
	Rhodocyclaceae
	[3]

	61. 
	tdn
	P. putida UCC227
	[3]

	62. 
	tmoD
	Pseudomonas aeruginosa
	[3]

	63. 
	gcdBC
	Syntrophus aciditrophicus
	[3]

	64. 
	phe
	Bacillus thermoglucosidasius A7
	[3]

	65. 
	nah
	Rhodococcus pyridinivorans
	    [4]

	66. 
	roxA
	Rhodococcus jostii
	[5]

	67. 
	ompST
	Alcanivorax dieselolei KS 293
	[6]

	68. 
	BaP1
	Bacillus subtilis BMT
	[7]

	69. 
	nap
	Mycobacterium vanbaalenii PYR-1
	[8]

	70. 
	nidA
	M. vanbaalenii PYR-1
	[8], [9]

	71. 
	alkH
	Rhodococcus erythropolis
	[10]

	72. 
	nahA3
	Pseudomonas
	[11]

	73. 
	abrB
	Geotalea daltonii FRC-32
	[12]

	74. 
	lptCAB
	Geotalea daltonii FRC-32
	[12]

	75. 
	rpoN
	Geotalea daltonii FRC-32
	[12]

	76. 
	CYP52
	Acinetobacter
	[13]

	77. 
	RHDα
	Pseudoxanthomonas
	[14]

	78. 
	NmsA
	Desulfuromonadales MAG (GB_003647135)
	[15]

	79. 
	ackA
	Desulfobacterales
	[15]

	80. 
	Pta
	Desulfobacterales
	[15]

	81. 
	AssA
	Vallitalea guaymasensis strain L81
	[15]

	82. 
	faeABC
	Dehalococcoidia
	[15]

	83. 
	narGH
	Archaeoglobi
	[15]

	84. 
	amiE
	Micrococcus luteus CBMAI 636, Dietzia kunjamensis CBMAI 705, Bacillus subtilis CBMAI 707
	[16]

	85. 
	ethA
	Micrococcus luteus CBMAI 636, Dietzia kunjamensis CBMAI 705
	[16]

	86. 
	feaB
	Dietzia kunjamensis CBMAI 705, Achromobacter xylosoxidans CBMAI 709
	[16]

	87. 
	maiA
	Achromobacter xylosoxidans CBMAI 709
	[16]

	88. 
	nthA
	Achromobacter xylosoxidans CBMAI 709
	[16]

	89. 
	oxdB
	Achromobacter xylosoxidans CBMAI 709
	[16]

	90. 
	bssA
	Bacillus subtilis CBMAI 707
	[16]

	91. 
	CN32
	Shewanella putrefaciens
	[16]

	92. 
	benABCD
	R. qingshengii GOMB7
	   [17]

	93. 
	hpcB
	Acinetobacter johnsonii C4
	[18]

	94. 
	etbA1A3A3A4
	Rhodococcus sp. WAY
	[19]

	95. 
	bphEDA4A3A2aA1aCB)
	Rhodococcus sp. WAY
	[19]

	96. 
	MAH_alpha and MAH_betaclB
	Halioglobus and Acidimicrobiales
	[20]

	97. 
	AbcA
	Halioglobus and Acidimicrobiales
	[20]

	98. 
	pBmoABC
	Halioglobus and Acidimicrobiales
	[20]

	99. 
	cmdA
	Halioglobus and Acidimicrobiales
	[20]

	100. 
	NmsA
	Halioglobus and Acidimicrobiales
	[20]

	101. 
	sBmoXYZ
	Halioglobus and Acidimicrobiales
	[20]

	102. 
	LasI
	P. putida AQ8
	[21]

	103. 
	cas
	Pseudoxanthomonas
	[22]

	104. 
	dsm3043
	C. salexigens
	   [23]

	105. 
	nahAc
	γ-proteobacteria
	[24]

	106. 
	nagAc
	β-proteobacteria
	[24]

