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In this Supplementary Information, we provide further notes and extended results to support and
elucidate the findings in the main text. We describe in detail how our experiments were conducted
on IBM and discuss the impact of different sources of error that might cause deviations from the
expected results. We describe the derivation of the first-order nested commutator expansion of
the adiabatic gauge potential for the transverse-field Ising model. We also provide a step-by-step
derivation of the cumulants of the defect number distribution in the fast-quench limit. Finally, for
completeness, we discuss the time evolution of the cumulants, which in the main text are only shown
at the final time.

CONTENTS
I. Digital quantum simulation on IBM hardware 1
II. Implementation errors 2
A. Trotter errors 2
B. Hardware errors 4
III. First-order nested commutator calculation 4

IV. Analytical results for fast quenches in the 1D chain 5
A. Quench without CD 5

B. Quench with first-order CD expansion 6

1. Variational coefficient of the first-order CD term 6

2. Solution of the time-dependent Schrédinger equation 7

V. Cumulants as functions of instantaneous time 8

References 9

I. DIGITAL QUANTUM SIMULATION ON IBM HARDWARE

An important aspect of preparing and running quantum circuits on hardware is to transpile the required quantum
operations according to the corresponding native gate sets provided by the platform. These typically consist of a
universal gate set that contains several one-qubit gates and a single two-qubit entangling gate. In our experiments, we
used the IBM_FEZ and IBM_MARRAKESH platforms, gate-based quantum computers composed of 156 superconducting
qubits under a heavy-hexagonal coupling map. Their native gate set is composed of
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FIG. S1. Schematic of the IBM_FEZ and IBM_MARRAKESH 156-qubit coupling maps. Three depth-one layers suffice
to realize the two-body interactions between all neighbor pairs for simulating the heavy-hexagonal lattice, finding an optimal
circuit decomposition for each Trotter step.

with CZ = diag(1,1,1,—1) as an entangling gate. In addition to them, IBM has recently introduced the fractional
gates R..(0) = e~"%0%1/2 (with 0 < 6 < 7/2) and R, (#) = e~*X/2 [S1] in their Heron-based processors.

To mitigate the impact of errors coming from noisy hardware on our results, we employed the as-late-as-possible
scheduling method as an error suppression technique. It strategically introduces delays in the circuit to maximize
the time that each qubit remains in its ground state, which may help improve the outcome fidelity. For the heavy-
hexagonal lattice, an optimal circuit decomposition can be found relying on the graph coloring theorem. In particular,
for each Trotter step, it is possible to reduce all the two-body terms coming from equations (2) and (4) in the main
text into a depth-three block using the circuit decomposition shown in Fig. S1.

II. IMPLEMENTATION ERRORS
A. Trotter errors

In this section, we analyze various sources of error that can lead to deviations between experimental results and
expected outcomes. First, let us consider the Trotter error. We implement a first-order Trotter decomposition of the
continuous evolution governed by H(\) = H(A) + AA,. For each Trotter step m = 0,..., M, the quantum circuits
realize a product of the two unitaries

Um(6t) = U (st)U™(6t), (52)

Um(5t) = o0t/ T-29 01 (Am) 2 ; ) ﬁZje—iat/TagJal(Am) i ZY, (S3)
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FIG. S2. Mean density of defects measured at the final evolution time, with and without CD, obtained by MPS
simulations of the quantum circuits with MIMIQ [S2]. The colored markers denote the circuit simulations that contain
Trotter errors, while the solid and dashed black lines show reference MPS simulations of the time evolution with negligible
errors. For a square lattice of size 4 x 4, we simulate a circuit with different Trotter decompositions: a, Uy = Uf"U;" and
b, Usa = U;"U;". In both, Uz is given by equation (S3). We use varying time steps 6t = 0.1/J,0.2/J,...,0.5/J as indicated
by the color gradients. The blue-shaded circles correspond to the circuits without CD and the red-shaded squares to those
with CD. ¢, The markers show the circuit simulation results for a 156-qubit heavy-hexagonal lattice with the decomposition

wq = Uf'U;", corresponding to Fig. 3b in the main text. The time step is varied here in the same way as in Fig. 3b: 6t = 0.1/J
for the data points up to 7' = 0.5/J and for larger T', the number of steps is fixed to 5 so that dt increases. The deviations
from the reference solution due to Trotter errors accumulate with increasing T'.

