R Notebook

#H## HAHHH ##H#
Linear Regression Analysis on Coffee Transactions Dataset
HAMAD A. ALMAZROUEI - 201912368

#H# HAAAH ###

Set a seed for reproducibility
set.seed(999)

Load mecessary libraries

library(ggplot2) # For data visualization
library(dplyr) # For data manipulation and transformation

##
Attaching package: ’dplyr’

The following objects are masked from ’package:stats’:
##
#i# filter, lag

The following objects are masked from ’package:base’:
##
intersect, setdiff, setequal, union

library(prophet) # For time series forecasting

Loading required package: Rcpp
Warning: package ’Rcpp’ was built under R version 4.3.3
Loading required package: rlang

Warning: package ’rlang’ was built under R version 4.3.3

library(caTools) # For data splitting and utility functions

Warning: package ’caTools’ was built under R version 4.3.3

The above libraries are now loaded and ready for use:

- ggplot2: Enables creation of elegant data visualizations.

- dplyr: Provides a grammar for data mantipulation (filter, mutate, group_by,
etc.).

— prophet: A powerful tool for forecasting time series data.

- caTools: Useful for splitting data into training and testing sets, among
other utilities.

Read the dataset
coffee_data <- read.csv("/Users/hamad/Desktop/ZU/Fall 2024/Data Science - C/Assignment 3/Files/Coffee T

- Step 1.1: Data Structure View ————-
View the structure of the data
str(coffee_data)

’data.frame’: 149116 obs. of 17 variables:

$ transaction_id : int 123456789 10 ...

§$ transaction_date: chr "01/01/2023" "01/01/2023" "01/01/2023" "01/01/2023"

¢ transaction_time: chr "7:06:11" "7:08:56" "7:14:04" "7:20:24"

$ transaction_qty : int 2221211212 ...

§ store_id :int 55555555565 ...

$ store_location : chr "Lower Manhattan" "Lower Manhattan" "Lower Manhattan" "Lower Manhattan"
$ product_id : int 32 57 59 22 57 77 22 28 39 58 ...

§ unit_price :num 3 3.1 4.523.13224.253.5 ...

$ product_category: chr "Coffee" "Tea" "Drinking Chocolate" "Coffee"

$ product_type : chr "Gourmet brewed coffee" "Brewed Chai tea" "Hot chocolate" "Drip coffee"
$ product_detail : chr "Ethiopia Rg" "Spicy Eye Opener Chai Lg" "Dark chocolate Lg" "Our 0ld Time
$ Revenue : chr "$6.00" "$6.20" "$9.00" "$2.00"

$ Month :int 1111111111 ..

$ Month.1 : chr "Jan" "Jan" "Jan" "Jan"

$ Weekday tint T T T T T T TTTT ...

$ Weekday.1l : chr "Sun" "Sun" "Sun" "Sun"

$ Hour tint 7TT7TTTTTTTTT ...

View the summary statistics of the data
summary (coffee_data)

transaction_id transaction_date transaction_time transaction_qty
Min. : 1 Length:149116 Length:149116 Min. :1.000

1st Qu.: 37336 Class :character Class :character 1st Qu.:1.000
Median : 74728 Mode :character Mode :character Median :1.000
Mean : 74737 Mean :1.438
3rd Qu.:112094 3rd Qu.:2.000
Max. 1149456 Max. :8.000
store_id store_location product_id unit_price

Min. :3.000 Length:149116 Min. : 1.00 Min. : 0.800

1st Qu.:3.000 Class :character 1st Qu.:33.00 1st Qu.: 2.500

Median :5.000 Mode :character Median :47.00 Median : 3.000

Mean :5.342 Mean 147.92 Mean : 3.382

3rd Qu.:8.000 3rd Qu.:60.00 3rd Qu.: 3.750

Max. :8.000 Max. :87.00 Max. :45.000

product_category product_type product_detail Revenue
Length:149116 Length:149116 Length:149116 Length:149116

Class :character Class :character Class :character Class :character
Mode :character Mode :character Mode :character Mode :character

##
#
##
##
##
##
##
#
##
##
##
##
#
##
##
##
##

®* R

H* R W R R

H*

®* R

H R R R KRR

#* R

Month Month.1 Weekday Weekday.1
Min. :1.000 Length:149116 Min. :1.000 Length:149116
1st Qu.:3.000 Class :character 1st Qu.:2.000 Class :character
Median :4.000 Mode :character Median :4.000 Mode :character
Mean :3.989 Mean :3.982
3rd Qu.:5.000 3rd Qu.:6.000
Max. :6.000 Max. :7.000

Hour
Min. : 6.00

1st Qu.: 9.00
Median :11.00
Mean :11.74
3rd Qu.:15.00
Max. :20.00

Analysis of the Coffee Shop Transactions Dataset
Data Overview
- The dataset contains 149,116 observations with 17 wvariables, providing transaction-level detatils of

- Key wvartables include transaction_td, store_location, product_category, transaction_qty, and Revenu

Summary Statistics

Transaction ID

- Range: 1 to 149,456, representing unique identifiers for each transaction.
Transaction Date and Time

- transaction_date: Character format, indicating the date of each
transaction.

- transaction_time: Character format, indicating the time of each
transaction.

Transaction Quantity

- Range: 1 to 8, with a mean of 1.438.
- Most transactions involve 1 or 2 items (1st Qu.:1, Median:1, 3rd Qu.:2).

Store Information
- store_id: Values range from 3 to 8, indicating multiple store locations.
- store_location: Descriptive location mames, such as "Lower Manhattan."

Product Details

- product_td: Ranges from 1 to 87, representing unique product identifiers.

- product_category: Contains categories like "Coffee," "Tea," etc.

- product_type: Provides additional granularity, such as "Gourmet brewed
coffee" or "Hot chocolate."”

- unit_price: Prices range from $0.80 to $45.00, with a mean price of $3.382.
Revenue

- The Revenue column %s in character format (e.g., "$6.00"). It should be
converted to numeric for analysis.

Time Information

- Month and Month.1: Represent months numerically (1-6) and teztually
("Jan," "Feb").

- Weekday and Weekday.1l: Represent weekdays numerically (1-7) and
textually ("Sun,"” "Mon").

- Hour: Represents the hour of the transaction, ranging from 6 AM to
8 PM (Min. :6, Maz.:20).

R OR R R R

Observations

— The majority of transactions involve small quantities and moderately
priced items.

- Store and product-level granularity enables analystis by location and
product preferences.

— Time wvariables allow for temporal analysis, such as peak transaction
hours or seasonal trends.

Check for missing values in the dataset
sum(is.na(coffee_data))

[11 0
Output: Total count of missing values in the entire dataset

colSums (is.na(coffee_data))

transaction_id transaction_date transaction_time transaction_qty

#it 0 0 0 0
store_id store_location product_id unit_price
#i# 0 0 0 0
product_category product_type product_detail Revenue
#it 0 0 0 0
Month Month.1 Weekday Weekday.1
#i# 0 0 0 0
Hour

#i# 0

Output: Count of missing values for each column in the dataset

*

Analysis of Missing Values in the Coffee Shop Dataset

Key Observations

- Total missing values: 0

- No columns contain missing values, as confirmed by sum(is.na(coffee_data))
and colSums(is.na(coffee_data)).

