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In this Supplementary Information, we provide further notes and extended results to support and
elucidate the findings in the main text. We describe in detail how our experiments were conducted
on IBM and discuss the impact of different sources of error that might cause deviations from the
expected results. We describe the derivation of the first-order nested commutator expansion of
the adiabatic gauge potential for the transverse-field Ising model. We also provide a step-by-step
derivation of the cumulants of the defect number distribution in the fast-quench limit. Finally, for
completeness, we discuss the time evolution of the cumulants, which in the main text are only shown
at the final time.
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I. DIGITAL QUANTUM SIMULATION ON IBM HARDWARE

An important aspect of preparing and running quantum circuits on hardware is to transpile the required quantum
operations according to the corresponding native gate sets provided by the platform. These typically consist of a
universal gate set that contains several one-qubit gates and a single two-qubit entangling gate. In our experiments, we
used the ibm fez and ibm marrakesh platforms, gate-based quantum computers composed of 156 superconducting
qubits under a heavy-hexagonal coupling map. Their native gate set is composed of
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FIG. S1. Schematic of the ibm fez and ibm marrakesh 156-qubit coupling maps. Three depth-one layers suffice
to realize the two-body interactions between all neighbor pairs for simulating the heavy-hexagonal lattice, finding an optimal
circuit decomposition for each Trotter step.

with CZ = diag(1, 1, 1,−1) as an entangling gate. In addition to them, IBM has recently introduced the fractional
gates Rzz(θ) = e−iθZ0Z1/2 (with 0 < θ ≤ π/2) and Rx(θ) = e−iθX/2 [S1] in their Heron-based processors.

To mitigate the impact of errors coming from noisy hardware on our results, we employed the as-late-as-possible
scheduling method as an error suppression technique. It strategically introduces delays in the circuit to maximize
the time that each qubit remains in its ground state, which may help improve the outcome fidelity. For the heavy-
hexagonal lattice, an optimal circuit decomposition can be found relying on the graph coloring theorem. In particular,
for each Trotter step, it is possible to reduce all the two-body terms coming from equations (2) and (4) in the main
text into a depth-three block using the circuit decomposition shown in Fig. S1.

II. IMPLEMENTATION ERRORS

A. Trotter errors

In this section, we analyze various sources of error that can lead to deviations between experimental results and
expected outcomes. First, let us consider the Trotter error. We implement a first-order Trotter decomposition of the
continuous evolution governed by H(λ) = H(λ) + λ̇Aλ. For each Trotter step m = 0, . . . ,M , the quantum circuits
realize a product of the two unitaries

Um
ad(δt) = Um

f (δt)Um
i (δt), (S2)

Um
cd(δt) = e−iδt/T ·2gJα1(λm)

∑
⟨i,j⟩ ŶiẐje−iδt/T ·2gJα1(λm)

∑
⟨i,j⟩ ẐiŶj . (S3)
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FIG. S2. Mean density of defects measured at the final evolution time, with and without CD, obtained by MPS
simulations of the quantum circuits with MIMIQ [S2]. The colored markers denote the circuit simulations that contain
Trotter errors, while the solid and dashed black lines show reference MPS simulations of the time evolution with negligible
errors. For a square lattice of size 4 × 4, we simulate a circuit with different Trotter decompositions: a, Um

ad = Um
f Um

i and
b, Uad = Um

i Um
f . In both, Um

cd is given by equation (S3). We use varying time steps δt = 0.1/J, 0.2/J, . . . , 0.5/J as indicated
by the color gradients. The blue-shaded circles correspond to the circuits without CD and the red-shaded squares to those
with CD. c, The markers show the circuit simulation results for a 156-qubit heavy-hexagonal lattice with the decomposition
Um

ad = Um
f Um

i , corresponding to Fig. 3b in the main text. The time step is varied here in the same way as in Fig. 3b: δt = 0.1/J
for the data points up to T = 0.5/J and for larger T , the number of steps is fixed to 5 so that δt increases. The deviations
from the reference solution due to Trotter errors accumulate with increasing T .