Here, A\, = mdt, A = 1/T,
Ulm((;t) _ 67i6t-(17)\,,L)Hi’ U}”(ét) _ efiét-)\me’ (84)

and the initial and final Hamiltonians are H; = —g )", X;, and Hy =—-J E<i,j> ZAlZA] The operators U} (4t) and

(0t) correspond to digitized annealing and the counterdiabatic (CD) term, respectively. To assess the errors
introduced by the first-order Trotter decomposition, we analyze the mean defect density k1 in a square lattice of size
4 x4 as a representative case. Figure S2 shows k1 as a function of the total evolution time for various values of the time
step dt. The data indicated by the markers is obtained via matrix product state (MPS) simulations of the quantum
circuit implementing the digitized time evolution, performed with the MIMIQ simulator [S2]. As a reference, Fig. S2
shows the results of MPS simulations using the time-dependent variational principle (TDVP) [S3, S4], with 6t = 0.002,
a truncation cutoff of 1072%, and a maximum bond dimension of x = 200, for which & is converged within an accuracy
given by the linewidth in the plot.

Figure S2 illustrates how the Trotter errors in the quantum circuits lead to deviations in the defect density with
respect to the reference values. Although the scaling of the Trotter error with ¢ is independent of the order in
which the terms within each time step are applied, the magnitude and sign of the deviations may depend on this
ordering (see also Fig. 1c of the main text). In Fig. S2a, we use the decomposition U = vyt to implement the
digitized annealing term, while in Fig. S2b, we use the opposite order U]}, = U"U". We set Ul as in equation (S3)
in both cases. We find that the magnitude and sign of the deviations differ significantly in these two cases: For
digitized annealing without CD (blue-shaded circles), the Trotter errors lead to a reduction of the mean defect density
in Fig. S2a whereas in Fig. S2b, they lead to an increase with respect to the reference solution. For the counterdiabatic
evolution (red-shaded squares), in panel a, the deviations occur in either direction depending on §¢. In panel b, on
the other hand, the deviations are only towards larger defect densities, and the magnitude of the deviations is smaller
than in panel a. These differences have consequences for the experimental data reported in Fig. 3 of the main text:
The Trotter decomposition U, = U7*U;™ is used in all data sets other than the digitized annealing results in Figs. 3¢
and d, where we instead use Uy = U;"U;". We observe that the small deviations of £; from the reference solution are
toward larger values in these experiments, while in Figs. 3b, the experimental x; obtained by digitized annealing is
slightly below the reference line for 7' S 2/J. For the CD evolution, we only observe deviations towards larger defect
densities.

In all cases, the circuit simulation results approach the reference lines for decreasing dt. However, increasing t
leads to a reduction in the depth of the circuit, since fewer unitary operations are required in the decompositions
given by equations (S3)—(S4). This reduction is advantageous for experimental implementations, as it significantly
mitigates gate errors. Thus, determining an optimal dt is crucial to effectively balance Trotter errors and gate errors.
In Figs. 3c and d of the main text, this balance is carried out using larger §t values in larger T. This reduces gate
errors, but may be a key factor that contributes to the observed increase in the mean defect density as T" increases.
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FIG. S3. Probability per qubit of getting a zero after sampling 20000 times the CD-assisted 100-qubit linear
chain. a, Results using T' = 0.1/J (one Trotter step). b, Results using T" = 1/J (three Trotter steps). For both plots, qubit
indices are sorted from largest to smallest Py values and dashed lines indicate the maximum and minimum values of Pp.

We also simulate the quantum circuit implementing the time evolution of the heavy-hexagonal lattice, using the
same Trotter steps as in Fig. 3b of the main text, to quantify the Trotter error present in the quantum simulation.
The data from a MIMIQ simulation of the quantum circuit is shown in Fig. S2c¢ together with the MPS reference
solution, which is the same as in Fig. 3b. The deviations due to the Trotter error increase as T' increases as expected.
The results in Fig. S2 suggest that the systematic shift observed in the experimental data for CD evolution, seen
in Fig. 3 of the main text, is not primarily caused by Trotter errors at small T' but rather stems from hardware noise.
Furthermore, it is important to note that deviations arising from Trotter errors and hardware noise may shift the
results in opposite directions, potentially leading to a partial cancellation of errors.

B. Hardware errors

Another significant source of error in our results arises from the platform itself, due to gate and measurement errors,
short coherence times of the qubits, and other factors. Their impact can be quantified by studying the probability
of measuring a zero as an outcome, Py, among all samples taken in our experiments. While for an ideal circuit
implementation, we would expect a uniform distribution, where the probability of getting either a zero or a one is
equal, qubits with shorter coherence times and bit-flip errors may return different results. In Fig. S3, we perform this
study for the CD-assisted evolution of a 100-qubit linear chain at times T' = 0.1/J (one Trotter step) and T' = 1/J
(three Trotter steps), corresponding to results in Figs. 2a and 3a of the main text. It can be clearly seen that for
three Trotter steps, with a larger circuit depth and a larger number of gates, the probability distribution is further
from the ideal uniform distribution in comparison to a single step.