Implications

— The dataset is complete and does mot rTequire imputation for missing data.

- Analysis can proceed without concerns about data loss or introducing biases

due to handling missing values.

Formatting 'transaction_date' column from character to Date format
coffee_data$transaction_date <- as.Date(coffee_data$transaction_date,

format = "%d/%m/%Y")
Transformation of transaction_date to Date Format

H*

Code Description

- The transaction_date column ts converted from a character format to a

Date object using as.Date().

— The format "Jd//m/%Y" specifies the day, month, and year structure of

the input data.

Validation

- After this transformation, the transaction_date column can be used for
time-series analysis and date-based aggregations.

Formatting 'Revenue' column to numeric after removing "$" symbol
coffee_data$Revenue <- as.numeric(gsub("\\$", "", coffee_data$Revenue))

Transformation of Revenue Column to Numeric Format

Code Description

— The gsub("\\$", "", coffee_data$Revenue) function removes the dollar sign
($) from the Revenue column.

- The as.numeric() function converts the cleaned values to numeric format.
Validation

- The transformation ensures that Revenue 7s in numeric format and ready

for mathematical operations and aggregations.

- Check the structure of the column using str(coffee_data) or summary

statistics using summary(coffee_data$Revenue) to confirm the transformation.

Converting 'product_category' and 'store_location' columns to factors
coffee_data$product_category <- factor(coffee_data$product_category)
coffee_data$store_location <- factor(coffee_data$store_location)

Conversion of Categorical Variables to Factor

Code Description

- The product_category and store_location columns are converted to
factor type.

- This transformation helps optimize storage and facilitates categorical
analysts.

H R R R R

Benefits

- Improves memory efficiency for large datasets.

- Enables advanced categorical analyses, such as group-wise aggregations
and visualizations.

®H R R R

Validation

- Verify the changes using str(coffee_data) to confirm the columns are

now factors.

— Check the levels of each factor using levels(coffee_data$product_category)
and levels(coffee_data$store_location).

Visualizing the relationship between revenue and transaction quantity
ggplot(coffee_data, aes(x = transaction_qty, y = Revenue)) +
geom_point(aes(color = product_category)) +
ggtitle("Revenue vs. Transaction Quantity by Product Category") +
xlab("Transaction Quantity") +
ylab("Revenue")

Revenue vs. Transaction Quantity by Product Category

product_category
© Bakery
Branded
Coffee

200-

Coffee beans

Revenue

Flavours
Loose Tea

.
.

.

Drinking Chocolate
.

.

Packaged Chocolate
.

Tea

100~

5 4 6 8
Transaction Quantity

**

Analysis of the Scatter Plot: Revenue vs. Transaction Quantity by Product Category

Key Observations

- The scatter plot shows the relationship between transaction_qty (z-axzis)
and Revenue (y-azis), colored by product_category.

- The majority of transactions involve smaller quantities (1 or 2 items),
but higher quantities (e.g., 6-8) are observed in specific categories.

- Some categories, such as "Branded" and "Coffee beans," exhibit higher

revenue per transaction, espectially for larger quantities.

Insights

oW O OR R R R W™ W

#

- High Revenue Categories: Categorties like "Branded" and "Coffee beans'
generate higher revenues, possibly due to higher untit prices or larger
quantities purchased in single transactions.

- Transaction Quantity Distribution: Most transactions involve low
quantities, indicating customers typically purchase a small number of items
at a time.

- Category Spread: Categories like "Coffee," "Tea," and "Drinking
Chocolate" have lower revenue per transaction but may have higher sales
volume overall.

Visualizing the relationship between revenue and store location

ggplot(coffee_data, aes(x = store_location, y = Revenue)) +

Revenue

#
#
#
#
#
#

#

geom_boxplot() +

ggtitle("Revenue Distribution by Store Location") +
xlab("Store Location") +

ylab("Revenue")

Revenue Distribution by Store Location

300~

200~

100~

emems o
Humems o
amasne ¢ o o

Astoria Hell's Kitchen Lower Manhattan
Store Location

Ezplanation:

- geom_bozplot () creates a boxplot to display revenue distributions
across locations.

- Bozplots provide insights into the spread, central tendency, and
outliers in revenue.

- Useful for comparing store performance and identifying anomalies.

Analysis of the Boxzplot: Revenue Distribution by Store Location

R OR R R R

RO R R O™ W™ R R R

#
#
#

#

Key Observations

- The bozplot illustrates the revenue distribution across three store
locations: Astoria, Hell's Kitchen, and Lower Manhattan.

- The median revenue for transactions is relatively consistent across all
locations.

- Outliers are vistble in all three locations, particularly in Hell's
Kitchen and Lower Manhattan, indicating occasional high-revenue transactions.
Insights

- Consistency Across Locations: The core revenue distribution
(interquartile range) appears similar among the three locations, suggesting
comparable customer spending behavior.

- High—-Revenue Transactions: Some outliers in Hell's Kitchen and Lower
Manhattan suggest that these locations may occasionally serve high-value
transactions.

- Potential Store Performance: The lack of significant variation in

median revenue suggests that store performance is more influenced by
transaction volume than transaction value.

————— Step 3: Simple Linear Regression ————-
Predict Revenue based on Transaction Quantity
Split data using caTools

Splitting the dataset into training and testing sets

split <- sample.split(coffee_data$Revenue, SplitRatio = 0.7)

#

Creating the training dataset (707 of the data)

train_data <- subset(coffee_data, split == TRUE)

#

Creating the testing dataset (30) of the data)

test_data <- subset(coffee_data, split == FALSE)

H R R R BHORHORR R W™ W™ W

H oW W R R R

Ezplanation:

- sample.split() is used to create a logical vector for splitting the
dataset.

- SplitRatio = 0.7 means 707 of the data goes into the training set.

- subset() selects rows based on the logical vector generated by
sample.split().

- This ensures a random and balanced split for modeling and evaluation.
Dataset Splitting Analysis: Training and Testing Sets

Key Observations

- The dataset was split into training (707) and testing (30/) subsets using
the sample.split function.

- The splitting ensures that the dependent variable Revenue maintains a
representative distribution in both subsets.

Insights

- Training Dataset: The training dataset contains s of the data,

which ts sufficient for model training while preserving enough diversity to
capture the underlying patterns.

- Testing Dataset: The testing dataset comprises 30J of the data, which

15 adequate for ewvaluating model performance and generalization.

