

## Supplementary Materials

# Loss of morphologically unique avian frugivores diminishes seed dispersal function and natural restoration potential pan-tropically

Jun Ying Lim<sup>1,2,\*</sup>, Wei Qiang Lee<sup>1,2</sup>, Charles J. Marsh<sup>1,2</sup>, Rachakonda Sreekar<sup>3</sup>, Joseph A. Tobias<sup>4</sup>, Iago Ferreiro Arias<sup>5,6</sup>, David P. Edwards<sup>7,8</sup>

<sup>1</sup> Department of Biological Sciences, National University of Singapore, Singapore

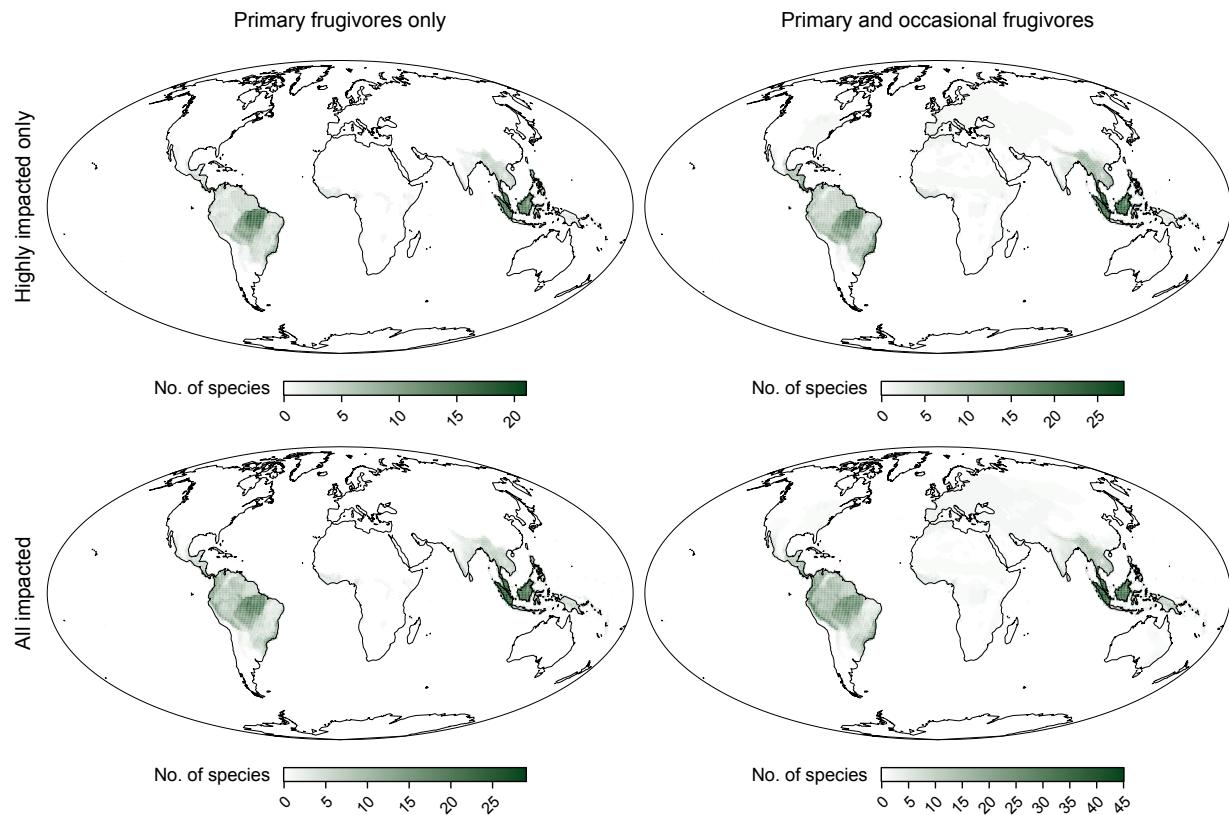
<sup>2</sup> Center for Nature-based Climate Solutions, National University of Singapore, Singapore

Biodiversity and Conservation Science, School of the Environment, University of Queensland

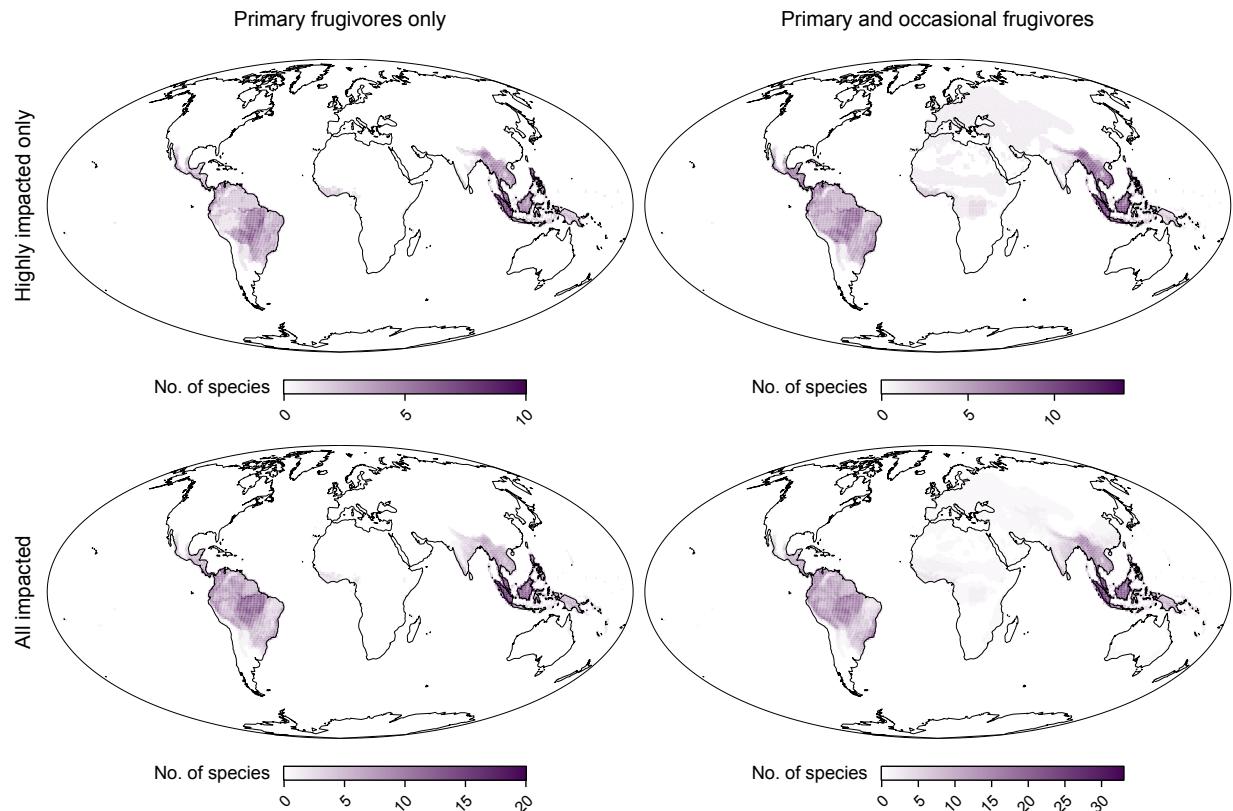
10 - Centre for Biodiversity and Conservation Science, School of the Environment, University of Queensland, Queensland,  
11 Australia

<sup>4</sup> Department of Life Sciences, Imperial College London, Ascot, United Kingdom

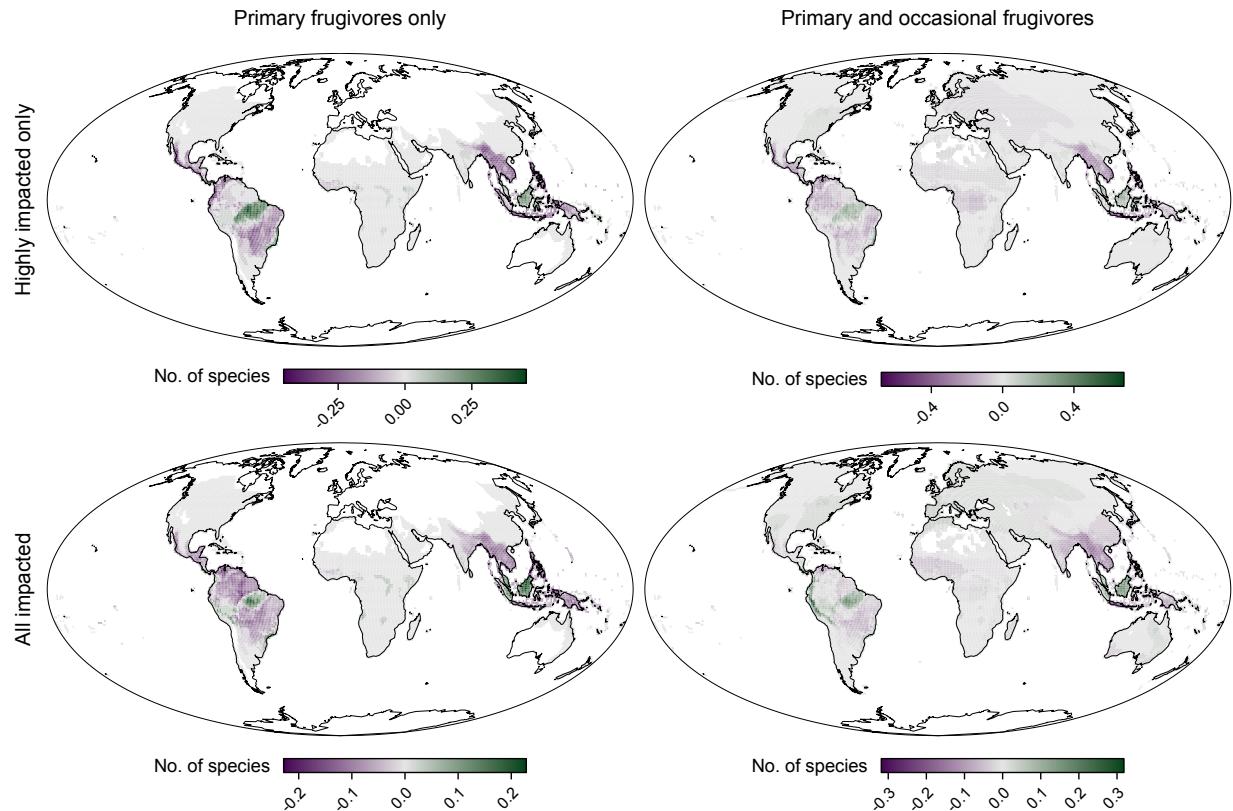
<sup>3</sup> Department of Conservation Biology and Global Change, Estación Biológica de Doñana, CSIC, Sevilla, Spain