Here, λm = mδt, λ̇ = 1/T ,

Um
i (δt) = e−iδt·(1−λm)Hi , Um

f (δt) = e−iδt·λmHf , (S4)

and the initial and final Hamiltonians are Hi = −g∑i X̂i, and Hf = −J∑⟨i,j⟩ ẐiẐj . The operators Um
ad(δt) and

Um
cd(δt) correspond to digitized annealing and the counterdiabatic (CD) term, respectively. To assess the errors

introduced by the first-order Trotter decomposition, we analyze the mean defect density κ1 in a square lattice of size
4×4 as a representative case. Figure S2 shows κ1 as a function of the total evolution time for various values of the time
step δt. The data indicated by the markers is obtained via matrix product state (MPS) simulations of the quantum
circuit implementing the digitized time evolution, performed with the MIMIQ simulator [S2]. As a reference, Fig. S2
shows the results of MPS simulations using the time-dependent variational principle (TDVP) [S3, S4], with δt = 0.002,
a truncation cutoff of 10−20, and a maximum bond dimension of χ = 200, for which κ1 is converged within an accuracy
given by the linewidth in the plot.

Figure S2 illustrates how the Trotter errors in the quantum circuits lead to deviations in the defect density with
respect to the reference values. Although the scaling of the Trotter error with δt is independent of the order in
which the terms within each time step are applied, the magnitude and sign of the deviations may depend on this
ordering (see also Fig. 1c of the main text). In Fig. S2a, we use the decomposition Um

ad = Um
f U

m
i to implement the

digitized annealing term, while in Fig. S2b, we use the opposite order Um
ad = Um

i U
m
f . We set Um

cd as in equation (S3)
in both cases. We find that the magnitude and sign of the deviations differ significantly in these two cases: For
digitized annealing without CD (blue-shaded circles), the Trotter errors lead to a reduction of the mean defect density
in Fig. S2a whereas in Fig. S2b, they lead to an increase with respect to the reference solution. For the counterdiabatic
evolution (red-shaded squares), in panel a, the deviations occur in either direction depending on δt. In panel b, on
the other hand, the deviations are only towards larger defect densities, and the magnitude of the deviations is smaller
than in panel a. These differences have consequences for the experimental data reported in Fig. 3 of the main text:
The Trotter decomposition Um

ad = Um
f U

m
i is used in all data sets other than the digitized annealing results in Figs. 3c

and d, where we instead use Um
ad = Um

i U
m
f . We observe that the small deviations of κ1 from the reference solution are

toward larger values in these experiments, while in Figs. 3b, the experimental κ1 obtained by digitized annealing is
slightly below the reference line for T <∼ 2/J . For the CD evolution, we only observe deviations towards larger defect
densities.

In all cases, the circuit simulation results approach the reference lines for decreasing δt. However, increasing δt
leads to a reduction in the depth of the circuit, since fewer unitary operations are required in the decompositions
given by equations (S3)–(S4). This reduction is advantageous for experimental implementations, as it significantly
mitigates gate errors. Thus, determining an optimal δt is crucial to effectively balance Trotter errors and gate errors.
In Figs. 3c and d of the main text, this balance is carried out using larger δt values in larger T . This reduces gate
errors, but may be a key factor that contributes to the observed increase in the mean defect density as T increases.
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FIG. S3. Probability per qubit of getting a zero after sampling 20000 times the CD-assisted 100-qubit linear
chain. a, Results using T = 0.1/J (one Trotter step). b, Results using T = 1/J (three Trotter steps). For both plots, qubit
indices are sorted from largest to smallest P0 values and dashed lines indicate the maximum and minimum values of P0.