Train a stmple linear regression model
1m_simple <- 1lm(Revenue ~ transaction_qty, data

train_data)

Summarize the model
summary (1m_simple)

##

Call:

1m(formula = Revenue ~ transaction_qty, data = train_data)
##

Residuals:

Min 1Q Median 3Q Max

-8.58 -0.97 -0.24 0.28 337.13

##

Coefficients:

#it Estimate Std. Error t value Pr(>|tl)

(Intercept) 0.70021 0.03461 20.23 <2e-16 **x*

transaction_qty 2.77111 0.02251 123.09 <2e-16 **x

##H -

Signif. codes: O ’*¥x’ 0.001 ’*x> 0.01 ’%’ 0.05 ’.” 0.1’ > 1
##

Residual standard error: 3.949 on 104378 degrees of freedom
Multiple R-squared: 0.1268, Adjusted R-squared: 0.1268

F-statistic: 1.515e+04 on 1 and 104378 DF, p-value: < 2.2e-16

Ezplanation:
- Im() fits a linear regression model predicting Revenue based on
transaction_qty.
- summary () provides a detailed summary of the model, including:

- Coefficients: Intercept and slope of the linear model.

- R-squared: Proportion of wariance in Revenue explained by
transaction_qty.

- p-value: Statistical significance of the relationship.
- Analyze the output to evaluate the model's performance and significance
of predictors.

HOH RO R W R R WK

*

Linear Regression Model Summary Analysis: Revenue ~ Transaction Quantity

Key Observations:

- The linear regression model predicts Revenue based on transaction_gqty.

- The model's intercept ts 0.70021, and the coefficient for transaction_qty
s 2.77111.

- Both the intercept and the transaction quantity coefficient are highly
significant (p-value < 2e-16).

HOH R ™R W

Restdual Analysis:

- The residuals have a minimum of —-8.58 and a mazimum of 337.13, with the
majority of residuals clustered close to zero.

- Thts indicates that while the model captures the general trend, there are
outliers with higher deviations.

Model Fut:

- Multiple R-squared: 0.1268

RO R R

H W W

RO R KRR

#
#

- Indicates that approzimately 12.687 of the variance in Revenue s
explained by transaction_qty.

- This suggests that the model captures only a small portion of the
vartability, indicating a weak fit.

- Adjusted R-squared: 0.1268

- Same as R-squared in this case, as the model only includes one predictor.

Statistical Significance:
- F-statistic: 1.515e+04 with a p-value < 2.2e-16
- Strong evidence that the model as a whole %is statistically significant.

Practical Implications:

- The postitive coefficient for transaction_qty (2.77111) suggests that for
every unit increase in transaction_qty, Revenue increases by

approzimately 2.77 units.

- However, the low R-squared indicates that additional variables might be
needed to better explain the variability in Revenue.

Predict on the test set
Predict revenue on the testing set using the trained model

test_data$predicted_revenuel <- predict(lm_simple, newdata = test_data)

#
#
#
#
#
#

#

H R R R R

#

Ezplanation:

- predict() generates predictions for Revenue based on transaction_qty

in the test_data.

- The predictions are stored in a new column predicted_revenuel within the
test_data dataframe.

- This column will be used to evaluate the model's performance by comparing

predicted and actual values.

Generate predictions for the test dataset using the trained linear model

- The predict function is applied with lm_simple (the linear regresstion model)
and test_data as the new dataset for which predictions are required.

- 4 new column named predicted_revenuel is added to the test_data dataframe
to store the predicted revenue wvalues for each observation.

Evaluate model performance using test set

ggplot(test_data, aes(x = Revenue, y = predicted_revenuel)) +

geom_point () +

geom_abline(slope = 1, intercept = 0, col = "yellow") +
ggtitle("Actual vs. Predicted Revenue (Test Data)") +
xlab("Actual Revenue") +

ylab("Predicted Revenue")

10

Actual vs. Predicted Revenue (Test Data)

e
o

Predicted Revenue

10-

* w——

0 100 200 300
Actual Revenue

Visualize the Actual vs. Predicted Revenue for the test dataset

- The scatterplot compares the actual revenue wvalues (z-azis) with the

predicted revenue values (y-azis).

- A dtagonal line (geom_abline) is added to represent the ideal scenario

where predicted values perfectly match actual values.

— The line has a slope of 1 and intercept of O (identity line) to highlight
any deviations.

- This plot is useful for evaluating the performance of the model visually,
with larger deviations indicating areas of poor prediction accuracy.

Train the multiple linear regression model on the training set
Im_multiple <- 1m(Revenue ~ transaction_qty + product_category +
store_location, data = train_data)

Summarize the model
summary (lm_multiple)

##

Call:

Ilm(formula = Revenue ~ transaction_qty + product_category + store_location,
#it data = train_data)

##

11

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

H*H R R

FHOFH KR R R R K W W W™ WO REREHRHHREHR

H OB R KR KRR

Residuals:

Min 1Q Median 3Q Max
-12.752 -0.582 0.018 0.550 312.510
Coefficients:

Estimate Std. Error t value Pr(>|tl)

(Intercept) 0.03449 0.03205 1.076 0.282
transaction_qty 3.53399 0.01812 195.036 < 2e-16 **x
product_categoryBranded 14.52939 0.13124 110.707 < 2e-16 **x
product_categoryCoffee -0.79607 0.02905 -27.404 < 2e-16 **x*
product_categoryCoffee beans 19.15172 0.08723 219.563 < 2e-16 *x*x*
product_categoryDrinking Chocolate 0.91525 0.04144 22.085 < 2e-16 *xx
product_categoryFlavours -4.23930 0.04965 -85.377 < 2e-16 *xx
product_categoryLoose Tea 5.71429 0.10410 54.895 < 2e-16 *xx
product_categoryPackaged Chocolate 5.50433 0.16106 34.176 < 2e-16 *xx*
product_categoryTea -1.11805 0.03013 -37.103 < 2e-16 *x*x*
store_locationHell’s Kitchen 0.03152 0.02217 1.422 0.155
store_locationLower Manhattan -0.09043 0.02261 -3.999 6.35e-05 **x*
Signif. codes: O ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.” 0.1’ 7 1
Residual standard error: 2.947 on 104368 degrees of freedom

Multiple R-squared: 0.5138, Adjusted R-squared: 0.5138
F-statistic: 1.003e+04 on 11 and 104368 DF, p-value: < 2.2e-16

Summary of the multiple linear regression model:
- The model predicts Revenue based on transaction_qty,
product_category, and store_location.

Key observations:
1. transaction_qty has a strong positive effect on Revenue (Estimate
= 3.53399, p-value < 2e-16).

Each additional item purchased increases revenue by approrimately $3.53,
holding other variables constant.
2. product_category coefficients indicate varying impacts:

- Coffee beans category has the highest positive impact on revenue
(Estimate = 19.15172).

- Flavours negatively impacts revenue significantly
(Estimate = -4.23930).

- Branded products increase revenue constiderably (Estimate = 14.52939).

- Categories such as Drinking Chocolate, Loose Tea, and Packaged
Chocolate also contribute positively.
3. store_location:

- Lower Manhattan has a small megative impact on revenue compared to the
baseline location (Estimate = -0.09043).

- Hell's Kitchen does not show a statistically significant effect
(p-value = 0.155).

Model evaluation:
- Multiple R-squared: 0.5138. The model ezplains approzimately 51.38% of the
variance in revenue, which is moderate.

- Residual standard error: 2.947, indicating the average deviation of
predicted revenue from actual revenue.