<sup>6</sup> Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain

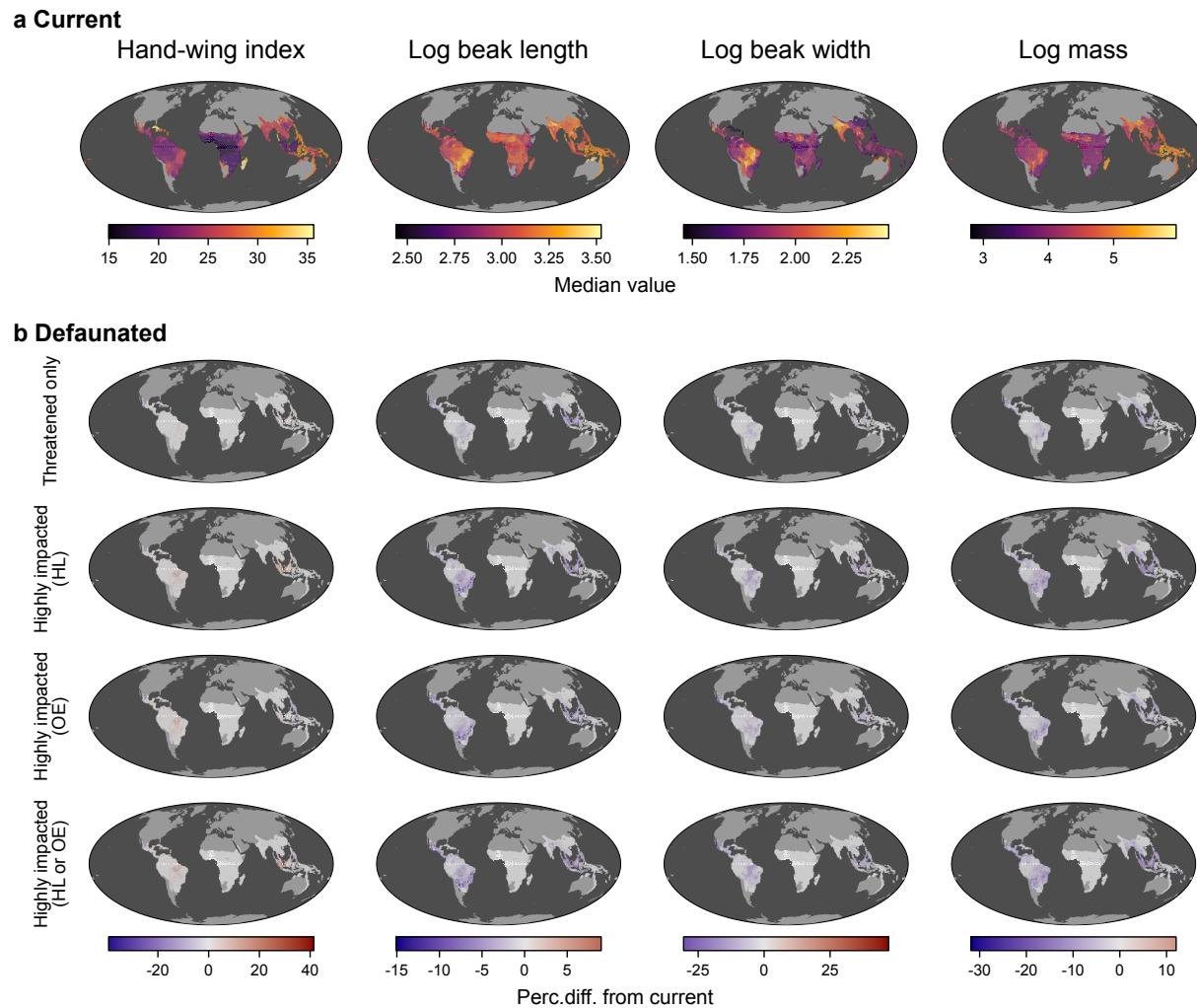
<sup>7</sup> Department of Plant Sciences and Centre for Global Wood Security, University of Cambridge, Cambridge, UK


\* corresponding author

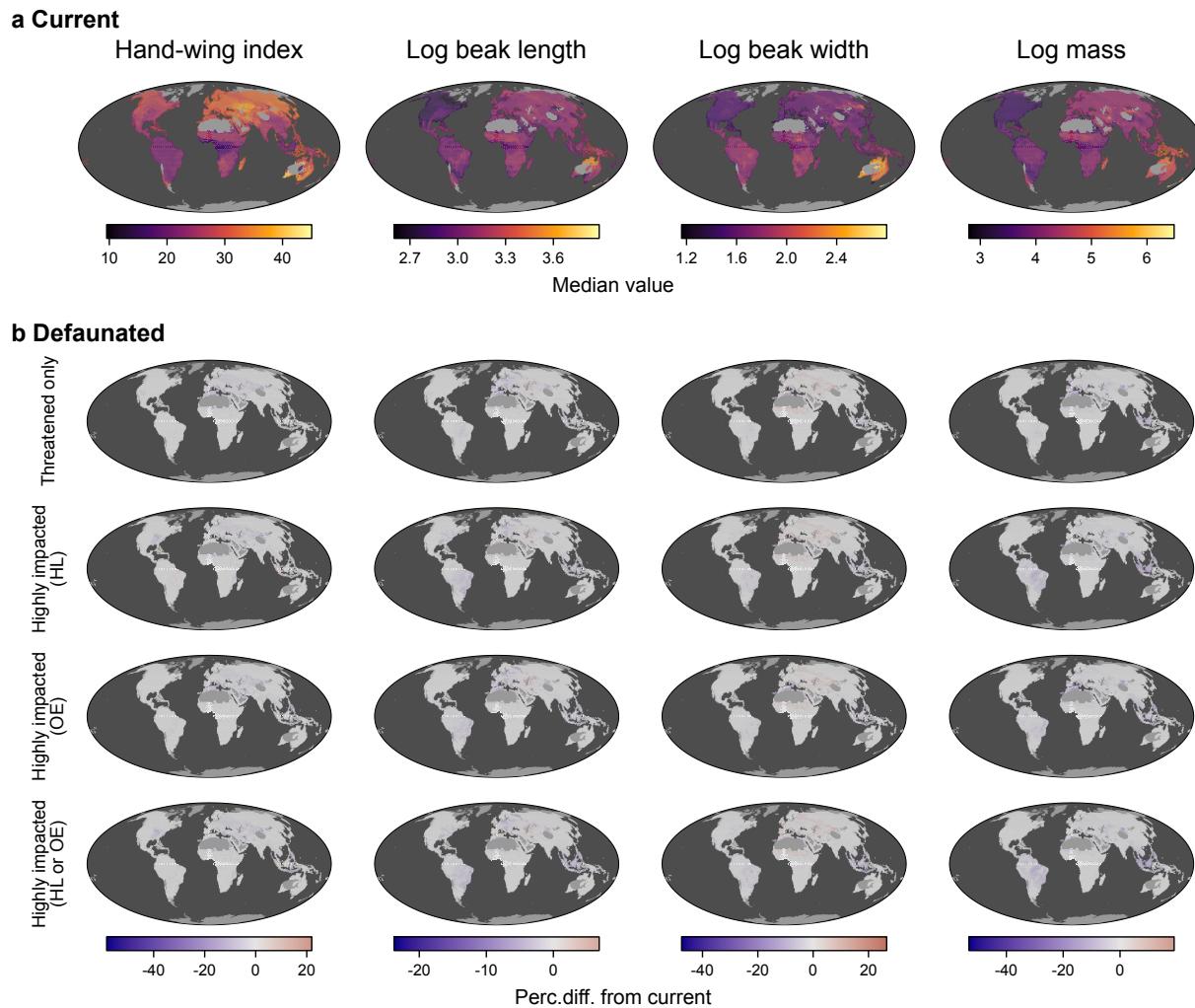
<sup>18</sup> Keywords: frugivory, anthropogenic impacts, morphological uniqueness, functional diversity, seed dispersal