We also simulate the quantum circuit implementing the time evolution of the heavy-hexagonal lattice, using the
same Trotter steps as in Fig. 3b of the main text, to quantify the Trotter error present in the quantum simulation.
The data from a MIMIQ simulation of the quantum circuit is shown in Fig. S2c together with the MPS reference
solution, which is the same as in Fig. 3b. The deviations due to the Trotter error increase as T increases as expected.
The results in Fig. S2 suggest that the systematic shift observed in the experimental data for CD evolution, seen
in Fig. 3 of the main text, is not primarily caused by Trotter errors at small T but rather stems from hardware noise.
Furthermore, it is important to note that deviations arising from Trotter errors and hardware noise may shift the
results in opposite directions, potentially leading to a partial cancellation of errors.

B. Hardware errors

Another significant source of error in our results arises from the platform itself, due to gate and measurement errors,
short coherence times of the qubits, and other factors. Their impact can be quantified by studying the probability
of measuring a zero as an outcome, P0, among all samples taken in our experiments. While for an ideal circuit
implementation, we would expect a uniform distribution, where the probability of getting either a zero or a one is
equal, qubits with shorter coherence times and bit-flip errors may return different results. In Fig. S3, we perform this
study for the CD-assisted evolution of a 100-qubit linear chain at times T = 0.1/J (one Trotter step) and T = 1/J
(three Trotter steps), corresponding to results in Figs. 2a and 3a of the main text. It can be clearly seen that for
three Trotter steps, with a larger circuit depth and a larger number of gates, the probability distribution is further
from the ideal uniform distribution in comparison to a single step.

III. FIRST-ORDER NESTED COMMUTATOR CALCULATION

The adiabatic gauge potential (AGP) satisfies the equation [∂λH + i[Aλ, H], H] = 0. Solving this equation has
been shown to be equivalent to minimizing the action Sλ(Aλ) = Tr

(
G†

λGλ

)
, where Gλ is the conserved operator

Gλ = ∂λH + i[Aλ, H]. (S5)

This minimization can be performed within a limited subset of operators chosen from the Krylov space obtained by
repeatedly applying the Liouvillian L = [H, ·] onto ∂λH [S5], resulting in the ansatz of equation (3) in the main text.

To solve the first-order nested commutator expression for the AGP, we define the operators

Ô0 = ∂λH, Ô1 = [H, Ô0], Ô2 = [H, Ô1]. (S6)

The first-order AGP is then expressed as A1
λ = iα1(λ)Ô1. We use a variational method to find the coefficient α1 ∈ R:

We minimize the action Sλ

(
A1

λ

)
= S1 = Tr

(
G†

1G1

)
[S6], where G1 = ∂λH+i[A1

λ, H] = Ô0+α1Ô2. The minimization
condition requires

δS1

δα1
= 2Tr

(
Ô†

1Ô1

)
+ 2α1 Tr

(
Ô†

2Ô2

)
= 0, (S7)
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which implies

α1 = −
Tr
(
Ô†

1Ô1

)
Tr
(
Ô†

2Ô2

) . (S8)

We can now evaluate α1 for the TFIM. For the Hamiltonian

H(λ) = − (1− λ(t)) g

N∑
j=1

X̂j − λ(t)J
∑
⟨i,j⟩

ẐiẐj , (S9)

we have

Ô0 = g

N∑
j=1

X̂j − J
∑
⟨i,j⟩

ẐiẐi, Ô1 = −2igJ
∑
⟨i,j⟩

ŶiẐj , (S10)

from which we compute Ô2 and obtain the AGP as

A1
λ = 2gJα1(λ)

∑
⟨i,j⟩

(
ŶiẐj + ŶjẐi

)
. (S11)

When equation (S8) is evaluated for a one-dimensional chain of length N , with open boundary conditions, we get

α1(λ) = − (N − 1)

16g2(N − 1)(λ− 1)2 + 4J2[4(N − 1)− 3]λ2
. (S12)

A general formula for α1 is found in equation (S20) of ref. [S7], and results in more complicated expressions that we
use for the two-dimensional geometries.

IV. ANALYTICAL RESULTS FOR FAST QUENCHES IN THE 1D CHAIN

In this section, we provide an exact solution of the cumulants of the number of defects in the 1D transverse-field
Ising model. This extension of ref. [S8] from the Kibble-Zurek regime to sudden quenches is discussed in ref. [S9] for
finite-time annealing, while the derivation in the case of counterdiabatic dynamics has not been presented in previous
literature.

