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Supplementary Notes
Supplementary Note 1. Materials synthesis and characterization.
[bookmark: OLE_LINK50][bookmark: OLE_LINK51]Synthesis of GeTrzCz2. GeTrzCz2 was synthesized via a two-step procedure starting with (3-bromophenyl)triphenylgermane and 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane). Stepwise synthetic routes are outlined in Supplementary Scheme 1, and full experimental details are provided below.
[image: ]
Supplementary Scheme 1. Synthesis procedure of GeTrzCz2.

Synthesis of triphenyl(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)germane. Under an argon atmosphere, (3-bromophenyl)triphenylgermane (6.90 g, 15.00 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (7.60 g, 30.00 mmol), Pd(dppf)Cl2 (0.22 g, 0.30 mmol), and potassium acetate (4.40 g, 45 mmol) were dissolved in dehydrated DMSO (50 mL) and stirred at 100 oC for 12 h. Upon cooling to room temperature, the black mixture was diluted with water and extracted with ethyl acetate (3 × 30 mL). The organic phases were dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel using ethyl acetate/petroleum ether (v/v = 1/30) as eluent to afford a white solid (5.00 g, yield: 65%). 1H NMR (CDCl3, 400 MHz) δ (ppm): 1.31 (s, 12H), 7.34-7.40 (m, 10H), 7.52-7.54 (m, 6H), 7.59 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 8.05 (s, 1H). 13C NMR (CDCl3, 100 MHz) δ (ppm): 24.8, 83.7, 127.6, 128.2, 129.0, 135.2, 135.4(2), 135.6, 136.2, 138.3, 141.4.
Synthesis of GeTrzCz2. Under an argon atmosphere, triphenyl(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)germane (1.80 g, 3.60 mmol), 9,9'-(6-chloro-1,3,5-triazine-2,4-diyl)bis(9H-carbazole) (1.30 g, 3.00 mmol), Pd(PPh3)4 (0.18 g, 0.16 mmol), and potassium carbonate (1.20 g, 9.00 mmol) were dissolved in THF/water (20 mL each) and stirred at 65 oC for 12 h. Upon cooling to room temperature, the black mixture was diluted with water and extracted with dichloromethane (3 × 30 mL). The organic phases were dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane/petroleum ether (v/v = 1/4) as eluent to afford a white solid (1.80 g, yield: 75%). 1H NMR (CDCl3, 500 MHz) δ (ppm): 7.36-7.44 (m, 17H), 7.64 (d, J = 7.5 Hz, 6H), 7.69 (t, J = 7.5 Hz, 1H), 7.85 (d, J = 7.0 Hz, 1H), 8.08 (d, J = 7.5 Hz, 4H), 8.78 (d, J = 7.5 Hz, 1H), 8.96 (d, J = 8.0 Hz, 4H), 9.04 (s, 1H). 13C NMR (CDCl3, 125 MHz) δ (ppm): 117.6, 119.6, 123.3, 126.5, 127.0(2), 128.5(2), 128.9, 129.4(2), 130.1, 135.4(2), 135.7(2), 135.9, 136.1, 137.5, 138.9, 139.9, 164.7(2), 173.2(2). HRMS (ESI): m/z [M+H]+ calcd for C51H36GeN5+: 792.2177; found: 792.2177.

[image: ]
Supplementary Scheme 2. Synthesis procedure of GeCzCz.

Synthesis of GeCzCz. Under an argon atmosphere, (3-bromophenyl)triphenylgermane (2.30 g, 5.00 mmol), 9H-3,9'-bicarbazole (2.00 g, 6.00 mmol), Pd2(dba)3 (0.18 g, 0.20 mmol), tri-tert-butylphosphine tetrafluoroborate (0.12 g, 0.41 mmol), sodium tert-butoxide (0.72 g, 7.5 mmol) were dissolved in toluene (30 mL) and stirred at 100 oC for 12 h. Upon cooling to room temperature, the black mixture was diluted with water and extracted with dichloromethane (3 × 30 mL). The organic phases were dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane/petroleum ether (v/v = 1/5) as eluent to afford a white solid (3.00 g, yield: 85%). 1H NMR (CDCl3, 400 MHz) δ (ppm): 7.29 (t, J = 8.0 Hz, 3H), 7.36-7.45 (m, 15H), 7.49 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.60-7.62 (m, 6H), 7.66-7.72 (m, 3H), 7.82 (s, 1H), 8.08 (d, J = 8.0 Hz, 1H), 8.18 (d, J = 8.0 Hz, 2H), 8.25 (s, 1H). 13C NMR (CDCl3, 125 MHz) δ (ppm): 109.8, 110.1, 110.9, 119.4, 119.6, 120.3, 120.4, 120.5, 123.0, 123.1, 124.4, 125.4, 125.8, 126.6, 127.4, 128.5, 129.4, 129.8, 129.9, 133.5, 134.4, 135.4(2), 137.4, 139.2, 139.8, 141.3, 141.9. HRMS (ESI): m/z [M+H]+ calcd for C48H35GeN2+: 713.2007; found: 713.2003.