19 **Supplementary Figures**

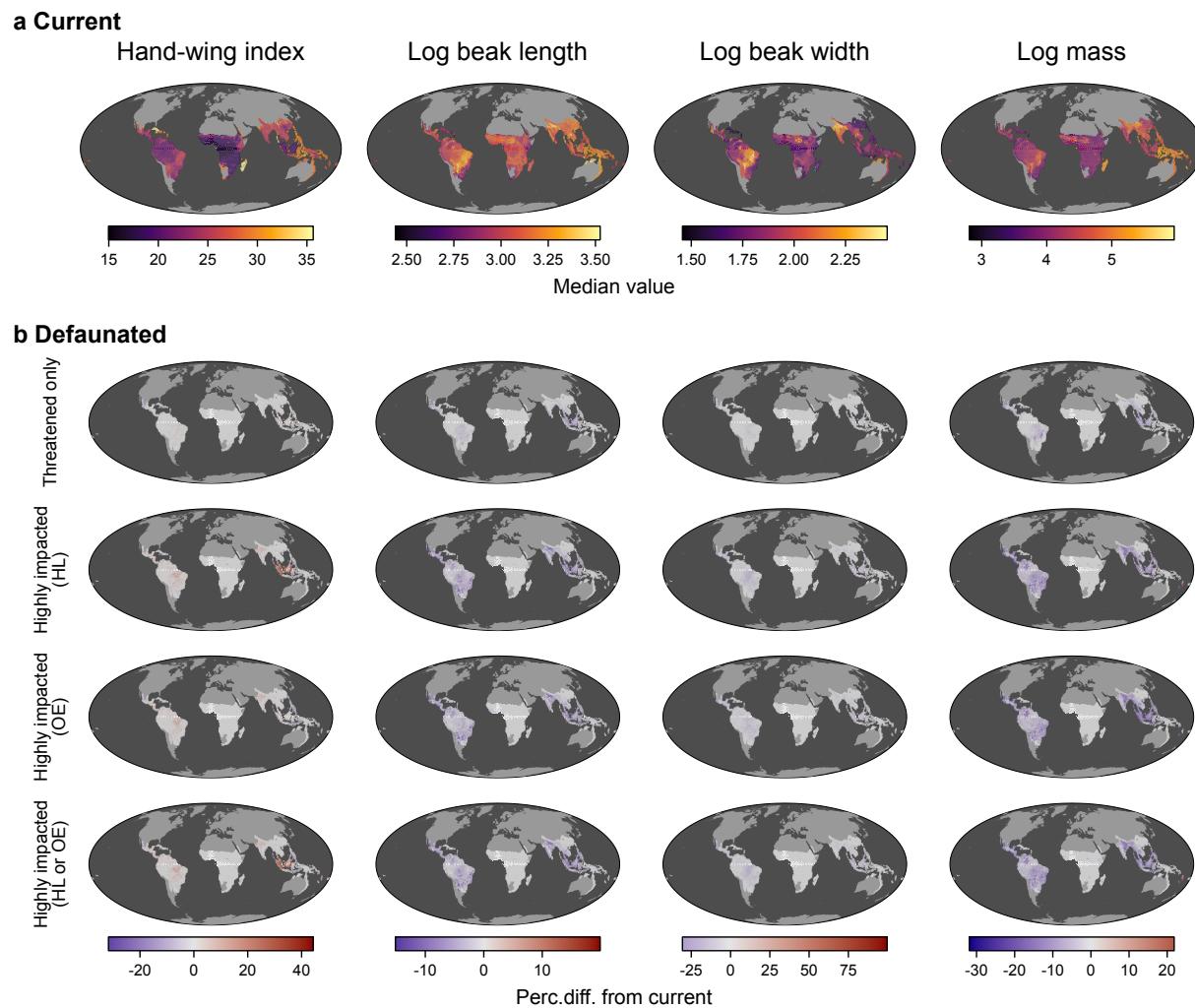



**Supplementary Figure 1 | Distribution of frugivorous birds impacted by habitat loss and degradation (HL).** Species richness maps were generated by overlaying the extant, native and full (resident and seasonal) geographic ranges of species (see Methods). Frugivores were categorised as either primary ( $\geq 60\%$  fruit in diet;  $n = 1,188$  species) or occasional (30–60 % fruit in diet;  $n = 1,275$  species). IUCN threat scores were used to define species as either impacted (any threat score, or where the threat score was unknown) or as highly impacted species (threat scores  $\geq 6$ ). Map in Molleweide projection, 100 x 100 km grid cells. White areas do not have any species meeting the frugivory criteria.

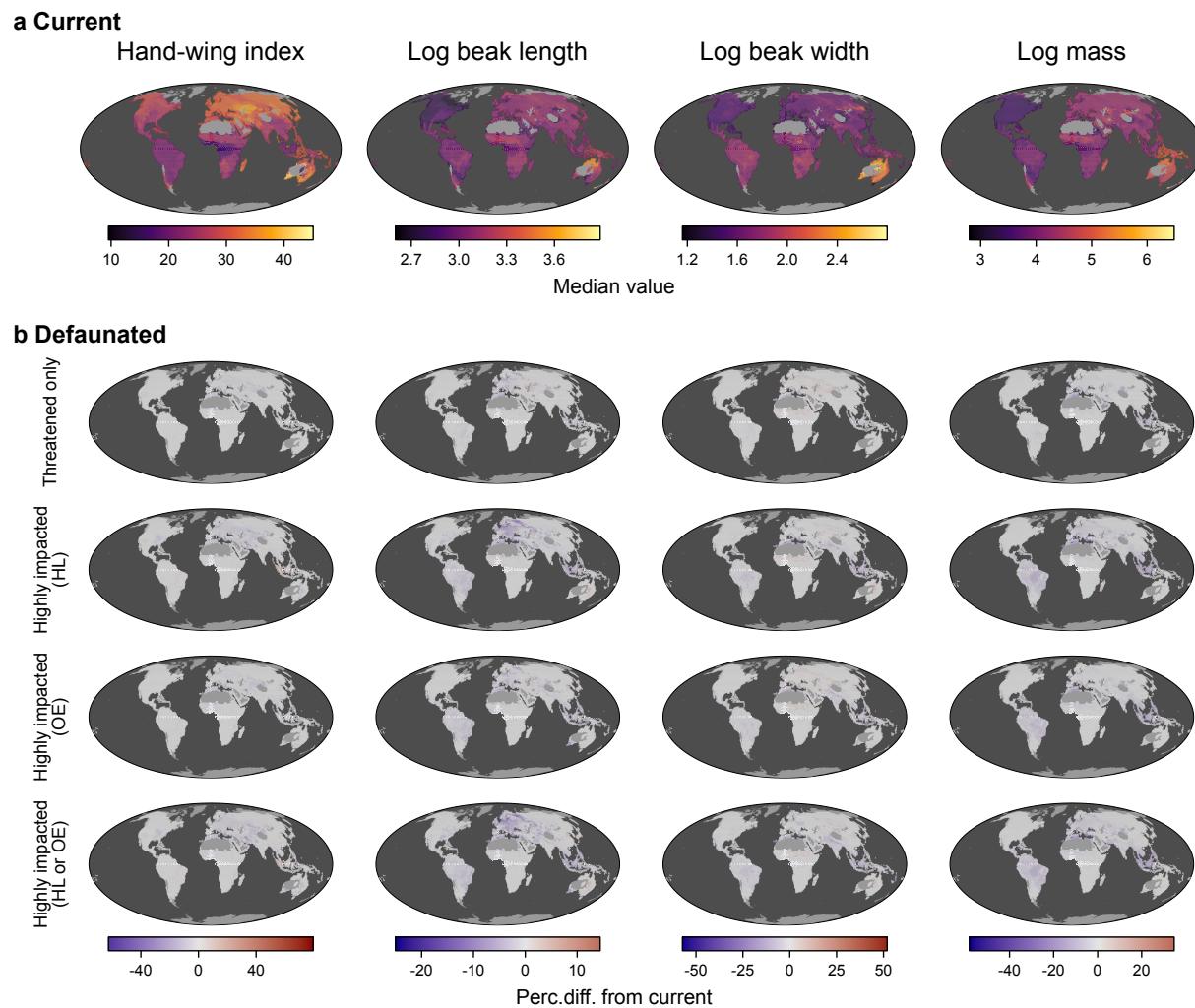



**Supplementary Figure 2 | Distribution of frugivorous birds impacted by overexploitation (OE).** Species richness maps were generated by overlaying the extant, native and full (resident and seasonal) geographic ranges of species (see Methods). Frugivores were categorised as either primary ( $\geq 60\%$  fruit in diet;  $n = 1,188$  species) or occasional (30–60 % fruit in diet;  $n = 1,275$  species). IUCN threat scores were used to define species as either impacted (any threat score, or where the threat score was unknown) or as highly impacted species (threat scores  $\geq 6$ ). Map in Molleweide projection, 100 x 100 km grid cells. White areas do not have any species meeting the frugivory criteria.