A. Quench without CD

We obtain the solution of the 1D transverse-field Ising model for periodic boundary conditions. We verify, by
computing the cumulants numerically using MPS, that the difference due to open boundary conditions is negligible for
the system size considered here. Following a Jordan-Wigner transformation to the free-fermion basis (see refs. [S10,
S11] for a derivation), the Hamiltonian H(λ) of equation (1) in the main text is expressed as the direct sum of
independent two-level systems (TLSs),

H(λ) =
∑
k>0

ψ̂†
kHkψ̂k, (S13)

where

Hk = 2 [(1− λ)g − λJ cos(ka)]Z + 2λJ sin(ka)X, (S14)

and λ = λ(t) = t/T is the linear scheduling function. In the following, we set the lattice spacing to a = 1. The operator
ψ̂k := (ĉk, ĉ

†
−k)

T is a vector of the annihilation ĉk and creation ĉ†−k operators for fermions of quasimomentum ±k,
where k = π

N ,
3π
N , . . . ,

(
π − π

N

)
. These momenta correspond to the subspace with an even number of fermions, which

is consistent with the initial state for even N . We denote the Pauli matrices by X,Y, Z. The cumulants are obtained
from the time-evolved wave function at the end of the process at t = T .
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The time evolution of the free-fermion system can be solved for each momentum state independently so that it
decomposes into the time evolutions of independent TLSs [S12]:

i∂t

(
φ1

φ2

)
= Hk

(
φ1

φ2

)
. (S15)

Momentum indices are omitted here for brevity. The initial state, ground state of the initial Hamiltonian [equation (1)],
is given by φ1 = 0 and |φ2| = 1. With the time-evolved components, one can express the excitation probabilities
within each TLS by projecting the time-evolved states onto the excited state of the final Hamiltonian,

Hk(T ) = 2J

(
− cos k sin k
sin k cos k

)
, |ES(T )⟩ =

(
sin k

2

cos k
2

)
. (S16)

Thus, the excitation probability of the k-th state is given by

pk =

∣∣∣∣sin k2 φ1(T ) + cos
k

2
φ2(T )

∣∣∣∣2 . (S17)

The statistics of the defect formation can be described in terms of independent Bernoulli trials [S8, S13], where
a defect is formed in momentum state k with probability pk. This probability equals the expectation value of the
number of defects κ1,k in momentum state k. The expected total number of defects is therefore given by the sum of
all probabilities, κ1 =

∑
k κ1,k =

∑
k pk. The cumulants satisfy the recursion relation

κq,k = pk(1− pk)
dκq,k
dpk

. (S18)

Taking the limit
∑

k>0 fk → 1
Ωk

∫ π

0
f(k)dk, where Ωk = π/N , we find the cumulants of the defect number distribution

as

κ1 =
N

π

∫ π

0

dk pk, (S19)

κ2 =
N

π

∫ π

0

dk pk(1− pk), (S20)

κ3 =
N

π

∫ π

0

dk pk(1− pk)(1− 2pk). (S21)

We solve the cumulants as functions of the total quench time T by integrating numerically Eqs. (S19)–(S21).
For fast quenches, the leading-order behavior is captured by the sudden quench limit T → 0, in which the final

state is identical to the initial one up to a phase factor, leading to the excitation probability

pk = cos2
k

2
. (S22)

Substituting this into Eqs. (S19)–(S21) produces the simple expressions κ1 = N/2, κ2 = N/4, and κ3 = 0 for
the sudden-quench cumulants. The number of defects is connected to the defect density as N̂def = Nn̂def, and we
obtain the cumulants of the defect density distribution by dividing Eqs. (S19)–(S21) by N . With periodic boundary
conditions, N is equal to the number of edges Ne introduced in the main text.