IIT. FIRST-ORDER NESTED COMMUTATOR CALCULATION

The adiabatic gauge potential (AGP) satisfies the equation [OyH + i[Ax, H], H] = 0. Solving this equation has

been shown to be equivalent to minimizing the action Sy(Ay) = Tr GJI\G |, where G is the conserved operator

Gy = O\H +i[A\, H]. (S5)

This minimization can be performed within a limited subset of operators chosen from the Krylov space obtained by
repeatedly applying the Liouvillian £ = [H, -] onto 9\H [S5], resulting in the ansatz of equation (3) in the main text.
To solve the first-order nested commutator expression for the AGP, we define the operators

Oo=0\H, O)=[H, 0, O,=][H, O (S6)

The first-order AGP is then expressed as A%\ = ial(A)Ol. ‘We use a variational method to find the coefficient a7 € R:
We minimize the action Sy (A}) = S; = Tr (GJ{Gl) [S6], where Gy = Oy H +i[A}, H] = O+ a1 0,. The minimization

condition requires

051

G =2 (0104) + 201 T (050,) =0, (87)



which implies

Tr (0101)
o] = — PN (88)
T (050,
We can now evaluate aq for the TFIM. For the Hamiltonian
N
HQO) =—(1=A)gY X, =AY Z:Z;, (S9)
j=1 (3,5)
we have
A N A A A A A~ A
Oy = gZXj IS 7,7, 0y = —2ig) Y YiZ;, (S10)
j=1 (4,5) (4,9)
from which we compute O, and obtain the AGP as
A%\ =2gJo (/\) ()A/lZAJ + AjZi> . (Sll)

When equation (S8) is evaluated for a one-dimensional chain of length N, with open boundary conditions, we get

(V-1
T 16g2(N — 1)(A — 1)2 + 4J2[4(N — 1) — 3]A2°

() = (512)

A general formula for «; is found in equation (S20) of ref. [S7], and results in more complicated expressions that we
use for the two-dimensional geometries.

IV. ANALYTICAL RESULTS FOR FAST QUENCHES IN THE 1D CHAIN

In this section, we provide an exact solution of the cumulants of the number of defects in the 1D transverse-field
Ising model. This extension of ref. [S8] from the Kibble-Zurek regime to sudden quenches is discussed in ref. [S9] for
finite-time annealing, while the derivation in the case of counterdiabatic dynamics has not been presented in previous
literature.

A. Quench without CD

We obtain the solution of the 1D transverse-field Ising model for periodic boundary conditions. We verify, by
computing the cumulants numerically using MPS, that the difference due to open boundary conditions is negligible for
the system size considered here. Following a Jordan-Wigner transformation to the free-fermion basis (see refs. [S10,
S11] for a derivation), the Hamiltonian H(A) of equation (1) in the main text is expressed as the direct sum of
independent two-level systems (TLSs),

H(\) = ZIE;TCkak, (S13)
k>0
where
Hi =2[(1 - \N)g— AJcos(ka)] Z + 2\ J sin(ka) X, (S14)
and A = A(t) = t/T is the linear scheduling function. In the following, we set the lattice spacing to a = 1. The operator
P = (ék,éT_ k)T is a vector of the annihilation ¢, and creation éT_ . operators for fermions of quasimomentum =+k,
where k = £, %ﬂ, ey (7r — %) These momenta correspond to the subspace with an even number of fermions, which

is consistent with the initial state for even N. We denote the Pauli matrices by X, Y, Z. The cumulants are obtained
from the time-evolved wave function at the end of the process at t = T.



The time evolution of the free-fermion system can be solved for each momentum state independently so that it
decomposes into the time evolutions of independent TLSs [S12]:

i0, (i;) = Hy (i;) . (S15)

Momentum indices are omitted here for brevity. The initial state, ground state of the initial Hamiltonian [equation (1)],
is given by @1 = 0 and |p2| = 1. With the time-evolved components, one can express the excitation probabilities
within each TLS by projecting the time-evolved states onto the excited state of the final Hamiltonian,

Hy(T) =2J <_ cos k Sink) . |BS(T)) = (Sm%> . (S16)

sink cosk Ccos 5

Thus, the excitation probability of the k-th state is given by

2

k k
sin — p1(T') + cos = wao(T)

. . (S17)