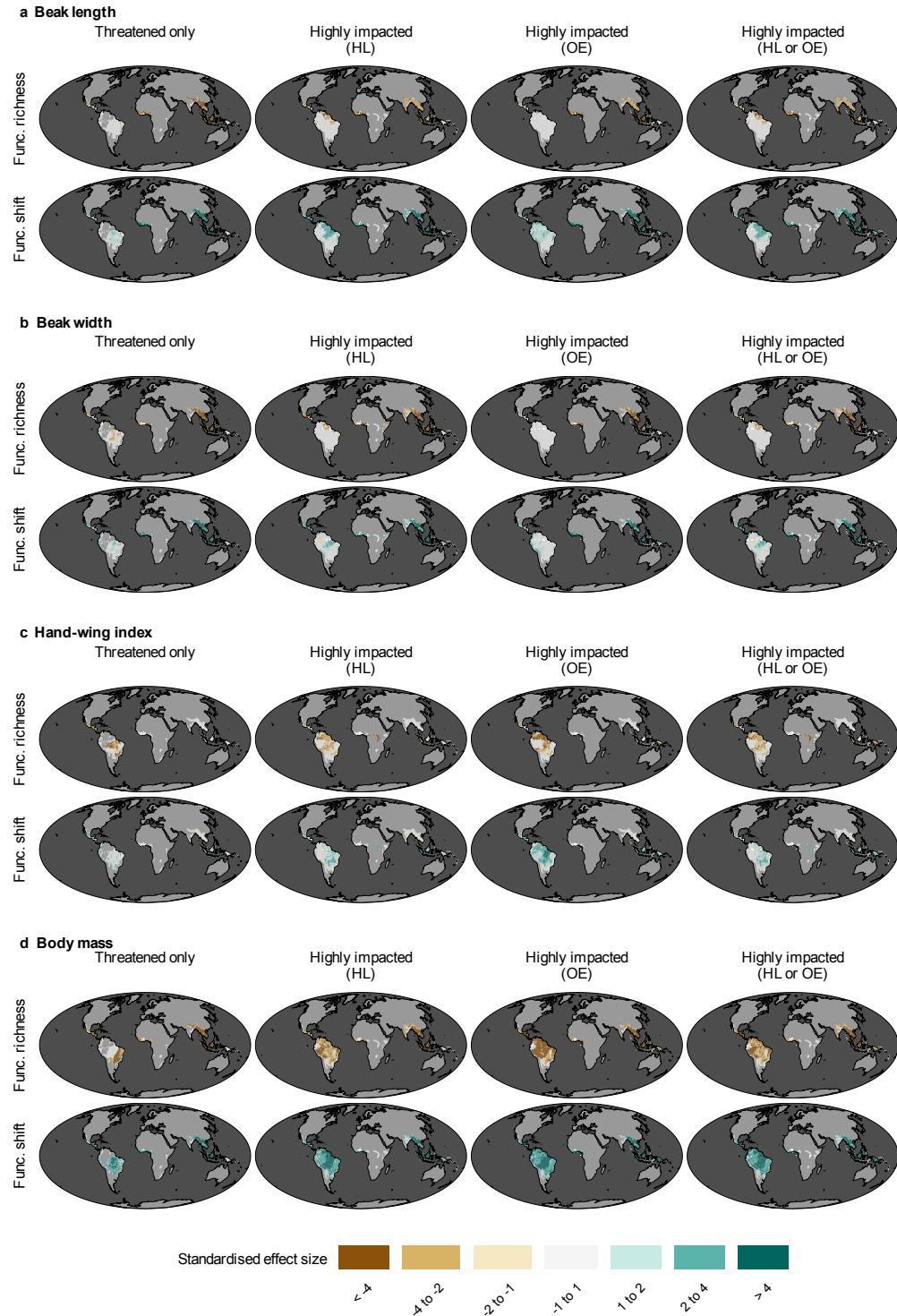



**Supplementary Figure 3 | Relative species richness difference between frugivorous birds impacted by habitat loss and degradation and those affected by overexploitation.** Species richness maps were generated by overlaying the extant, native and full (resident and seasonal) geographic ranges of species (see Methods). Frugivores were categorised as either primary ( $\geq 60\%$  fruit in diet;  $n = 1,188$  species) or occasional (30–60 % fruit in diet;  $n = 1,275$  species). IUCN threat scores were used to define species as either impacted (any threat score, or where the threat score was unknown) or as highly impacted species (threat scores  $\geq 6$ ). The relative difference between the two threat types was calculated as the number of species proportional to the cell with the maximum number of species for each threat type. Green areas have relatively more species impacted by habitat loss than by overexploitation, and vice versa for purple areas. Map in Molleweide projection, 100 x 100 km grid cells. White areas do not have any species meeting the frugivory criteria.

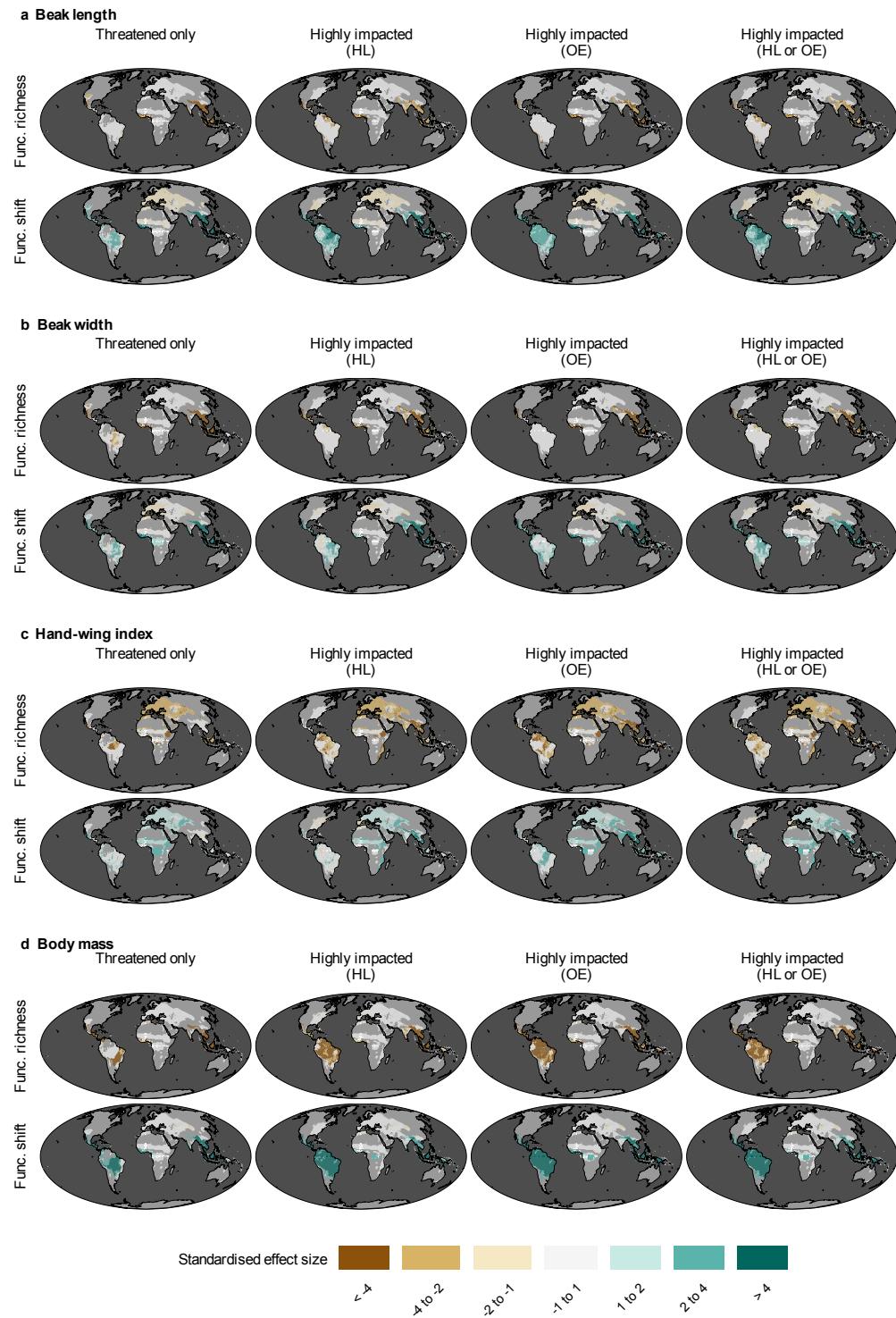



**Supplementary Figure 4 | Trait values of primary frugivore assemblages after defaunation of threatened or highly impacted primary avian frugivore species.** a) Median trait value of primary frugivore (diet consists of  $\geq 60\%$  fruit,  $n = 1,188$  species) assemblages under current conditions. b) Percentage change in median trait values after removal of species considered threatened by IUCN (threatened only), and species considered highly impacted (threat score  $\geq 6$ ) by habitat loss (HL), overexploitation (OE) or either (HL or OE).