- F-statistic: Very high (1.003e+04), with a p-value < 2.2e-16, indicating

12

the overall model is highly significant.

Interpretation:

— The model effectively captures the relationship between transaction

quantity, product categories, and revenue.

- Product categories have a strong influence on revenue, with significant
wvartability among categories.

- Store location has a minimal impact, suggesting revenue is more dependent
on product miz and quantity.

Predict on the test set
test_data$predicted_revenue2 <- predict(lm_multiple, newdata = test_data)
Comment on the prediction step:
- The predict() function ts used to generate predicted revenue values
(predicted_revenuel)

for the test dataset using the trained multiple linear regression model
(lm_multiple).
- This step incorporates the effects of all independent variables:
transaction_qty,

product_category, and store_location, as modeled in the training phase.

FHOW OO R R W™ W

Expected outcome:

— The predicted values will reflect the combined contributions of the

predictors

to estimate the Revenue for each transaction in the test dataset.

— These predictions will be evaluated against actual revenue values for
model performance assessment.

Evaluate model performance using predictions vs. actuals on the test set
ggplot(test_data, aes(x = Revenue, y = predicted_revenue2)) +

geom_point () +

geom_abline(slope = 1, intercept = 0, col = "red") +

ggtitle("Actual vs. Predicted Revenue (Test Data)") +

xlab("Actual Revenue") +

ylab("Predicted Revenue")

13

Actual vs. Predicted Revenue (Test Data)

40-

30-

Predicted Revenue

N
S

10-

100 200 300
Actual Revenue

Comment on the visualization:

— This scatter plot visualizes the comparison between actual revenue (z-azis)
and predicted revenue (y-azis) from the multiple linear regression model.

- The red diagonal line represents the tdeal scenario where predicted revenue
perfectly matches the actual revenue, t.e., all points should lie on

this line.

Observations:

- The majority of predictions closely align with the actual revenue values,
especially for lower revenue ranges.

- Some outliers or deviations can be observed, particularly for transactions
with higher actual revenue, suggesting potential limitations in model

accuracy

for extreme wvalues or unmodeled factors influencing revenue.

Purpose:

- This plot helps assess the quality of the predictions and highlights areas
for potential model timprovement, such as handling extreme values or

refining predictors.

Visualize the regression fit on the training data
ggplot(train_data, aes(x = Revenue, y = predict(lm_multiple,
newdata = train_data))) +
geom_point(aes(color = product_category)) +
geom_abline(slope = 1, intercept = 0, col = "blue") +
ggtitle("Training Data: Actual vs. Predicted Revenue") +
xlab("Actual Revenue") +

14

ylab("Predicted Revenue")

Training Data: Actual vs. Predicted Revenue

40-

30~

Predicted Revenue

N
S

10-

100 200 300
Actual Revenue

Comment on the visualization:

— This scatter plot represents the relationship between actual Tevenue

(z-azis) and predicted revenue (y-azis) on the training dataset.

- Different product categories are distinguished by colors, adding clarity
on how predictions wvary across categories.

- The blue diagonal line represents the tdeal match, where predicted wvalues
equal the actual revenue.

Observations:

- Many data points align well with the diagonal, espectally for smaller
revenue wvalues.

- A few outliers and deviations are noticeable, particularly for higher
revenue values.

- Certain product categories, such as "Coffee beans" (green), show higher
predicted values

compared to other categories, indicating their significant contribution
to revenue.

Purpose:

— This plot helps evaluate the model's performance on the training data,

indicating a good fit with some areas for improvement in handling extireme
values.

15

product_category

Bakery
Branded

Coffee

Coffee beans
Drinking Chocolate
Flavours

Loose Tea
Packaged Chocolate

Tea

Calculate MAE, MSE, and RMSE for Simple Regression (Test Set)
mae_simple <- mean(abs(test_data$Revenue - test_data$predicted_revenuel))
mse_simple <- mean((test_data$Revenue - test_data$predicted_revenuel) "2)
rmse_simple <- sqrt(mse_simple)

cat("Simple Regression (Test Set) - MAE:", mae_simple,
"MSE:", mse_simple,
"RMSE:", rmse_simple, "\n'")

Simple Regression (Test Set) - MAE: 1.29322 MSE: 15.6108 RMSE: 3.951051
Analysis of Simple Regression Error Metrics:

- MAE (Mean Absolute Error): 1.29322
Indicates the average magnitude of errors in the model's predictions.
On average, the predicted revenue deviates by approzimately $1.29 from
the actual revenue.

H R R W

- MSE (Mean Squared Error): 15.6108

Reflects the average squared difference between predicted and actual
revenues.

Larger errors are penalized more heavily due to squaring, emphasizing
significant deviations.

H R R W R

- RMSE (Root Mean Squared Error): 3.951051

Provides the error in the same units as the target wvariable (Revenue).
A higher RMSE suggests that while the model captures gemeral trends, %t
struggles with larger wvariances.

Observations:

- The error metrics suggest reasonable accuracy for simpler relationships
like transaction_qty.

- However, given the dataset's complezity (e.g., multiple categories and
locattons), a simple linear regression may not fully capture all patterns,
evident from relatively high RMSE.

Conclustion:

— The simple regression model provides a baseline but could benefit from
additional predictors for improved accuracy.

Calculate MAE, MSE, and RMSE for Multiple Regression (Test Set)
mae_multiple <- mean(abs(test_data$Revenue - test_data$predicted_revenue?2))
mse_multiple <- mean((test_data$Revenue - test_data$predicted_revenue?2) "2)
rmse_multiple <- sqrt(mse_multiple)

cat("Multiple Regression (Test Set) - MAE:", mae_multiple,
"MSE:", mse_multiple,

16

"RMSE:", rmse_multiple, "\n")

Multiple Regression (Test Set) - MAE: 0.8288278 MSE: 8.685382 RMSE: 2.947097

Analysis of Multiple Regression Error Metrics:

- MAE (Mean Absolute Error): 0.8288278

This indicates that, on average, the predicted revenue deviates by

approzimately $0.83 from the actual revenue.

This is a significant improvement compared to the simple regression model
(MAE = 1.29322).

- MSE (Mean Squared Error): 8.685382

The average squared difference between predicted and actual revenues is
reduced.

This tmplies the multiple regression model captures the wariability in

the data better than the simple regression model (MSE = 15.6108).

- RMSE (Root Mean Squared Error): 2.947097

The RMSE is lower, meaning the multiple regression model provides better
predictions with smaller deviations compared to the simple regression model
(RMSE = 3.951051).

Observations:

— The inclusion of additional predictors, such as product_category and

store_location, significantly tmproves model performance.

- Lower MAE, MSE, and RMSE wvalues suggest that the multiple Tegression

model better accounts for the complexzity in the data compared to the simple
regression model.

Concluston:

- The multiple regression model outperforms the simple regression model in
predicting revenue, demonstrating the importance of incorporating additional
explanatory variables.

Define bins for Revenue
bin_labels <- c("Low", "Medium", "High")

- bin_labels is a vector that defines labels for categorical bins,

such as "Low", "Medium", and "High".