Supplementary Note 2. Calculation method of kr,S and kRISC.
The respective rate constants of the prompt and delayed fluorescence components (kp and kd) occurring in the exciplex or terminal MR-TADF emitter, can be given by:


kp and kd could be experimentally determined from prompt and delayed fluorescence decay time constants τp, τd as follows:




Besides, the emission quantum yields Φ𝑝 and Φ𝑑 for the prompt and delayed fluorescence components have the following relationship with these rate constants:




From the equations above, one could obtain the following relationship between rate constants and kp, kd, Φ𝑝 and Φ𝑑 experimentally determined from typical PLQY and transient PL characteristics:











Supplementary Figures
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Supplementary Fig. 1. 1H NMR spectrum of triphenyl(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)germane in CDCl3 at room temperature.
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Supplementary Fig. 2. 13C NMR spectrum of triphenyl(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)germane in CDCl3 at room temperature.


[image: ]
Supplementary Fig. 3. 1H NMR spectrum of GeTrzCz2 in CDCl3 at room temperature.
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Supplementary Fig. 4. 13C NMR spectrum of GeTrzCz2 in CDCl3 at room temperature.
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Supplementary Fig. 5. HRMS spectrum of GeTrzCz2.
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Supplementary Fig. 6. 1H NMR spectrum of GeCzCz in CDCl3 at room temperature.
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Supplementary Fig. 7. 13C NMR spectrum of GeCzCz in CDCl3 at room temperature.
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Supplementary Fig. 8. HRMS spectrum of GeCzCz.
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Supplementary Fig. 9. Single crystal structures of HT hosts. (a) SiCzCz (CCDC: 2433937). (b) GeCzCz (CCDC: 2433938). The two crystals were grown by slow evaporating a solution in hexane at 25oC. Selected bond length (Å) and angles (o) are annotated.


[bookmark: _Hlk139604500][image: ]
Supplementary Fig. 10. Single crystal structures of ET hosts. (a) SiTrzCz2 (CCDC: 2433936). (b) GeTrzCz2 (CCDC: 2433939). The two crystals were grown by slow evaporating a solution in CH2Cl2:methanol (5:2) at 25oC. Selected bond length (Å) and angles (o) are annotated.
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Supplementary Fig. 11. Phosphorescence spectra of GeCzCz, GeTrzCz2, and GeCzCz:GeTrzCz2 in solid films at 77 K.


[image: ]
Supplementary Fig. 12. Transient PL decay curve of the SiCzCz:SiTrzCz2 exciplex film.


[image: ]
[bookmark: _Hlk170721272]Supplementary Fig. 13. Spatial distributions of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) in the optimized configuration between GeCzCz and GeTrzCz2.
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Supplementary Fig. 14. Calculated SOCME values between T1 and S1 for SiCzCz:SiTrzCz2 and GeCzCz:GeTrzCz2 in their optimized T1 geometries.
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Supplementary Fig. 15. Normalized PL spectra of GeCzCz:GeTrzCz2 exciplex film and extinction spectrum of t-DABNA, υ-DABNA and ω-DABNA in toluene (10-5 mol.L-1).
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Supplementary Fig. 16. Chemical structures of the comprising materials in OLEDs.
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Supplementary Fig. 17. Current density and luminance versus driving voltage curves. (a) t-DABNA target device and control-A. (b) υ-DABNA target device and control-B. (b) ω-DABNA target device and control-C.