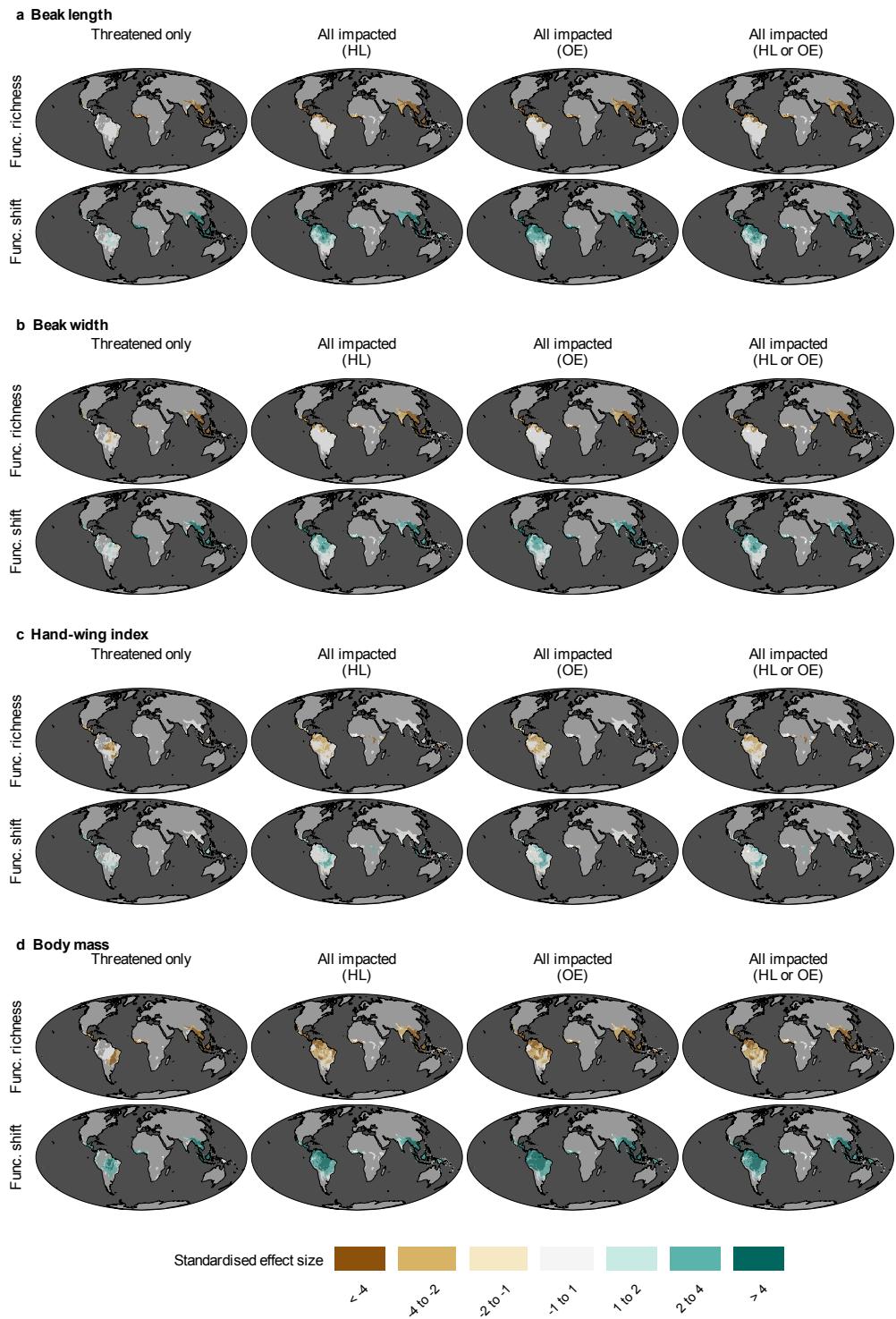



**Supplementary Figure 5 | Trait change in primary and occasional frugivore assemblages after defaunation of threatened species and species highly impacted by habitat loss or overexploitation.** a) Median trait value of primary and occasional frugivore (diet consists of  $\geq 30\%$  fruit,  $n = 2,463$  species) assemblages under current conditions. b) Percentage change in median trait value after removal of species considered threatened by IUCN (threatened only), and species considered highly impacted (threat score  $\geq 6$ ) by habitat loss (HL), overexploitation (OE) or either (HL or OE).

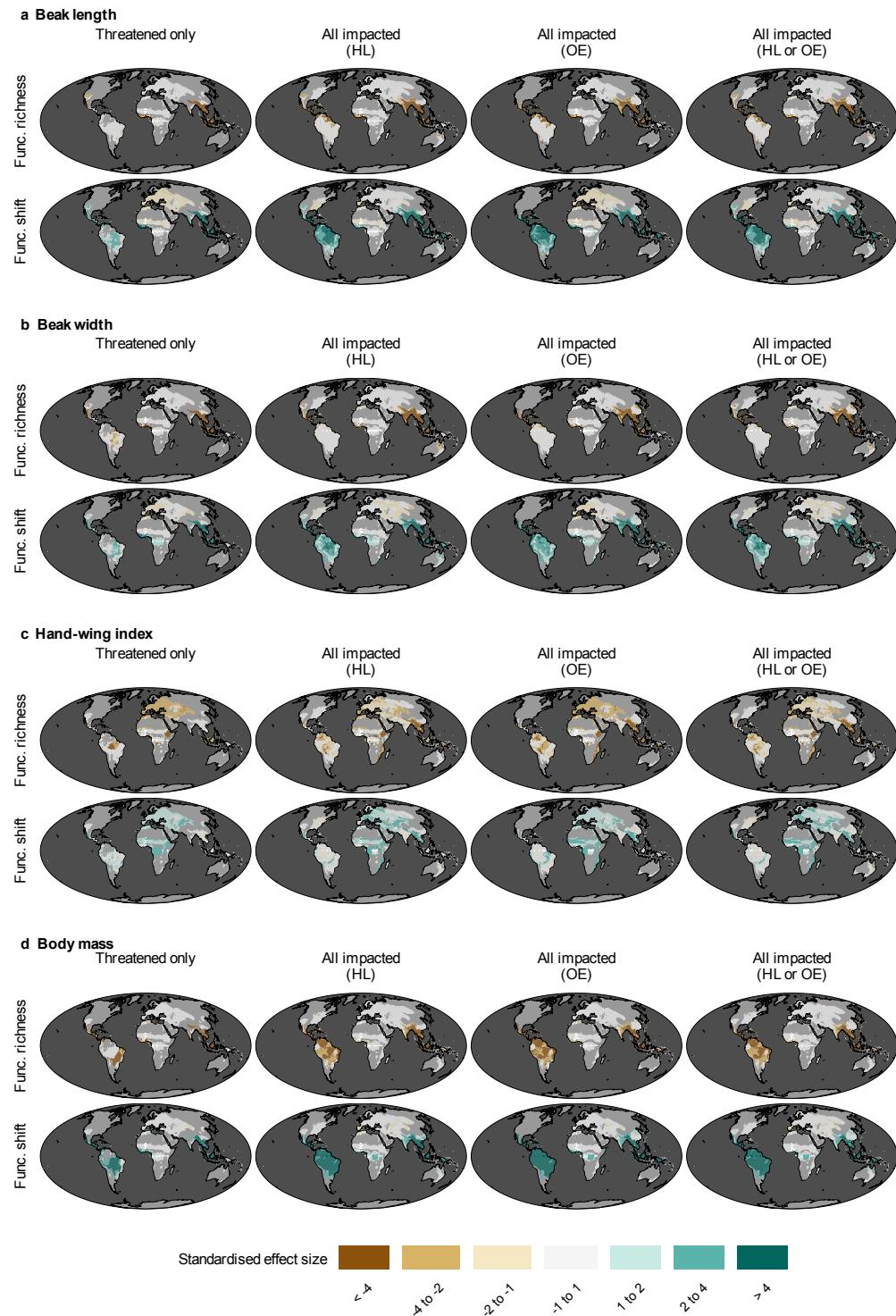



**Supplementary Figure 6 | Trait change in primary frugivore assemblages after defaunation of threatened species and species impacted by habitat loss or overexploitation.** a) Median trait value of primary frugivore (diet consists of  $\geq 60\%$  fruit,  $n = 1,188$  species) assemblages under current conditions. b) Percentage change in median trait value after removal of species considered threatened by IUCN (threatened only), and species considered impacted (with any threat score or threat score is unknown) by habitat loss (HL), overexploitation (OE) or either (HL or OE).

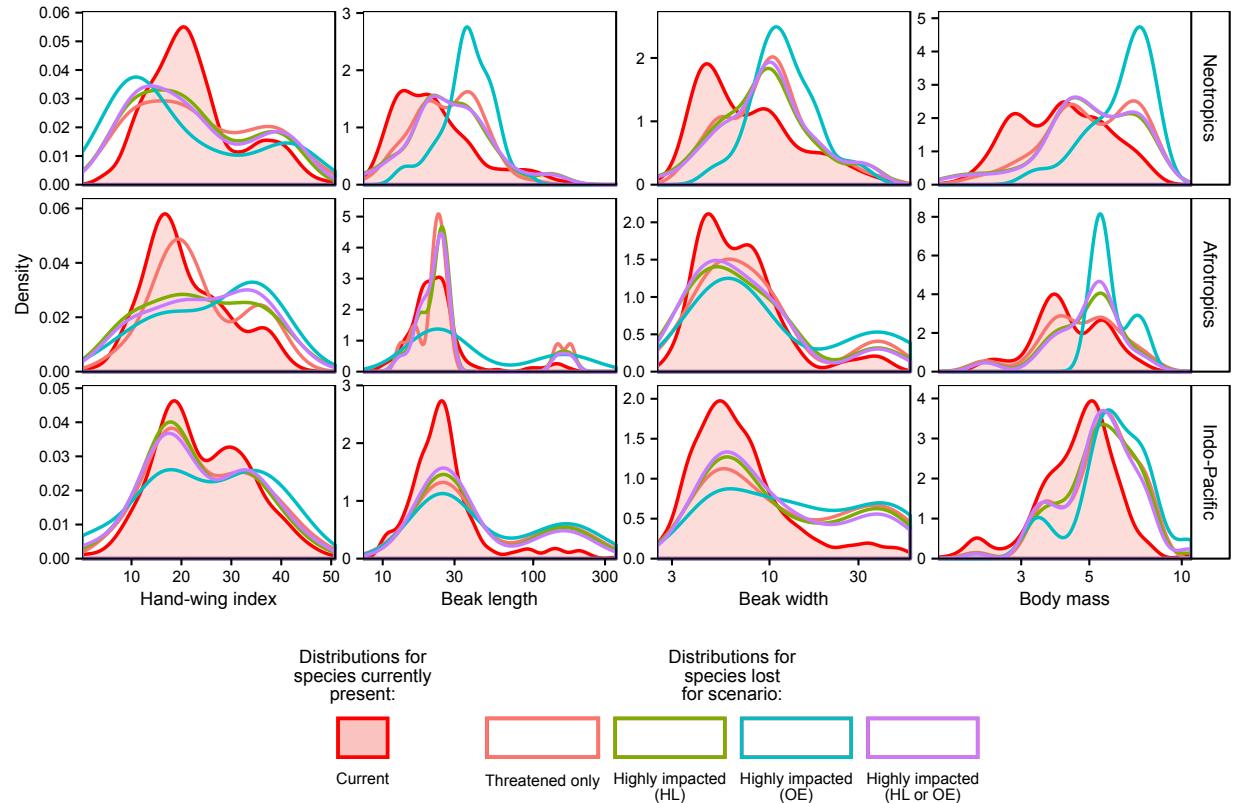



**Supplementary Figure 7 | Trait change in primary and occasional frugivore assemblages after defaunation of threatened species and species impacted by habitat loss or overexploitation.** a) Median trait value of primary and occasional frugivore (diet consists of  $\geq 30\%$  fruit,  $n = 2,463$  species) assemblages under current conditions. b) Percentage change in median trait value after removal of species considered threatened by IUCN (threatened only), and species considered impacted (with any threat score or threat score is unknown) by habitat loss (HL), overexploitation (OE) or either (HL or OE).