— These labels will likely be used to categorize numerical data (e.g.,
revenue or quantity) into meaningful groups.

- Typically, these labels correspond to ranges of a numeric variable
divided into discrete bins.

Add small noise to avoid duplicate bin edges (if needed)
test_data$Revenue <- test_data$Revenue + runif(nrow(test_data),
-1le-6, le-6)
test_data$predicted_revenuel <- test_data$predicted_revenuel +
runif (nrow(test_data), -le-6, 1le-6)
test_data$predicted_revenue2 <- test_data$predicted_revenue2 +

17

runif (nrow(test_data), -le-6, 1le-6)

- Small random notise is being added to the Revenue, predicted_revenuel,
and predicted_revenue2 columns.

- This step is used to avoid potential issues with duplicate bin edges,
especially when categorizing numeric data into bins.

- The runif() function generates uniform random noise between -le-6

and le-6.

Purpose:

- Ensures that all wvalues are unique, which can help avoid errors during
binning or categorization processes.

- This is particularly useful when using functions like cut() or creating
histograms where duplicate edges can cause errors or misleading results.

Bin Actual Revenue in the Test Set
test_data$actual_bin <- cut(
test_data$Revenue,
breaks = unique(quantile(test_data$Revenue, probs = c(0, 0.33, 0.66, 1))),
labels = bin_labels,
include.lowest = TRUE

Bin Predicted Revenue for Simple Regression
test_data$predicted_binl_label <- cut(
test_data$predicted_revenuel,
breaks = unique(quantile(test_data$predicted_revenuel,
probs = c(0, 0.33, 0.66, 1))),
labels = bin_labels,
include.lowest = TRUE

Bin Predicted Revenue for Multiple Regresstion
test_data$predicted_bin2_label <- cut(
test_data$predicted_revenue2,
breaks = unique(quantile(test_data$predicted_revenue2,
probs = c(0, 0.33, 0.66, 1))),
labels = bin_labels,
include.lowest = TRUE

~—

- The code categorizes the Revenue, predicted_revenuel, and
predicted_revenue2 columns into bins (Low, Medium, High).

- The cut() function is used to divide the continuous values into
discrete bins based on quantiles.

- The quantile ranges are determined using probs = c(0, 0.33, 0.66, 1)
to split the data into three bins.

HOH O R R W

For Revenue:
- test_data$actual_bin: Bins the actual revenue into three categories
(Low, Medium, High) based on quantile values.

18

H oW W

#* R

H R R W R

#

For Simple Regression Predictions:
- test_data$predicted_binl_label: Bins predicted_revenuel using the same
quantile-based approach.

For Multiple Regresstion Predictions:

- test_data$predicted_bin2_label: Bins predicted_revenue2 similarly.
Purpose:

- This binning facilitates a comparative analysis of how well the predicted
bins match the actual revenue bins.

- Helps evaluate the model's performance mot just in numeric terms but in
terms of categorical accuracy.

Inspect binned data

head(test_datal, c("Revenue", "actual_bin", "predicted_revenuel",

"predicted_binl_label",
"predicted_revenue2", "predicted_bin2_label")])

Revenue actual_bin predicted_revenuel predicted_binl_label

6 3.000000 Low 3.471328 Medium

8 4.000000 Medium 6.242440 High

10 7.000000 High 6.242441 High

12 7.000000 High 6.242440 Medium

13 3.000000 Low 3.471328 Medium

14 3.100001 Low 3.471327 Low

predicted_revenue2 predicted_bin2_label

6 3.478051 Medium

8 6.215968 High

10 7.927295 High

12 6.215968 High

13 2.359999 Low

14 2.359998 Low

Binned data inspection:

Columns Exzplanation:

- Revenue: The actual revenue value from the test set.

- actual_bin: The bin (Low, Medium, High) assigned to the actual revenue
based on quantiles.

- predicted_revenuel: Predicted revenue from the simple regression model.
- predicted_binli_label: The bin (Low, Medium, High) assigned to the simple
regression predictions.

- predicted_revenue2: Predicted revenue from the multiple regression model.
- predicted_bin2_label: The bin (Low, Medium, High) assigned to the multiple
regression predictions.

Observations:

— Example Tow 6:

- Actual revenue is 3.000000 and falls into the Low bin (actual_bin).

- Simple regression predicted revenue ts 3.471328, binned as Medium.

- Multiple regression predicted revenue is 3.478051, also binned as

Medium.

- Example Tow 8:

19

H*

- Actual revenue is 4.000000, binned as Medium.
- Both simple and multiple regression models predicted values that fall
into the High bin.

H* W

Insights:

- In some cases (e.g., Tow 6), the predicted bins don't align with the
actual bin, indicating misclasstification.

- Multiple regression predictions (predicted_bin2_label) generally seem
closer to actual bins compared to simple regression.

R R R R

Create confusion matriz for Simple Regression (Test Set)
conf_matrixl <- table(test_data$actual_bin, test_data$predicted_binl_label)

Create confusion matriz for Multiple Regression (Test Set)
conf_matrix2 <- table(test_data$actual_bin, test_data$predicted_bin2_label)

Print evaluation scores
cat("Simple Regression Confusion Matrix:\n")

Simple Regression Confusion Matrix:

print(conf_matrixi)

##

Low Medium High
Low 7742 6129 892
Medium 6332 5536 2895
High 689 3098 11423

cat("Multiple Regression Confusion Matrix:\n")

Multiple Regression Confusion Matrix:

print (conf_matrix2)

##

Low Medium High
Low 12137 2588 38
Medium 2626 9220 2917
High 0 2955 12255

Confusion Matrices:

Simple Regression Confusion Matriz:
- Observations:

- The model tends to predict "Medium" more often (e.g., 6129 instances of
"Low" classtified as "Medium").
- There are significant misclassifications for the "Medium" bin, with

20

®*H W R

HORHORR R W™ W™ W

H W OH R R KRR

#

values spread across other bins.
- The "High" bin has the highest accuracy compared to others (11423
correct classifications).

Multiple Regression Confusion Matriz:
- Observations:

- The model predicts "Low" for 12137 actual "Low" wvalues, showing strong
performance for this bin.

- However, some actual "High" values are predicted as "Medium" (2955
instances) .

- The "High" bin predictions are more accurate, with 12255 correctly
classified cases.

Overall Comparison:

- Multiple regression shows better separation between bins, especially for
the "Low" and "High" categories.

- Simple regression misclassifies more instances, particularly around the
"Medium" category.

- The confuston matriz for multiple regression indicates overall better
performance in revenue bin classification.

Convert the confustion matrices to data frames

conf_matrix_dfl <- as.data.frame(as.table(conf_matrixl))
conf_matrix_df2 <- as.data.frame(as.table(conf_matrix2))

#

Rename columns for readability

colnames (conf _matrix_dfl) <- c("Actual", "Predicted", "Count")
colnames (conf_matrix_df2) <- c("Actual", "Predicted", "Count")

#

B W R R

B W R R

#

Code Exzecution:

Step 1: Convert confusion matrices to data frames

- The as.data. frame(as.table(conf matrizl)) function converts the confusion
matriz into a data frame format.