Supplementary Tables
Supplementary Table 1. Physical data and kinetic parameters of GeCzCz:GeTrzCz2 and SiCzCz:SiTrzCz2 exciplex films.
	Film
	λPL
/ nm
	PLQY
/ %
	τp
/ ns
	τd
/ μs
	kr,S
/ × 106 s-1
	kRISC
/ × 105 s-1

	GeCzCz:GeTrzCz2
	470
	54
	173.0
	1.6
	2.5
	7.6

	SiCzCz:SiTrzCz2
	470
	30
	186.8
	1.9
	[bookmark: OLE_LINK4]1.3
	6.9


Supplementary Table 2. Physical data and kinetic parameters of MR-TADF emitters t-DABNA, υ-DABNA and ω-DABNA doped in exciplex hosts GeCzCz:GeTrzCz2 and SiCzCz:SiTrzCz2.
	Film
	τp
/ ns
	τd
/ μs
	kRISC
/ s-1

	GeCzCz:GeTrzCz2:t-DABNA
	10.7
	112.3
	2.2 × 104

	SiCzCz:SiTrzCz2:t-DABNA
	11.9
	133.0
	[bookmark: OLE_LINK6]1.3 × 104

	GeCzCz:GeTrzCz2:υ-DABNA
	5.3
	2.4
	[bookmark: OLE_LINK7]9.1 × 105

	[bookmark: OLE_LINK5]SiCzCz:SiTrzCz2:υ-DABNA
	5.5
	4.0
	4.5 × 105

	GeCzCz:GeTrzCz2: ω-DABNA
	6.3
	3.6
	7.5 × 105

	SiCzCz:SiTrzCz2:ω-DABNA
	6.4
	7.7
	3.6 × 105




[bookmark: _Hlk190794744]Supplementary Table 3. Summary of recent advances in green-emitting OLEDs with CIEy ≥ 0.71 (NTSC standard) and blue-emitting OLEDs with CIEy ≤ 0.2.
	Emitting materials
	EQE / %
	
	CIEy
	Ref.

	
	Max
	1,000 cd.m-2
	
	

	ω-DABNA
	40.4
	33.4
	0.74
	This work

	MCNBN
	30.8
	20.4
	0.74
	1

	PMCNBN
	27.2
	20.3
	0.73
	1

	TCz-B
	29.2
	9.4
	0.71
	2

	TCz-VTCzBN
	32.2
	16.0
	0.71
	3

	BN-ICz-1
	30.5
	17.2
	0.74
	4

	BN-ICz-2
	29.8
	26.1
	0.73
	4

	tCzphB-Ph
	29.3
	~10
	0.75
	5

	tCzphB-Fl
	26.2
	~9
	0.72
	5

	ω-DABNA (single host)
	31.1
	29.4
	0.73
	6

	ω-DABNA-M
	32.7
	27.4
	0.74
	7

	ω-DABNA-PH
	31.8
	27.4
	0.74
	7

	DBNT-2
	35.2
	20.4
	0.74
	8

	BN-TP-N3
	37.3
	19.8
	0.71
	9

	QB-PXZ
	36.6
	31.8
	0.74
	10

	[bookmark: OLE_LINK1]υ-DABNA
	40.1
	32.8
	0.12
	This work

	υ-DABNA(single host)
	34.4
	26.0
	0.11
	11

	υ-DABNA(TSF)
	29.2
	24.1
	0.14
	12

	t-BuCz-DABNA(TSF)
	30.8
	26.2
	0.17
	13

	υ-DABNA(TSF)
	27
	20
	0.20
	14

	υ-DABNA(TSF)
	33.0
	25.2
	0.17
	15

	BD-02(phos.)
	25.4
	23.4
	0.197
	16

	TBE02(PSF)
	25.8
	~22
	0.165
	17

	PtON-TTBI (phos.)
	25.9
	24.6
	0.19
	18

	PtON7-dtb (phos.)
	24.8
	11.0
	0.079
	19

	PtON-CF3-2 (phos.)
	33.8
	31.6
	0.15
	20

	f-cf6b (phos.)
	23.4
	17.1
	0.12
	21

	v-DABNA (PSF)
	26.2
	18.4
	0.13
	21



Supplementary Table 4. Summary of recently reported green OLEDs based on non-metallic heavy atoms with corresponding device half-lifetimes at 1,000 cd m-2.
	Emitting materials
	LT50@1,000 cd m-2
/ h
	EQE / %
	
	CIEy
	Ref.

	
	
	Max
	1,000 cd.m-2
	
	

	ω-DABNA
	241
	40.4
	33.4
	0.74
	This work

	PSeZBN2
	41
	29.5
	29.0
	0.65
	22

	2PTZBN
	5.6
	34.6
	29.5
	0.67
	23

	BNSSe
	4.8
	35.7
	32.0
	0.66
	23

	BNSeSe
	4.1
	36.8
	34.0
	0.66
	23

	BN-STO
	35
	40.1
	28.1
	0.70
	24

	BN-Se
	82.1
	32.6
	32.2
	0.62
	25
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