	107. 
	rhdA
	Cycloclasticus sp.
	[25]

	108. 
	hbaA
	Rhodopseudomonas palustris.
	[26]

	109. 
	dfdA1A2A3A4
	Nocardioides sp. DF412
	[27]

	110. 
	tbc
	Burkholderia sp.
	[27]

	111. 
	nifK
	Pseudomonas stutzeri
	     [28]

	112. 
	ArcA
	Bacillus cereus P21
	[28]

	113. 
	carB
	Mycobacterium sp.
	[28]

	114. 
	pobA
	Pseudomonas aeruginosa
	    [29]

	115. 
	cphy
	P. limnophilus
	[30]

	116. 
	eutN
	S. enterica
	[30]

	117. 
	pduA
	S. enterica
	[30]

	118. 
	pduB
	S. enterica
	[30]

	119. 
	pduL
	S. enterica
	[30]

	120. 
	pduN
	S. enterica
	[30]

	121. 
	pvmO
	P. limnophilus
	[30]

	122. 
	paa
	Bacillus licheniformis
	    [31]

	123. 
	napAB
	Dokdonia
	[32]

	124. 
	yiaY
	Citrobacter portucalensis
	[32]

	125. 
	tmoCF
	Bacterial consortium 
	[33]

	126. 
	nifHDK
	Azoarcus sp.
	   [34]

	127. 
	MopN
	Acinetobacter calcoaceticus
	[35]

	128. 
	PhhN
	P. putida
	[35]

	129. 
	PoxD
	Ralstonia eutropha
	[35]

	130. 
	DQ12-45-1b
	Dietzia sp.
	[36]

	131. 
	frdABC
	Rhodococcus sp.
	[37]

	132. 
	maeB
	Rhodococcus sp.
	[37]

	133. 
	pycAB
	Rhodococcus sp.
	[37]

	134. 
	PAO1
	Pseudomonas aeruginosa
	[38]

	135. 
	nar
	Rhodococcus sp. NCIMB12038
	[38]

	136. 
	dox
	Pseudomonas sp. C18
	[38]

	137. 
	phd
	Comamonas testosteroni GZ39
	[38]

	138. 
	bdhA
	Ca. Cycloclasticus GSC22
	[39]

	139. 
	pmoAC
	Ca. Cycloclasticus GSC8
	[39]

	140. 
	mmoXY
	Gammaproteobacterium
	   [39]

	141. 
	todX
	Pseudomonas putida
	[40]

	142. 
	ntdAc
	Pseudomonas putida
	[41]

	143. 
	pahAc
	Pseudomonas aeruginosa
	[41]

	144. 
	bpdB
	Rhodococcus sp. M5
	[41]

	145. 
	bssABC
	T. aromatica
	   [42]

	146. 
	tutE
	Thauera sp. T1
	[42]

	147. 
	pahA
	Sphingomonas, Mycobacterium, Rhodococcus
	[43]

	148. 
	PAH-RHDα
	Sphingomonas koreensis
	[43]

	149. 
	pah
	Comamonas testosteroni
	[44]

	150. 
	phdC
	Oceanospirillales,
	[44]

	151. 
	phn
	Comamonas testosteroni
	[44]

	152. 
	nahL
	Metagenome
	[44]

	153. 
	hgdB
	Ferroglobus placidus
	[45]

	154. 
	hclA
	Ferroglobus placidus
	[45]

	155. 
	ppcX1X2
	Ferroglobus placidus
	[45]

	156. 
	ppcY
	Ferroglobus placidus
	[45]

	157. 
	cmtACDE
	Pseudomonas
	    [46]

	158. 
	badI
	Bacterial consortium
	[46]

	159. 
	benA-xylX
	Enterobacter, Pseudomonas, Acinetobacter
	[46]

	160. 
	benB-xylY
	Enterobacter, Pseudomonas, Acinetobacter
	[46]

	161. 
	benC-xylZ
	Enterobacter, Pseudomonas, Acinetobacter
	[46]