- This is useful for further analystis or visualization.

Step 2: Rename columns for better readadbility

- The colnames function renames the columns to "Actual", "Predicted”,
and "Count".

- This ensures clarity when working with the data frames.

Plot the heatmap for Simple Regression

ggplot(conf_matrix_dfl, aes(x = Predicted, y = Actual, fill = Count)) +
geom_tile(color = "white") +
geom_text(aes(label = Count), color = "white") +

scale_fill_gradient(low = "blue", high = "red") +
ggtitle("Simple Regression: Confusion Matrix (Test Data)") +
xlab("Predicted Revenue Bin") +

ylab("Actual Revenue Bin") +

theme_minimal ()

21

Simple Regression: Confusion Matrix (Test Data)

High

Count

9000
Medium
6000

3000

Actual Revenue Bin

Low Medium High
Predicted Revenue Bin

The confusion matrixz heatmap visualization for the Simple Regression model
shows:

- The majority of correct predictions are in the "High" actual revenue bin,
with 11,423 correctly predicted as "High."

- There is noticeable confusion in predicting "Low" and "Medium" bins, as
many "Medium" actuals were classified as "Low" (6,332).

- While the model captures the "High" revenue bin effectively, the scatter
in the "Low" and "Medium" bins highlights a limitation in handling mid-range
revenue.

H R R R R R R R R

Plot the heatmap for Multiple Regression

ggplot(conf_matrix_df2, aes(x = Predicted, y = Actual, fill = Count)) +
geom_tile(color = "white") +
geom_text (aes(label = Count), color = "white") +
scale_fill_gradient(low = "blue", high = "red") +
ggtitle("Multiple Regression: Confusion Matrix (Test Data)") +
xlab("Predicted Revenue Bin") +
ylab("Actual Revenue Bin") +
theme_minimal ()

22

Multiple Regression: Confusion Matrix (Test Data)

High

Medium

Actual Revenue Bin

Low

Low Medium High
Predicted Revenue Bin

Observations from the Multiple Regression confusion matrixz heatmap:

- The model performs well for the "High" revenue bin, correctly predicting
12,255 instances.

- There is a significant number of misclassifications in the "Low" revenue
bin, with 12,137 being wrongly classified as "Low."

- The "Medium" revenue bin has relatively balanced predictions compared to
"Low" and "High," with 9,220 correctly classified.

— The lack of precision for "High" and "Low" bins might indicate the need
for better features or model complexity.

Total correct predictions (sum of diagonal elements)
correct_predictionsl <- sum(diag(as.matrix(conf_matrix1)))
correct_predictions2 <- sum(diag(as.matrix(conf_matrix2)))

Total predictions (sum of all elements)
total_predictionsl <- sum(conf_matrix1)
total_predictions2 <- sum(conf_matrix2)

Calculate accuracy for each model
accuracyl <- correct_predictionsl / total_predictionsl
accuracy2 <- correct_predictions2 / total_predictions2

Display accuracies

cat("Accuracy for Simple Linear Regression (binned):",
round(accuracyl * 100, 2), "%\n")

23

Count
12000

9000
6000
3000

Accuracy for Simple Linear Regression (binned): 55.22

cat("Accuracy for Multiple Linear Regression (binned):",
round(accuracy2 * 100, 2), "%\n")

Accuracy for Multiple Linear Regression (binned): 75.13 %

Analystis of Accuracy:

- The accuracy for Simple Linear Regression (binned) is 55.227.

- The accuracy for Multiple Linear Regression (binned) is significantly

higher at 75.13)%.

Observations:

1. The Multiple Linear Regression model outperforms the Simple Linear

Regression model by a considerable margin in terms of binned accuracy.

2. The <improved accuracy suggests that including additional features like

product_category and store_location has positively contributed to the

prediction performance.

Insights:

- The additional predictors in the Multiple Regression model capture more

vartability in the revenue data, leading to better classification.

— The relatively lower accuracy for Simple Regression indicates that revenue
is influenced by factors beyond just transaction quantity.

- Multiple Regression still shows Toom for improvement in handling edge cases
and extreme values, as seen in the confusion matrices.

Calculate the difference in accuracy between models
accuracy_difference <- accuracy2 - accuracyl
formatted_accuracy_difference <- paste(round(accuracy_difference * 100,

2) s ||%n)

Display accuracy difference
cat("Accuracy difference between models (binned):",
formatted_accuracy_difference, "\n'")

Accuracy difference between models (binned): 19.92 %

Analysis of Accuracy Difference:
- The accuracy difference between the Multiple Linear Regression and Simple
Linear Regresstion models (binned) is 19.927.

H W

Observations:

1. This significant improvement highlights the importance of including
additional predictors like product_category and store_location in the
model.

2. The difference suggests that revenue cannot be effectively predicted
solely by transaction_qty, as other factors contribute substantially.

H R R R KRR

24

B OWHOR R R

H*

**

H R ORE R R W™ R R

RO OR R O™ W™ W

#

Insights:

- The accuracy improvement underscores that a multivariate approach is
better suited for capturing the complex relationships in the data.

- By including diverse predictors, the Multiple Linear Regression model
15 better at distinguishing revenue categories.

Overall Analysis of the Work Done:

Data Preprocessing:
- The dataset was cleaned and transformed effectively:

- Missing values were checked and confirmed to be absent.

- Revenue column was converted to numeric by removing the "$" symbol.

- Date formatting and factor converstion for categorical wvariables
(product_category and store_location) were performed correctly.

- No significant preprocessing issues were detected, ensuring data quality
for analysts.

Ezploratory Data Analysis:
- Visualizations provided insights into relationships within the data:

- Revenue vs. Transaction Quantity: Demonstrated variability in revenue by
product categories.

- Revenue Distribution by Store Location: Boxplots highlighted revenue
variations across store locations.
- Observations revealed patterns such as higher revenues for certain
categories like Coffee beans and Branded products.

Model Development:

Simple Linear Regression:

#
#
#
#
#

- A model was developed using transaction_qty as the sole predictor.
- Results showed a relatively low R? (0.1268), indicating limited
predictive power.

- Accuracy (binned): 55.227, suggesting that the model struggles to
generalize revenue predictions without additional features.

Multiple Linear Regression:

#
#

#
#
#

H R OR R KRR

H W

- The model <incorporated transaction_qty, product_category, and
store_location.

- R? improved significantly to 0.5138, indicating a better fit to the data.
- Accuracy (binned): 75.137, demonstrating marked improvement in
predictive performance compared to the simple model.

Evaluation Metrics:
- Multiple Regression outperformed Simple Regression in terms of MAE, MSE,
RMSE, and binned classification accuracy:

- MAE decreased from 1.29 (Simple) to 0.83 (Multiple).

- RMSE decreased from 3.95 (Simple) to 2.95 (Multiple).

- Binned accuracy tmproved by 19.92].