B. Quench with first-order CD expansion

1. Variational coefficient of the first-order CD term

In this section, we derive the fast-quench plateau values for the first three cumulants in the presence of the first-order
variational CD. We first derive the expression for the variational coefficient α1 for periodic boundary conditions using
the TLS representation. To obtain A1

λ = iα1(λ)O1 in this representation, we express the commutators O1 and O2 as
the direct sums of the commutators of each TLS Hamiltonian. With Hk defined in equation (S14),

O0k = ∂λHk = −2(g + J cos(k))Z + 2J sin(k)X (S23)
O1k = [Hk, O0k] = 8igJ sin(k)Y, (S24)
O2k = [Hk, O1k] = 32gJ sin(k) [((1− λ)g − λJ cos(k))X − λJ sin(k)Z] , (S25)
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where we have exploited the commutation relations of the Pauli matrices. The action S1 also decomposes into the sum
of the TLS actions, S1 =

∑
k Sk =

∑
k Tr

(
G†

kGk

)
with Gk(λ) = O0k + α1(λ). Exploiting the trace identity for the

product of Pauli matrices Tr (AB) = 2δAB , where A,B = X,Y, Z, the total action can be written in the continuum
approximation as

S1

128
≈ 16α2

1g
2J2N

π

∫ π

0

dk sin2 k
[
λ2J2 + (1− λ)2g2 − 2λ(1− λ)Jg cos k

]
+ 2α1g

2J2N

π

∫ π

0

dk sin2 k + C

= 8Nα2
1g

2J2
[
λ2J2 + (1− λ)2g2

]
+Nα1g

2J2 + C

(S26)

where C is a constant independent of α1. As a result, the minimization δS1/δα1(λ) = 0 gives

α1(λ) = − 1

16[λ2J2 + (1− λ)2g2]
. (S27)

From this, the CD Hamiltonian reads HCD =
∑

k>0 ψ̂
†
kH

CD
k ψ̂k, where HCD

k = iλ̇α1(λ)O1k = hkY and

hk =
λ̇ gJ sin k

2 [λ2J2 + (1− λ)2g2]
. (S28)

2. Solution of the time-dependent Schrödinger equation

Within the sudden quench approximation T → 0, the time evolution is dominated solely by the first-order variational
CD term as it is proportional to 1/T . Thus, the time-dependent Schrödinger equation for a given k-th TLS reads

i∂t

(
φ1

φ2

)
= (Hk + hkY )

(
φ1

φ2

)
≈ hkY

(
φ1

φ2

)
. (S29)

To compute the exact results in Figs. 2a and 3a of the main text, we integrate this equation numerically using the
full Hamiltonian Hk + hkY . To obtain analytic expressions in the sudden-quench limit T → 0, we neglect the term
Hk in the last step. Due to the fact that the time dependence appears only as an overall multiplying factor, an exact
solution can be obtained by taking the exponential of the integral of hk(t)Y . By exploiting the relations (Y )2n = I2
and (Y )2n+1 = Y , the time-evolved state reads

(
φ1(T )
φ2(T )

)
= e−i

∫ T
0

dt′hk(t
′)Y

(
0
1

)
=

[
cos

(∫ T

0

dt′hk(t
′)

)
− i sin

(∫ T

0

dt′hk(t
′)

)
Y

](
0
1

)
=

− sin
(∫ T

0
dt′hk(t

′)
)

cos
(∫ T

0
dt′hk(t

′)
)  .

(S30)
Note that due to the derivative λ̇, we can make a change of variables in the integration,∫ T

0

dt′ hk(t
′) =

∫ 1

0

dλ
1

2 [λ2J2 + (λ− 1)2g2]
sin k =

π

4
sin k, (S31)

where we have set g = J = 1 for simplicity but the results can be straightforwardly generalized to g ̸= 1, J ̸= 1. We
find the final state as (

φ1(T )
φ2(T )

)
=

(
− sin

(
π
4 sin k

)
cos
(
π
4 sin k

) ) . (S32)