Pk =

The statistics of the defect formation can be described in terms of independent Bernoulli trials [S8, S13], where
a defect is formed in momentum state k& with probability py. This probability equals the expectation value of the
number of defects k1 in momentum state k. The expected total number of defects is therefore given by the sum of
all probabilities, k1 = ), k1,5 = Y, Pk- The cumulants satisfy the recursion relation

dk k
Kgk = Pr(1 — pr)—2=. 518
ok = Pr(1 —pk) o (518)
Taking the limit ), o fx — Q% Jo f(k)dk, where Q) = 7/N, we find the cumulants of the defect number distribution
as

o= / dk py. (819)
™ Jo
N s

Ko = —/ dk pi(1 — pg), (S20)
™ Jo
N s

g — ?/ dkpr(1 — po) (1 — 2p1). (s21)
0

We solve the cumulants as functions of the total quench time T' by integrating numerically Eqgs. (S19)—(S21).
For fast quenches, the leading-order behavior is captured by the sudden quench limit 7' — 0, in which the final
state is identical to the initial one up to a phase factor, leading to the excitation probability

k
pr = cos® 3 (S22)

Substituting this into Egs. (S19)—(S21) produces the simple expressions k1 = N/2, ko = N/4, and k3 = 0 for
the sudden-quench cumulants. The number of defects is connected to the defect density as Ndef = Nnger, and we
obtain the cumulants of the defect density distribution by dividing Egs. (S19)—(S21) by N. With periodic boundary
conditions, N is equal to the number of edges N, introduced in the main text.

B. Quench with first-order CD expansion
1. Variational coefficient of the first-order CD term

In this section, we derive the fast-quench plateau values for the first three cumulants in the presence of the first-order
variational CD. We first derive the expression for the variational coefficient «; for periodic boundary conditions using
the TLS representation. To obtain A}\ = ia1(A\)O; in this representation, we express the commutators O; and O, as
the direct sums of the commutators of each TLS Hamiltonian. With Hj, defined in equation (S14),

Oo, = OxHy, = —2(g + J cos(k))Z + 2J sin(k) X (S23)
Ow, = [Hy, Oor] = 8igJ sin(k) Y, (S24)
Osy, = [Hy, O11] = 329 sin(k) [((1 — N)g — AJ cos(k)) X — AT sin(k)Z], (S25)



where we have exploited the commutation relations of the Pauli matrices. The action S; also decomposes into the sum
of the TLS actions, S1 = >, Sk = >, Tr (GLG;C) with Gg(\) = Ogx, + a1(N). Exploiting the trace identity for the

product of Pauli matrices Tr (AB) = 2045, where A, B = X,Y, Z, the total action can be written in the continuum
approximation as

S N [T N [T
SR 16a§92J2—/ dk sin® k [AN2J? + (1 — X)?¢° — 2X\(1 — A)Jgcosk] + 204192J2—/ dk sin®k 4+ C
™ Vs 0

128 0 (S26)
=8Najg?J? N2 + (1 — \)2¢*] + Nayg®J* + C
where C' is a constant independent of a;. As a result, the minimization 657 /da;(\) = 0 gives
ar(\) = — ! (s27)
BT822 + (1 - N2
From this, the CD Hamiltonian reads HCP = Y k>0 zZ;LHkCD 1[}]6, where HkCD = i).\al()\)Olk = hY and
AgJsink (S28)

"= SN (L N2

2. Solution of the time-dependent Schrédinger equation

Within the sudden quench approximation 7' — 0, the time evolution is dominated solely by the first-order variational
CD term as it is proportional to 1/7T". Thus, the time-dependent Schrodinger equation for a given k-th TLS reads

i0, (i;) = (Hy + hiY) (:2) ~ h,Y (z;) . (S29)

To compute the exact results in Figs. 2a and 3a of the main text, we integrate this equation numerically using the
full Hamiltonian Hj + hiY. To obtain analytic expressions in the sudden-quench limit 7' — 0, we neglect the term
Hj, in the last step. Due to the fact that the time dependence appears only as an overall multiplying factor, an exact
solution can be obtained by taking the exponential of the integral of hy(t)Y. By exploiting the relations (V)" = I
and (Y)?"T1 =Y the time-evolved state reads

(48) - 00 () ) s )

Note that due to the derivative A, we can make a change of variables in the integration,

T 1
N 1 L
/0 dt hk(t)f/o d)\2[)\2j2+(x\—1)2g2] sink = 4smk, (S31)

where we have set ¢ = J = 1 for simplicity but the results can be straightforwardly generalized to g # 1, J # 1. We

find the final state as
o1(T)\ _ (—sin(Zsink)
(QDQ(T)) - ( coS (% sin k) ' (532)

o\ _ (—sin (U arnu(t))
(1> \ cos (fUTO dt’hk(t’))
(S30)