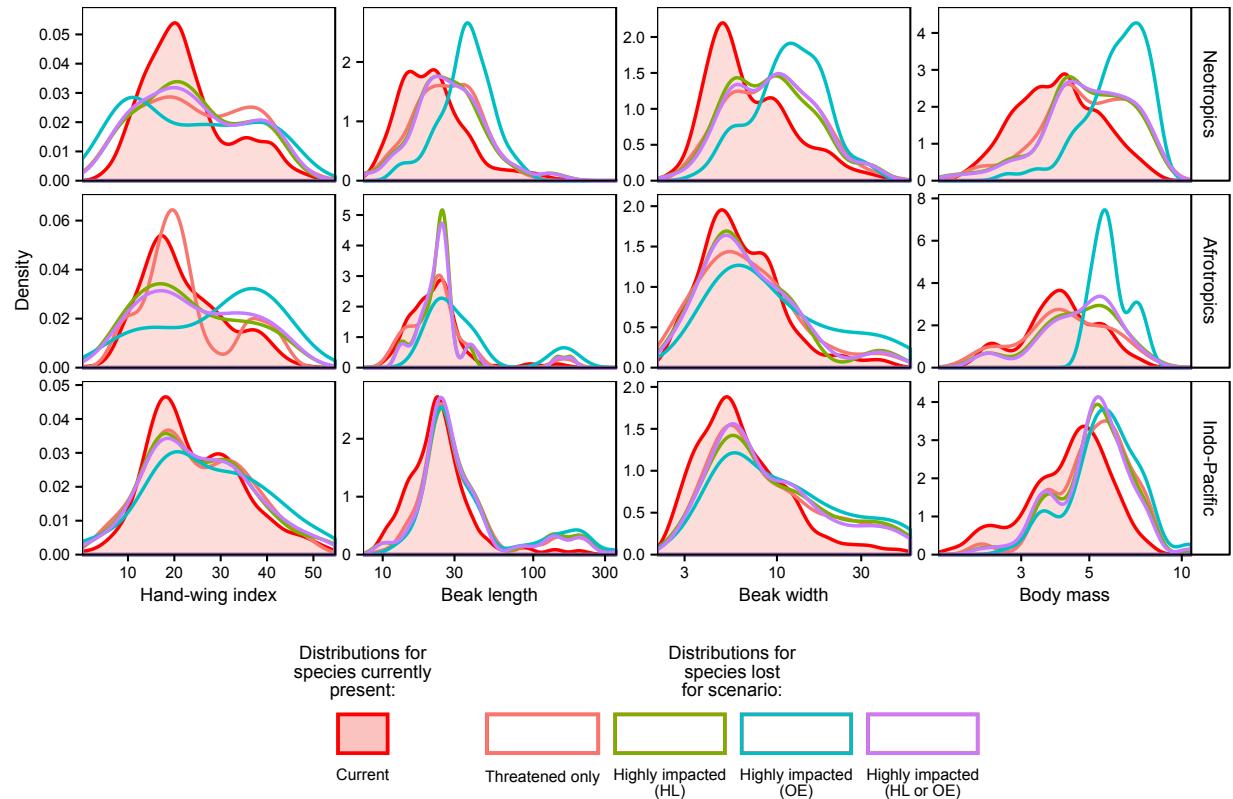



**Supplementary Figure 8 | Standardised effect of defaunation of threatened species and species highly impacted by habitat loss or overexploitation on the functional diversity of individual traits of primary frugivore assemblages.** Primary frugivores are those whose diet consists of  $\geq 60\%$  fruit and species considered highly impacted by habitat loss (HL), overexploitation (OE) or either (HL or OE) have threat scores  $\geq 6$  for the respective threat. Functional richness was calculated as the range of trait values of a defaunated assemblage. Functional shift was calculated as the difference in mean trait value between an intact assemblage and the defaunated assemblage. Standardised effect sizes were calculated by comparing functional diversity values with null assemblages with random losses (see Methods).

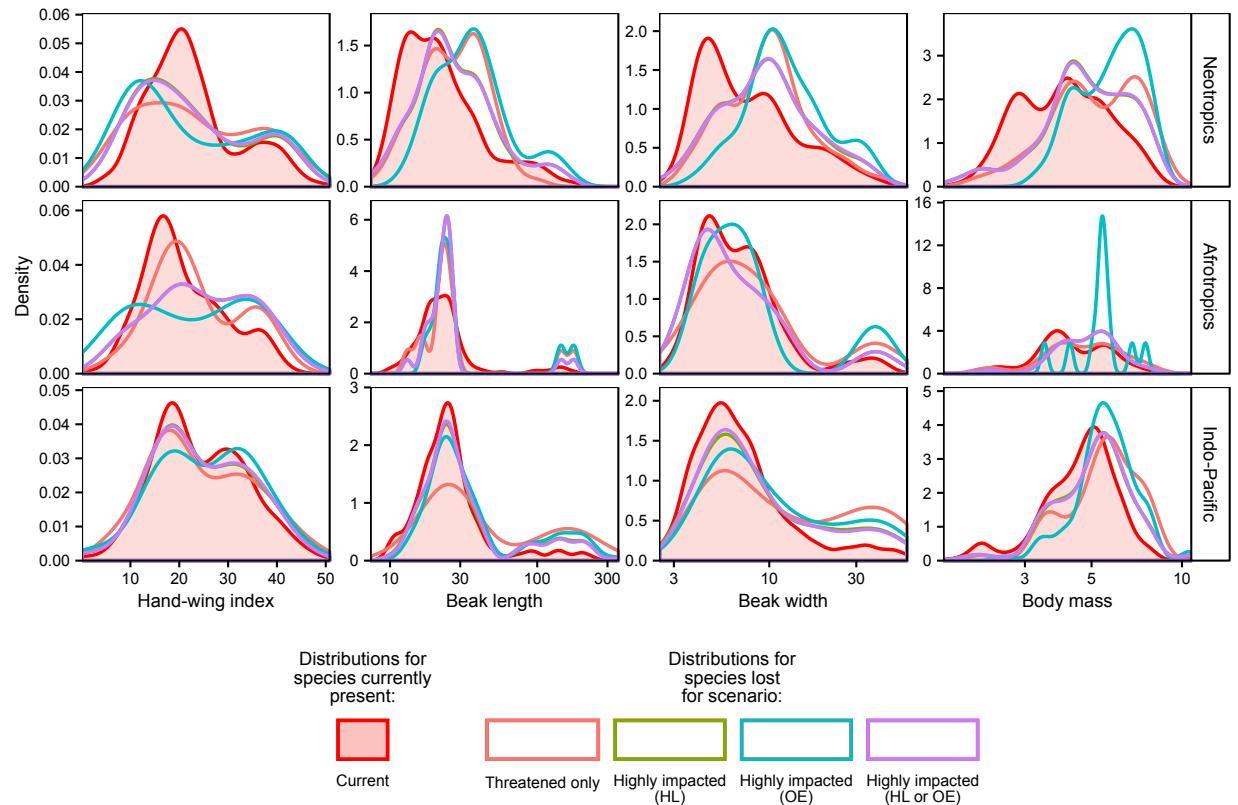



**Supplementary Figure 9 | Standardised effect of defaunation of threatened species and species highly impacted by habitat loss or overexploitation on the functional diversity of individual traits of primary and occasional frugivore assemblages.** Primary and occasional frugivores are those whose diet consists of  $\geq 30\%$  fruit and species considered highly impacted by habitat loss (HL), overexploitation (OE) or either (HL or OE) have threat scores  $\geq 6$  for the respective threat. Functional richness was calculated as the range of trait values of a defaunated assemblage. Functional shift was calculated as the difference in mean trait value between an intact assemblage and the defaunated assemblage. Standardised effect sizes were calculated by comparing functional diversity values with null assemblages with random losses (see Methods).