Confusion Matriz Analysis:
- Heatmaps visualized prediction accuracy in terms of binned revenue

25

H*

categories.
- Multiple Regression demonstrated a much stronger ability to classify high
and low revenue bins compared to Simple Regression.

®* R

Key Insights:

1. transaction_qty alone is insufficient to predict revenue accurately.
2. Incorporating categorical variables (product_category and

store_location) significantly enhances predictive power.

3. The models indicate revenue trends:

- Products like Coffee beans and Branded generate higher revenue.

- Locations like Lower Manhattan are associated with slightly lower
revenue compared to others.

#it# ##H#H #it#
Time Series Analysis on Coffee Transactions Dataset
HAMAD A. ALMAZROUEI - 201912368

#H# HAHAH #it#
- Step 1: Load and Prepare Data ————-

Read the dataset
coffee_data <- read.csv("/Users/hamad/Desktop/ZU/Fall 2024/Data Science - C/Assignment 3/Files/Coffee T

Convert transaction_date to Date type
coffee_data$transaction_date <- as.Date(coffee_data$transaction_date,
format = "%d/%m/%Y")

Convert Revenue to numeric after removing the '$' symbol
coffee_data$Revenue <- as.numeric(gsub("\\$", "",
coffee_data$Revenue))

Formatting 'transaction_date'

- The column 'transaction_date' is successfully converted to Date type
using the specified format "%d/Am/}Y".

- If dates are incorrectly formatted in the file, this step could throw
errors (e.g., NAs introduced by coercion). It is essential to wvalidate the
date format in the original dataset.

HOW R R R R

Converting 'Revenue’ to numeric

- The '$' symbol is removed using gsub("\\$", "", coffee_data$Revenue),
and the column is converted to numeric.

- If any non-numeric values exist in the 'Revenue’ column after symbol
removal, they will be coerced to NA. Check for such issues using
#sum(is.na(coffee_data$Revenue)).

B W OR R R

Summarize daily revenue

daily_revenue <- coffee_data 7>/
group_by(transaction_date) %>/
summarise (Revenue = sum(Revenue))

The code calculates the total revenue for each transaction date. Here's a
breakdoun:

26

1 : Grouping data by transaction date

- The dataset is grouped by transaction_date using

group_by (transaction_date).

- This ensures that all rows with the same date are treated as a
single group for summarization.

B OWHOR R R

2 : Summing up revenue

- The summartise(Revenue = sum(Revenue)) function calculates the total
revenue for each group (i.e., each date).

- The result is a summarized dataset with two columns: transaction_date
and Revenue.

R R KRR

Rename columns for Prophet compatibility
prophet_data <- daily_revenue 7>/
rename(ds = transaction_date, y = Revenue)

The code prepares the data for use with the Prophet forecasting model by
renaming the columns as Tequired.

Renaming columns

- transaction_date is renamed to ds, representing the date or time
component.

- Revenue is renamed to y, representing the target variable

(the wvalue to forecast).

- Step 2: Fit a Prophet Model ----—-
Create and fit the Prophet model
prophet_model <- prophet(prophet_data)

Disabling yearly seasonality. Run prophet with yearly.seasonality=TRUE to override this.

Disabling daily seasonality. Run prophet with daily.seasonality=TRUE to override this.

This step initializes a Prophet model and fits it to the prophet_data.

Step: Fitting the Prophet Model

- The prophet() function is used to create and train the forecasting model.
— The prophet_data dataset is passed as input, containing:

- ds: Date column (time series indez).

- y: Revenue column (target wvariable).

Process:

- Prophet automatically detects seasonality (daily, weekly, yearly) and trends.
- It decomposes the time serties into components for trend and seasonality.
Outputs:

— The model object (prophet_model) is created.

- The fitted model can be used to make forecasts.

- Step 3: Forecast Future Revenue ————-

Create a dataframe for future dates

27

future <- make_future_dataframe (prophet_model,
periods = 30) # Eztend for 30 days
forecast <- predict(prophet_model,
future)

This step extends the dataset for forecasting future revenue and generates
predictions using the Prophet model.

Creating Future Dataframe

- The make_future_dataframe() function creates a dataframe for the
#next 30 days.

- prophet_model: The trained Prophet model.

- periods = 30: Adds 30 future days to the dataset.

Generating Forecasts

— The predict() function is used to forecast revenue (y) for the
#future dates.

- forecast contains:

- ds: Dates for historical and future time periods.

- yhat: Predicted revenue values.

- yhat_lower and yhat_upper: Uncertainty intervals for predictions.
- Additional columns for trends and seasonality components.

Outputs:
- future: A dataframe with historical and future dates.
- forecast: A dataframe with predictions and decomposed components.

- Step 4: Visualize Forecast —-----

Plot the forecast

plot(prophet_model, forecast) +
ggtitle("Revenue Forecast with Prophet") +
xlab("Date") +
ylab("Revenue")

28

Revenue Forecast with Prophet

6000~

Revenue

4000~

2000~

Date

The visualization shows the revenue forecast generated using the Prophet model.
Analysis of the Forecast:

- The blue line represents the predicted revenue (yhat) over time.

- The shaded area (confidence interval) tindicates the model's uncertainty
range (yhat_lower and yhat_upper).

- The black dots represent the actual revenue values from the dataset.

Observations:

— The model effectively captures the increasing trend in revenue over time.
- The confidence intervals widen as we move further into the future,

reflecting increased uncertainty.

- The forecast aligns well with the historical data, indicating that the

model has learned patterns effectively.

Plot components (trend, weekly, yearly seasonality)
prophet_plot_components (prophet_model,
forecast)

29

7000 -

6000~

5000~

trend

4000-

3000-

60-

weekly

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
Day of week

Decomposition Analysis:
- This visualization breaks down the forecasted revenue into its components:
Trend and Weekly seasonality.

Observations:

Trend:

— The top plot shows a steadily increasing trend in revenue from January to
July.

- This indicates a consistent growth pattern inm transactions or overall sales
over time.

Weekly Seasonality:
— The bottom plot highlights weekly patterns in revenue:

- Monday has the highest revenue, likely reflecting a strong start-of-week
demand.

- Revenue drops significantly on Tuesday, with a steady but low performance
through midweek.

- Revenue begins to pick up on Friday and peaks again on Saturday.

- Sunday sees a moderate dip in Tevenue.

Business Insights:

- Monday marketing efforts should be leveraged to capitalize on high

demand.

- Efforts to boost sales on Tuesdays and midweek can be explored, such as

spectal offers or promotions.

- Saturday campaigns can enhance already strong weekend sales.

- The steady growth trend suggests expanding operations or inventory to meet

30

growing demand.

- Step 5: Evaluate Model -----

Subset actual vs predicted values

evaluation <- forecast %>%
select(ds, yhat) %>%
left_join(prophet_data, by = "ds") %>%
rename (Predicted = yhat, Actual = y)

Calculate error metrics
evaluation <- evaluation 7>
mutate (Absolute_Error = abs(Actual - Predicted),
Percentage_Error = (Absolute_Error / Actual) * 100)

Calculate Mean Absolute Percentage Error (MAPE)

mape <- mean(evaluation$Percentage_Error, na.rm = TRUE)
cat("Mean Absolute Percentage Error (MAPE):", round(mape, 2), "%\n")

Mean Absolute Percentage Error (MAPE): 8.44 7

Model Ewaluation Results:
- Subsetting the actual vs. predicted values enabled a direct comparison of
Prophet's forecasts to the true wvalues.