	162. 
	bphH
	Bacterial consortium
	[46]

	163. 
	desB
	Bacterial consortium
	[46]

	164. 
	dmpK
	Pseudomonas
	[46]

	165. 
	hpaD
	Enterobacter, Pseudomonas, Acinetobacter
	[46]

	166. 
	hpaE
	Enterobacter, Pseudomonas, Acinetobacter
	[46]

	167. 
	hpaF
	Enterobacter, Pseudomonas, Acinetobacter
	[46]

	168. 
	hpaG
	Enterobacter, Pseudomonas, Acinetobacter
	[46]

	169. 
	hpcC
	Enterobacter, Pseudomonas, Acinetobacter
	[46]

	170. 
	lpdC
	Bacterial consortium
	[46]

	171. 
	mhpA
	Enterobacter, Pseudomonas, Acinetobacter
	[46]

	172. 
	mhpB
	Enterobacter, Pseudomonas, Acinetobacter
	[46]

	173. 
	mhpC
	Enterobacter, Pseudomonas, Acinetobacter
	[46]

	174. 
	nagH
	Enterobacter, Pseudomonas, Acinetobacter
	[46]

	175. 
	nahD
	Enterobacter, Pseudomonas, Acinetobacter
	[46]

	176. 
	nahO
	Enterobacter, Pseudomonas, Acinetobacter
	[46]

	177. 
	tesE
	Enterobacter, Pseudomonas, Acinetobacter
	[46]

	178. 
	tphA1
	Bacterial consortium
	[46]

	179. 
	tphA2
	Bacterial consortium
	[46]

	180. 
	tphA3
	Bacterial consortium
	[46]

	181. 
	xylG
	Bacterial consortium
	[46]

	182. 
	aliA
	P. citronellolis
	[46]

	183. 
	pflD
	Moorella mulderi
	[47]

	184. 
	aspC
	Pyrococcus furiosus
	[48]

	185. 
	asr
	Pyrococcus furiosus
	[48]

	186. 
	ior
	Pyrococcus furiosus
	[48]

	187. 
	por
	Pyrococcus furiosus
	[48]

	188. 
	vor
	Pyrococcus furiosus
	[48]

	189. 
	sacB
	Bacillus subtilis
	[49]

	190. 
	rhlI
	Pseudomonas sp
	[50]

	191. 
	TmoB_BmoB
	Pseudoxanthomonas spadix
	    [51]

	192. 
	PhdI
	M. vanbaalenii PYR-1
	[52]

	193. 
	phdK
	M. vanbaalenii PYR-1
	[52]

	194. 
	nidA3
	M. vanbaalenii PYR-1
	[52]

	195. 
	fadABE
	T. aromatica strain T1
	[53]

	196. 
	tut
	Aromatoleum aromaticum EbN1
	[53]

	197. 
	ebdH
	Desulfococcus oleovorans
	[54]

	198. 
	mas
	Aromatoleum sp. HxN1
	[54]

	199. 
	EbN1
	Aromatoleum aromaticum
	[54]

	200. 
	dsrA
	Desulfobulbus propionicus
	[54]

	201. 
	bamA
	Anaerolineaceae, Dechloromonas, Geobacter
	[54]

	202. 
	LadA beta
	Pseudomonas putida KT244

	[55]

	203. 
	xylE
	P. putida
	    [56]

	204. 
	gntR
	P. aeruginosa RR1
	[56]

	205. 
	mgdABCD
	Binatota (uncharacterized bacterial phylum)
	[56]

	206. 
	otsAB
	Rhodococcus sp.
	[57]

	207. 
	treYZ
	Rhodococcus sp.
	[57]

	208. 
	PpcA
	Aromatoleum aromaticum EbN1
	[58]

	209. 
	pmo
	Bacillus anthracis, Bacillus cereus, Achromobacter sp.
	  [59]

	210. 
	coxABC
	Uncharacterized phylum
	[60]