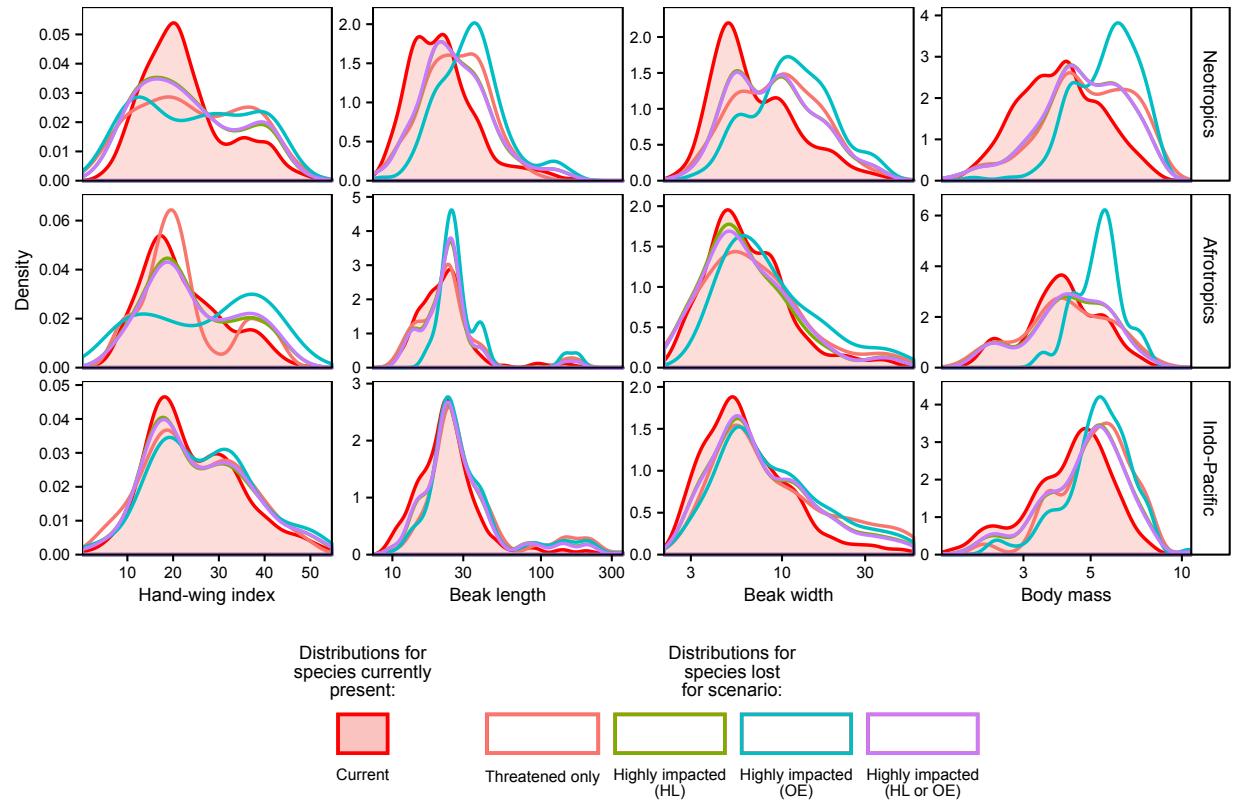



**Supplementary Figure 10 | Standardised effect of defaunation of threatened species and species impacted by habitat loss or overexploitation on the functional diversity of individual traits of primary frugivore assemblages.** Primary frugivores are those whose diet consists of  $\geq 60\%$  fruit and species considered highly impacted by habitat loss (HL), overexploitation (OE) or either (HL or OE) have any threat score, or the threat score was unknown, for the respective threat. Functional richness was calculated as the range of trait values of a defaunated assemblage. Functional shift was calculated as the difference in mean trait value between an intact assemblage and the defaunated assemblage. Standardised effect sizes were calculated by comparing functional diversity values with null assemblages with random losses (see Methods).




**Supplementary Figure 11 | Standardised effect of defaunation of threatened species and species impacted by habitat loss or overexploitation on the functional diversity of individual traits of primary and occasional frugivore assemblages.** Primary and occasional frugivores are those whose diet consists of  $\geq 30\%$  fruit and species considered highly impacted by habitat loss (HL), overexploitation (OE) or either (HL or OE) have any threat score, or the threat score was unknown, for the respective threat. Functional richness was calculated as the range of trait values of a defaunated assemblage. Functional shift was calculated as the difference in mean trait value between an intact assemblage and the defaunated assemblage. Standardised effect sizes were calculated by comparing functional diversity values with null assemblages with random losses (see Methods).




**Supplementary Figure 12 | Trait distribution of threatened and highly impacted primary frugivores.** Red polygons represent the trait distributions of primary frugivore species (diet consists of  $\geq 60\%$  fruit,  $n = 1,188$  species) present within each region. Coloured lines represent the trait distributions of species that would be removed in eligible grid cells under “Threatened only”, “HL”, “OE” and “HL or OE” scenarios (see Methods; Fig. 2).



**Supplementary Figure 13 | Trait distributions of threatened and highly impacted primary and occasional frugivores.** Red polygons represent the trait distributions of primary and occasional frugivore species (diet consists of  $\geq 30\%$  fruit,  $n = 2,463$  species) present within the region. Coloured lines represent the trait distributions of species that would be removed in eligible grid cells under “Threatened only”, “HL”, “OE” and “HL or OE” scenarios (see Methods; Extended Data Fig. 5a).



**Supplementary Figure 14 | Trait distributions of threatened and all impacted primary frugivores.** Red polygons are the trait distributions for primary frugivores species (diet consists of  $\geq 60\%$  fruit,  $n = 1,188$  species) present within each region. Coloured lines represent the trait distributions of species that would be removed in eligible grid cells under “Threatened only”, “HL”, “OE” and “HL or OE” scenarios (see Methods; Extended Data Fig. 5b)



**Supplementary Figure 15 | Trait distributions of threatened and all impacted primary and occasional frugivores.** Red polygons are the trait distributions for primary and occasional frugivore species (diet consists of  $\geq 30\%$  fruit,  $n = 2,463$  species) currently present within the region. Coloured lines represent the trait distributions of species that would be removed in eligible grid cells under “Threatened only”, “HL”, “OE” and “HL or OE” scenarios (see Methods; Extended Data Fig. 5c)

<sup>20</sup> **Supplementary Tables**

**Supplementary Table 1 | Principal component (PC) loadings for avian frugivore morphological traits.**

|                                  | PC1   | PC2   | PC3   | PC4   |
|----------------------------------|-------|-------|-------|-------|
| Hand Wing Index                  | -0.13 | -0.97 | 0.05  | 0.19  |
| Log Body Mass                    | -0.56 | 0.03  | 0.72  | -0.41 |
| Log Beak Width                   | -0.57 | -0.05 | -0.69 | -0.44 |
| Log Beak Length                  | -0.59 | 0.23  | -0.03 | 0.78  |
| Proportion of variance explained | 0.63  | 0.25  | 0.08  | 0.03  |

**Supplementary Table 2 | Defaunation impacts on the functional diversity of primary frugivore assemblages (diet  $\geq$  60% fruit) and potential impacts on natural restoration potential.** Magnitude of functional change is based on the ‘Threatened only’ defaunation scenario.  $n$  = total number of eligible grid cells in each tropical realm or globally (see Methods)

|                                | Functional change            | Restoration potential | Functional richness | Functional shift |
|--------------------------------|------------------------------|-----------------------|---------------------|------------------|
|                                |                              |                       | Prop. of cells      | Prop. of cells   |
| Global<br>( $n = 5649$ )       | Low                          | Low                   | 0.506               | 0.496            |
|                                | Low                          | Medium                | 0.133               | 0.129            |
|                                | Low                          | High                  | 0.157               | 0.156            |
|                                | Medium                       | Low                   | 0.041               | 0.048            |
|                                | Medium                       | Medium                | 0.048               | 0.038            |
|                                | Medium                       | High                  | 0.053               | 0.036            |
|                                | High                         | Low                   | 0.016               | 0.019            |
|                                | High                         | Medium                | 0.025               | 0.040            |
|                                | High                         | High                  | 0.021               | 0.038            |
|                                | Neotropics<br>( $n = 1611$ ) | Low                   | 0.385               | 0.369            |
| Neotropics<br>( $n = 1611$ )   | Low                          | Medium                | 0.156               | 0.168            |
|                                | Low                          | High                  | 0.190               | 0.213            |
|                                | Medium                       | Low                   | 0.065               | 0.106            |
|                                | Medium                       | Medium                | 0.055               | 0.061            |
|                                | Medium                       | High                  | 0.083               | 0.082            |
|                                | High                         | Low                   | 0.025               | 0.000            |
|                                | High                         | Medium                | 0.018               | 0.001            |
|                                | High                         | High                  | 0.022               | 0.001            |
| Afrotropics<br>( $n = 1841$ )  | Low                          | Low                   | 0.786               | 0.781            |
|                                | Low                          | Medium                | 0.118               | 0.107            |
|                                | Low                          | High                  | 0.067               | 0.049            |
|                                | Medium                       | Low                   | 0.008               | 0.014            |
|                                | Medium                       | Medium                | 0.003               | 0.008            |
|                                | Medium                       | High                  | 0.004               | 0.010            |
|                                | High                         | Low                   | 0.010               | 0.010            |
|                                | High                         | Medium                | 0.003               | 0.009            |
|                                | High                         | High                  | 0.001               | 0.012            |
| Indo-Pacific<br>( $n = 1336$ ) | Low                          | Low                   | 0.397               | 0.388            |
|                                | Low                          | Medium                | 0.111               | 0.091            |
|                                | Low                          | High                  | 0.073               | 0.066            |
|                                | Medium                       | Low                   | 0.065               | 0.037            |
|                                | Medium                       | Medium                | 0.105               | 0.060            |
|                                | Medium                       | High                  | 0.098               | 0.030            |
|                                | High                         | Low                   | 0.020               | 0.058            |
|                                | High                         | Medium                | 0.073               | 0.138            |
|                                | High                         | High                  | 0.057               | 0.132            |

**Supplementary Table 3 | Defaunation impacts on the functional diversity of primary and occasional frugivore assemblages (diet  $\geq 30\%$  fruit) and potential impacts on natural restoration potential.** Magnitude of functional change is based on the ‘Threatened only’ defaunation scenario.  $n$  = total number of eligible grid cells in each tropical realm or globally (see Methods).

|                                | Functional change | Restoration potential | Functional richness | Functional shift |
|--------------------------------|-------------------|-----------------------|---------------------|------------------|
|                                |                   |                       | Prop. of cells      | Prop. of cells   |
| Global<br>( $n = 13055$ )      | Low               | Low                   | 0.614               | 0.616            |
|                                | Low               | Medium                | 0.130               | 0.123            |
|                                | Low               | High                  | 0.139               | 0.127            |
|                                | Medium            | Low                   | 0.029               | 0.028            |
|                                | Medium            | Medium                | 0.026               | 0.025            |
|                                | Medium            | High                  | 0.010               | 0.013            |
|                                | High              | Low                   | 0.013               | 0.027            |
|                                | High              | Medium                | 0.017               | 0.010            |
|                                | High              | High                  | 0.022               | 0.020            |
|                                | Low               | Low                   | 0.425               | 0.368            |
| Neotropics<br>( $n = 1717$ )   | Low               | Medium                | 0.154               | 0.162            |
|                                | Low               | High                  | 0.052               | 0.024            |
|                                | Medium            | Low                   | 0.047               | 0.186            |
|                                | Medium            | Medium                | 0.086               | 0.041            |
|                                | Medium            | High                  | 0.031               | 0.027            |
|                                | High              | Low                   | 0.056               | 0.092            |
|                                | High              | Medium                | 0.044               | 0.066            |
|                                | High              | High                  | 0.105               | 0.034            |
|                                | Low               | Low                   | 0.079               | 0.099            |
|                                | Low               | Medium                | 0.037               | 0.034            |
| Afrotropics<br>( $n = 2184$ )  | Low               | High                  | 0.009               | 0.013            |
|                                | Medium            | Low                   | 0.006               | 0.003            |
|                                | Medium            | Medium                | 0.007               | 0.009            |
|                                | Medium            | High                  | 0.006               | 0.004            |
|                                | High              | Low                   | 0.037               | 0.042            |
|                                | High              | Medium                | 0.035               | 0.034            |
|                                | High              | High                  | 0.049               | 0.058            |
|                                | Low               | Low                   | 0.465               | 0.396            |
|                                | Low               | Medium                | 0.094               | 0.055            |
|                                | Low               | High                  | 0.094               | 0.082            |
| Indo-Pacific<br>( $n = 1552$ ) | Medium            | Low                   | 0.045               | 0.047            |
|                                | Medium            | Medium                | 0.034               | 0.041            |
|                                | Medium            | High                  | 0.035               | 0.012            |
|                                | High              | Low                   | 0.021               | 0.042            |
|                                | High              | Medium                | 0.095               | 0.056            |
|                                | High              | High                  | 0.101               | 0.156            |