Knowing the final amplitudes, the excitation probabilities can be expressed as

2
k k 1
~ cos? 3 cos? (% sin kz) + sin? 3 sin? (% sin k:) ~3 sin k sin (g sin k) . (S33)

.k k
P ~ |sin §<p1(T) + cos 5902(T)

The sudden-quench approximation, made above in equation (S29), now results in the cumulants k1 ~ 0.22N, ko =
0.14N, and k3 ~ 0.04N.



without CD with CD
0S50 5=
'8 a ~ ~ -~ K1
< N,
B \'\.\' TTT R
£ 0.25{-=-========mmmmmmmmmmomoo {mmmmmme ~~s
et T el
E - K] ks T ]
|
0.00 A . ] ;
0.50 1 =
% c T d
< P
R 7 —- I
ot .
20251 ~ K (- { K _
E K'i /l/. K; /,/ -
g AN T e
= g ke /:',_
© o 4
0.00 === | ] v
0 0.5 1 0 0.5 1
t/T t/T

FIG. S4. The three first cumulants of the distribution of a, b, kinks and c, d, excitations as functions of the
unitless time t/T. Here, we consider a one-dimensional lattice of length N = 100 and set T'=0.2/J. a, b The kink density
cumulants defined in position basis, given by Egs. (S34) and (S35), differ from ¢, d, the cumulants of the excitation density nex
defined in quasimomentum basis [Egs. (S19)—(S21)] at intermediate times ¢ < T". We use the notation K, for the cumulants of
the excitation density at t < T', and their definition coincides with k4 at the final time ¢ = T. The kink density cumulants in
panels a and b are obtained from an MPS simulation.

V. CUMULANTS AS FUNCTIONS OF INSTANTANEOUS TIME

The main text discusses the defect statistics at the final time. For completeness, we investigate here how the defect
density cumulants evolve in time, in particular the features that arise when crossing the phase transition. The defect
density defined in the main text

: 1 -
Ndef = TNe <Z>(1 - ZZ'ZJ‘) (534)
,]

corresponds to kinks in the magnetization in position basis. These are topological excitations with respect to the final
ferromagnetic ground state where all spins are aligned. The cumulants of the kink density are obtained as

p = (ider)s 2 = Ne ((aer = (aer))* )y s = N2 (s = {iaer))”) - (835)

Evaluating them in the initial state |[+)®" = [(lo) + |1>)/\/§]®N gives k1 = 1/2, Ky = 1/4, and k3 = 0, and the
final-state values are shown as functions of T" in Fig. 3 of the main text.

Section IV, on the other hand, introduces the cumulants of the excitation density, obtained through the excitation
probabilities py in quasimomentum basis in Egs. (S19)—(S21). These are based on excitation probabilities with respect
to the instantaneous ground state and coincide with the cumulants of the kink density at the final time ¢ = T', where
the ground state has all spins aligned. However, at ¢t < T, the density of kinks differs from the density of excitations.
In the following, we denote the cumulants of the excitation density at ¢ < T by K, with ¢ = 1,2, 3, corresponding to
the mean, variance, and third central moment, respectively.

The cumulants of the kink density and excitation density are shown as a function of the unitless time ¢/7" in Fig. S4
with and without CD. We focus here on the fast-quench regime with total time 7' = 0.2/.J. For such short evolution
times, the kink density cumulants remain close to their initial values when no CD is applied, as seen in Fig. S4a. In the
presence of CD, the kink density and its variance are reduced, and the third central moment slightly increases to its
final value shown in Fig. 3a in the main text. While the kink density cumulants do not have any distinguishing features
at the phase transition point /T = 0.5, the cumulants of the excitation density in Fig. S4a and Fig. S4b display a
nonanalytic behavior. As the initial state is the ground state of H; and there are no excitations, the cumulants K,
are zero at t = 0. The mean density of excitations K; grows monotonically, with an inflection point close to where the
phase transition occurs. The variance Ko increases up to the critical point and stays nearly constant at t/T > 0.5,



with a discontinuous derivative at ¢/T = 0.5, while the third central moment K5 has a peak at t/T = 0.5. The
excitation statistics, therefore, show signatures of the phase transition that are not observed by measuring the kinks
in the spin alignment. The same features occur in both finite-time annealing and counterdiabatic evolution, but K;
and K are suppressed by CD while K3 increases slightly.
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