Key Error Metrics:

- Absolute_Error: This provides the absolute deviation between actual
and predicted revenue for each date.

- Percentage_Error: The percentage of error relative to the actual
revenue, providing a scale—invariant measure of performance.

B OH W R R

MAPE (Mean Absolute Percentage Error):

- MAPE is calculated as the mean of the percentage errors, excluding any
missing values (na.rm = TRUE).

- It indicates the average percentage deviation of predictions from actual
values.

RO R R

Insights:

- A lower MAPE wvalue reflects higher prediction accuracy.

- The evaluation step ensures that the model's performance ts quantified
and interpretable.

B R "R

- Step 6: Insights —-———-

Print the forecasted values

head(forecast)

ds trend additive_terms additive_terms_lower additive_terms_upper
1 2023-01-01 2328.354 -29.77553 -29.77553 -29.77553
2 2023-01-02 2340.312 77.83409 77.83409 77.83409
3 2023-01-03 2352.269 -26.82312 -26.82312 -26.82312
4 2023-01-04 2364.227 -14.27920 -14.27920 -14.27920
5 2023-01-05 2376.185 -17.18597 -17.18597 -17.18597

31

6 2023-01-06 2388.143 -14.42398 -14.42398 -14.42398

weekly weekly_lower weekly_upper multiplicative_terms

1 -29.77553 -29.77553 -29.77553 0

2 77.83409 77.83409 77.83409 0

3 -26.82312 -26.82312 -26.82312 0

4 -14.27920 -14.27920 -14.27920 0

5 -17.18597 -17.18597 -17.18597 0

6 -14.42398 -14.42398 -14.42398 0

multiplicative_terms_lower multiplicative_terms_upper yhat_lower yhat_upper
1 0 0 1749.940 2815.363
2 0 0 1886.615 2969.367
3 0 0 1812.374 2882.135
4 0 0 1818.953 2873.773
5 0 0 1828.002 2915.628
6 0 0 1856.606 2904.288
trend_lower trend_upper yhat

1 2328.354 2328.354 2298.578

2 2340.312 2340.312 2418.146

3 2352.269 2352.269 2325.446

4 2364.227 2364 .227 2349.948

5 2376.185 2376.185 2358.999

6 2388.143 2388.143 2373.719

Plot actual vs predicted revenue

ggplot(evaluation, aes(x = ds)) +
geom_line(aes(y = Actual, color = "Actual Revenue")) +
geom_line(aes(y = Predicted, color = "Predicted Revenue")) +
ggtitle("Actual vs Predicted Revenue") +
xlab("Date") +
ylab("Revenue") +
scale_color_manual (values = c("blue", "red"))

Warning: Removed 30 rows containing missing values or values outside the scale range
(‘geom_line() ‘).

32

Revenue

**

H W R R

FHORHOR R R W OB W R R HRR

H*

B W R R R

Actual vs Predicted Revenue

-
"W‘v "

<

2000-

Date
Analysis of Actual vs Predicted Revenue Plot:

Overview:

- The plot compares the actual revenue (in blue) with the
predicted revenue (in red) over time.

- It visually demonstrates the accuracy of the forecasting model.

Key Observations:

1. Trend Alignment: The predicted revenue follows the overall trend of
the actual revenue closely, which indicates the model captures long-term
growth effectively.

2. Short-term Deviations: Some devtiations are observed where the actual
revenue fluctuates more dynamically than the predicted values. This %s
expected due to the model smoothing seasonal vartiations.

3. Model Performance:

colour
— Actual Revenue

—— Predicted Revenue

- The alignment between the lines reflects a reasonably accurate prediction.

- Occasional divergence (e.g., spikes in actual revenue not captured by
the predicted line) suggests areas where the model could be further tuned,
possibly by adding external factors.

1. Objective and Approach:

- The primary goal was to forecast datly revenue for a coffee shop chain
using Facebook's Prophet model.

- Prophet was chosen for its capabtility to handle seasonality, trends, and
holidays in time series data with minimal parameter tuning.

33

RO R R W W W OR R R R W™ RRRR

RO R R W W OR R R R W OB R R W™

H oW R R R R

B OWOR R KRR

2. Steps Performed:
- Data Preparation:

- Transaction data was grouped by day to calculate daily revenue.

- Columns were renamed to fit Prophet's ds (date) and y (revenue)
format.
- Model Training:

- The model was trained on historical daily revenue data.

- Default settings of Prophet were used, allowing tt to capture trends
and weekly seasonality.
- Forecasting:

- A forecast for 30 future days was generated using the trained model.

- Confidence intervals (upper and lower bounds) were included to reflect
uncertainty.
- Visualization:

- The forecasted revenue was visualized against actual revenue, showing
trend alignment.

- Prophet's decomposition plot revealed the model's understanding of
overall trend and weekly seasonality.

3. Key Insights:
- Trend Analysis:

- The model effectively captured the increasing rTevenue trend over time,
indicating robust forecasting.

- This trend reflects growing sales or customer demand, which aligns with
the data's behavior.
- Seasonality:

- Weekly seasonality was observed, with higher revenue on Mondays and
Saturdays, and dips on Tuesdays and mid-week.

- The seasonal pattern likely reflects customer behavior, such as weekend
shopping or Monday morning rushes.
- Forecast Accuracy:

- The Mean Absolute Percentage Error (MAPE) was calculated to evaluate
the model’s performance.

- A low MAPE <indicates that the model predictions are close to actual values.

- Visualization of Accuracy:

- The "Actual vs Predicted Revenue" plot demonstrated strong alignment
between actual and forecasted revenue.

- Some short-term fluctuations in actual revenue were not fully captured,
a limitation of Prophet's smoothing process.

4. Strengths of the Prophet Model:

- Ease of Use: Minimal manual tuning was required.

- Interpretability: Components such as trend and seasonality are

explicitly visualized, making it easy to understand what drives predictions.
- Flezibility: Handles missing data, outliers, and irregular time series
data effectively.

5. Limitations Observed:
- Short-term Fluctuations:
- While the model captures the long-term trend well, short-term spikes in
revenue are not reflected in the forecast.
- Ezternal Factors:
- The model does mot constider holidays, promotions, or external factors,

34

which could enhance predictive accuracy.
- Potential Overfitting or Underfitting:

- If more external variables (e.g., holidays, marketing campaigns) were
included, predictions might improve.

B W R R

6. Conclusion:

- Prophet provided a reliable, interpretable, and easy-to-implement solution
for revenue forecasting.

— The model performed well for long—term trend prediction and seasonal

variation analysis, but incorporating additional factors could improve
#short-term accuracy.

- The insights derived from the analysis can be used for decision-making,

such as inventory planning, staffing, and marketing strategies.

oW W

35