	211. 
	cydAB
	Methanobacterium formicicum
	[60]

	212. 
	crtIQPH
	Binatota (uncharacterized bacterial phylum)
	[60]

	213. 
	dcmA
	Binatota (uncharacterized bacterial phylum)
	[60]

	214. 
	hyaABC
	Binatota (uncharacterized bacterial phylum)
	[60]

	215. 
	mau
	Binatota (uncharacterized bacterial phylum)
	[60]

	216. 
	xoxFJG
	Binatota (uncharacterized bacterial phylum)
	[60]

	217. 
	MasD
	Desulfosarcina sp. Bus5
	[61]

	218. 
	CheY
	Polymorphum gilvum SL003B-26A1
	[62]

	219. 
	KdpDE
	Alcanivorax borkumensis
	[62]

	220. 
	nahQ (unknown gene)
	Pseudomonas sp.
	[63]

	221. 
	mhpE
	Rhodococcus, Novosphingobium
Gordonia, Nocardioides
	[64]

	222. 
	AmtB
	Metagenomic marine consortium
	[65]

	223. 
	ectA
	Metagenomic marine consortium
	[65]

	224. 
	gltX
	Metagenomic marine consortium
	[65]

	225. 
	modA
	Metagenomic marine consortium
	[65]

	226. 
	nqrF
	Metagenomic marine consortium
	[65]

	227. 
	petF
	Metagenomic marine consortium
	[65]

	228. 
	phoB
	Metagenomic marine consortium
	[65]

	229. 
	psbAP
	Metagenomic marine consortium
	[65]

	230. 
	TatD
	Metagenomic marine consortium
	[65]

	231. 
	ThuA
	Metagenomic marine consortium
	[65]

	232. 
	corA
	Metagenomic marine consortium
	[65]

	233. 
	Bct (Gmet 2054)
	G. metallireducens
	[66]

	234. 
	Gmet 0231
	G. metallireducens
	[67]

	235. 
	Gmet 0232
	G. metallireducens
	[67]

	236. 
	fhs
	Bacterial consortium
	[68]

	237. 
	hydBG
	Thermococcus
	[68]

	238. 
	mxaF
	Thiotrichales and Methylophaga
	[68]

	239. 
	cysl
	Desulfobacteraceae
	[69]

	240. 
	cytBC
	Desulfobacteraceae
	[69]

	241. 
	fmdABCDE
	Desulfobacteraceae
	[69]

	242. 
	fqo
	Desulfobacteraceae
	[69]

	243. 
	phsA
	Desulfobacteraceae
	[69]

	244. 
	Rnf
	Desulfobacteraceae
	[69]

	245. 
	TST
	Desulfobacteraceae
	[69]

	246. 
	rhB
	Desulfobacteraceae
	[69]

	247. 
	nylB
	Syntrophobacteraceae,
	[69]

	248. 
	bnsEF
	Metagenomic library
	[70]

	249. 
	dchABC
	Ar. aromaticum EbN1
	[70]

	250. 
	hcrABC
	Clostridiales/ Dethiosulfatibacter
	[70]

	251. 
	hnABC
	Clostridiales/ Dethiosulfatibacter
	[70]

	252. 
	bnsEFGH
	Clostridiales/ Dethiosulfatibacter
	[70]

	253. 
	badH
	Clostridiales/ Dethiosulfatibacter
	[71]

	254. 
	mcmLS
	Cyanobacteria
	[72]

	255. 
	sat
	Cyanobacteria
	[72]

	256. 
	frcB
	Archaeoglobus fulgidus VC-16
	[72]

	257. 
	codhABCDE
	Methanosaeta
	[72]

	258. 
	fwdABCDEFG
	Methanosaeta
	[72]

	259. 
	mch
	Methanosaeta
	[72]

	260. 
	mtd
	Methanosaeta
	[72]

	261. 
	limEH
	Bacterial community
	[73]
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