Knowing the final amplitudes, the excitation probabilities can be expressed as

pk ≈
∣∣∣∣sin k2φ1(T ) + cos

k

2
φ2(T )

∣∣∣∣2 ≈ cos2
k

2
cos2

(π
4
sin k

)
+ sin2

k

2
sin2

(π
4
sin k

)
− 1

2
sin k sin

(π
2
sin k

)
. (S33)

The sudden-quench approximation, made above in equation (S29), now results in the cumulants κ1 ≈ 0.22N , κ2 ≈
0.14N , and κ3 ≈ 0.04N .
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FIG. S4. The three first cumulants of the distribution of a, b, kinks and c, d, excitations as functions of the
unitless time t/T . Here, we consider a one-dimensional lattice of length N = 100 and set T = 0.2/J . a, b The kink density
cumulants defined in position basis, given by Eqs. (S34) and (S35), differ from c, d, the cumulants of the excitation density nex

defined in quasimomentum basis [Eqs. (S19)–(S21)] at intermediate times t < T . We use the notation Kq for the cumulants of
the excitation density at t < T , and their definition coincides with κq at the final time t = T . The kink density cumulants in
panels a and b are obtained from an MPS simulation.

V. CUMULANTS AS FUNCTIONS OF INSTANTANEOUS TIME

The main text discusses the defect statistics at the final time. For completeness, we investigate here how the defect
density cumulants evolve in time, in particular the features that arise when crossing the phase transition. The defect
density defined in the main text

n̂def =
1

2Ne

∑
⟨i,j⟩

(1− ẐiẐj) (S34)

corresponds to kinks in the magnetization in position basis. These are topological excitations with respect to the final
ferromagnetic ground state where all spins are aligned. The cumulants of the kink density are obtained as

κ1 = ⟨n̂def⟩, κ2 = Ne

〈
(n̂def − ⟨n̂def⟩)2

〉
, κ3 = N2

e

〈
(n̂def − ⟨n̂def⟩)3

〉
. (S35)

Evaluating them in the initial state |+⟩⊗N
=
[
(|0⟩+ |1⟩)/

√
2
]⊗N

gives κ1 = 1/2, κ2 = 1/4, and κ3 = 0, and the
final-state values are shown as functions of T in Fig. 3 of the main text.

Section IV, on the other hand, introduces the cumulants of the excitation density, obtained through the excitation
probabilities pk in quasimomentum basis in Eqs. (S19)–(S21). These are based on excitation probabilities with respect
to the instantaneous ground state and coincide with the cumulants of the kink density at the final time t = T , where
the ground state has all spins aligned. However, at t < T , the density of kinks differs from the density of excitations.
In the following, we denote the cumulants of the excitation density at t < T by Kq, with q = 1, 2, 3, corresponding to
the mean, variance, and third central moment, respectively.

The cumulants of the kink density and excitation density are shown as a function of the unitless time t/T in Fig. S4
with and without CD. We focus here on the fast-quench regime with total time T = 0.2/J . For such short evolution
times, the kink density cumulants remain close to their initial values when no CD is applied, as seen in Fig. S4a. In the
presence of CD, the kink density and its variance are reduced, and the third central moment slightly increases to its
final value shown in Fig. 3a in the main text. While the kink density cumulants do not have any distinguishing features
at the phase transition point t/T = 0.5, the cumulants of the excitation density in Fig. S4a and Fig. S4b display a
nonanalytic behavior. As the initial state is the ground state of Hi and there are no excitations, the cumulants Kq

are zero at t = 0. The mean density of excitations K1 grows monotonically, with an inflection point close to where the
phase transition occurs. The variance K2 increases up to the critical point and stays nearly constant at t/T > 0.5,
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with a discontinuous derivative at t/T = 0.5, while the third central moment K3 has a peak at t/T = 0.5. The
excitation statistics, therefore, show signatures of the phase transition that are not observed by measuring the kinks
in the spin alignment. The same features occur in both finite-time annealing and counterdiabatic evolution, but K1

and K2 are suppressed by CD while K3 increases slightly.
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