**Supplementary Table 4 | Table S4 | Defaunation impacts on the functional diversity of primary frugivore assemblages (diet  $\geq$  60% fruit) and potential impacts on natural restoration potential.** Magnitude of functional change is based on the ‘HL or OE’ defaunation scenario whereby any species with threat score  $\geq 6$  in either category is considered highly impacted.  $n$  = total number of eligible grid cells in each tropical realm or globally (see Methods).

|                                | Functional change | Restoration potential | Functional richness | Functional shift |
|--------------------------------|-------------------|-----------------------|---------------------|------------------|
|                                |                   |                       | Prop. of cells      | Prop. of cells   |
| Global<br>( $n = 5647$ )       | Low               | Low                   | 0.481               | 0.439            |
|                                | Low               | Medium                | 0.139               | 0.109            |
|                                | Low               | High                  | 0.169               | 0.127            |
|                                | Medium            | Low                   | 0.069               | 0.100            |
|                                | Medium            | Medium                | 0.060               | 0.106            |
|                                | Medium            | High                  | 0.055               | 0.058            |
|                                | High              | Low                   | 0.012               | 0.023            |
|                                | High              | Medium                | 0.008               | 0.023            |
|                                | High              | High                  | 0.007               | 0.049            |
| Neotropics<br>( $n = 1611$ )   | Low               | Low                   | 0.341               | 0.274            |
|                                | Low               | Medium                | 0.184               | 0.177            |
|                                | Low               | High                  | 0.107               | 0.217            |
|                                | Medium            | Low                   | 0.032               | 0.093            |
|                                | Medium            | Medium                | 0.058               | 0.142            |
|                                | Medium            | High                  | 0.026               | 0.071            |
|                                | High              | Low                   | 0.013               | 0.040            |
|                                | High              | Medium                | 0.015               | 0.045            |
|                                | High              | High                  | 0.007               | 0.041            |
| Afrotropics<br>( $n = 1840$ )  | Low               | Low                   | 0.427               | 0.358            |
|                                | Low               | Medium                | 0.108               | 0.110            |
|                                | Low               | High                  | 0.066               | 0.095            |
|                                | Medium            | Low                   | 0.020               | 0.068            |
|                                | Medium            | Medium                | 0.013               | 0.032            |
|                                | Medium            | High                  | 0.009               | 0.017            |
|                                | High              | Low                   | 0.007               | 0.012            |
|                                | High              | Medium                | 0.004               | 0.010            |
|                                | High              | High                  | 0.002               | 0.010            |
| Indo-Pacific<br>( $n = 1335$ ) | Low               | Low                   | 0.353               | 0.307            |
|                                | Low               | Medium                | 0.202               | 0.118            |
|                                | Low               | High                  | 0.172               | 0.076            |
|                                | Medium            | Low                   | 0.119               | 0.096            |
|                                | Medium            | Medium                | 0.139               | 0.056            |
|                                | Medium            | High                  | 0.012               | 0.061            |
|                                | High              | Low                   | 0.015               | 0.131            |

**Supplementary Table 5 | Defaunation impacts on the functional diversity of primary and occasional frugivore assemblages (diet  $\geq 30\%$  fruit) and potential impacts on natural restoration potential.** Magnitude of functional change is based on the ‘HL or OE’ defaunation scenario whereby any species with threat score  $\geq 6$  in either category is considered highly impacted.  $n$  = total number of eligible grid cells in each tropical realm or globally (see Methods).

|                                | Functional change | Restoration potential | Functional richness | Functional shift |
|--------------------------------|-------------------|-----------------------|---------------------|------------------|
|                                |                   |                       | Prop. of cells      | Prop. of cells   |
| Global<br>( $n = 13053$ )      | Low               | Low                   | 0.603               | 0.573            |
|                                | Low               | Medium                | 0.126               | 0.109            |
|                                | Low               | High                  | 0.132               | 0.106            |
|                                | Medium            | Low                   | 0.044               | 0.053            |
|                                | Medium            | Medium                | 0.022               | 0.057            |
|                                | Medium            | High                  | 0.024               | 0.047            |
|                                | High              | Low                   | 0.022               | 0.047            |
|                                | High              | Medium                | 0.014               | 0.028            |
|                                | High              | High                  | 0.012               | 0.021            |
|                                | Low               | Low                   | 0.573               | 0.505            |
| Neotropics<br>( $n = 1717$ )   | Low               | Medium                | 0.160               | 0.109            |
|                                | Low               | High                  | 0.405               | 0.096            |
|                                | Medium            | Low                   | 0.094               | 0.044            |
|                                | Medium            | Medium                | 0.051               | 0.075            |
|                                | Medium            | High                  | 0.054               | 0.084            |
|                                | High              | Low                   | 0.009               | 0.047            |
|                                | High              | Medium                | 0.028               | 0.028            |
|                                | High              | High                  | 0.014               | 0.052            |
|                                | Low               | Low                   | 0.774               | 0.736            |
|                                | Low               | Medium                | 0.040               | 0.043            |
| Afrotropics<br>( $n = 2184$ )  | Low               | High                  | 0.047               | 0.027            |
|                                | Medium            | Low                   | 0.014               | 0.014            |
|                                | Medium            | Medium                | 0.005               | 0.010            |
|                                | Medium            | High                  | 0.009               | 0.016            |
|                                | High              | Low                   | 0.016               | 0.014            |
|                                | High              | Medium                | 0.019               | 0.015            |
|                                | High              | High                  | 0.015               | 0.024            |
|                                | Low               | Low                   | 0.416               | 0.350            |
|                                | Low               | Medium                | 0.078               | 0.097            |
|                                | Low               | High                  | 0.278               | 0.082            |
| Indo-Pacific<br>( $n = 1548$ ) | Medium            | Low                   | 0.105               | 0.066            |
|                                | Medium            | Medium                | 0.085               | 0.048            |
|                                | Medium            | High                  | 0.048               | 0.049            |
|                                | High              | Low                   | 0.018               | 0.192            |
|                                | High              | Medium                | 0.017               | 0.028            |
|                                | High              | High                  | 0.092               | 0.088            |

**Supplementary Table 6 | Defaunation impacts on the functional diversity of primary frugivore assemblages (diet  $\geq$  60% fruit) and potential impacts on natural restoration potential.** Magnitude of functional change is based on the ‘HL or OE’ defaunation scenario whereby any species with any threat score, or threat score is unknown, for either category is considered impacted.  $n$  = total number of eligible grid cells in each tropical realm or globally (see Methods).

|                                | Functional change | Restoration potential | Functional richness | Functional shift |
|--------------------------------|-------------------|-----------------------|---------------------|------------------|
|                                |                   |                       | Prop. of cells      | Prop. of cells   |
| Global<br>( $n = 5626$ )       | Low               | Low                   | 0.483               | 0.412            |
|                                | Low               | Medium                | 0.136               | 0.099            |
|                                | Low               | High                  | 0.149               | 0.111            |
|                                | Medium            | Low                   | 0.063               | 0.100            |
|                                | Medium            | Medium                | 0.054               | 0.053            |
|                                | Medium            | High                  | 0.059               | 0.053            |
|                                | High              | Low                   | 0.015               | 0.049            |
|                                | High              | Medium                | 0.017               | 0.055            |
|                                | High              | High                  | 0.024               | 0.068            |
|                                |                   |                       |                     |                  |
| Neotropics<br>( $n = 1611$ )   | Low               | Low                   | 0.327               | 0.122            |
|                                | Low               | Medium                | 0.166               | 0.076            |
|                                | Low               | High                  | 0.176               | 0.094            |
|                                | Medium            | Low                   | 0.111               | 0.222            |
|                                | Medium            | Medium                | 0.049               | 0.073            |
|                                | Medium            | High                  | 0.096               | 0.082            |
|                                | High              | Low                   | 0.037               | 0.130            |
|                                | High              | Medium                | 0.015               | 0.081            |
|                                | High              | High                  | 0.024               | 0.120            |
|                                |                   |                       |                     |                  |
| Afrotropics<br>( $n = 1839$ )  | Low               | Low                   | 0.778               | 0.788            |
|                                | Low               | Medium                | 0.108               | 0.111            |
|                                | Low               | High                  | 0.065               | 0.057            |
|                                | Medium            | Low                   | 0.021               | 0.016            |
|                                | Medium            | Medium                | 0.013               | 0.013            |
|                                | Medium            | High                  | 0.005               | 0.014            |
|                                | High              | Low                   | 0.005               | 0.000            |
|                                | High              | Medium                | 0.004               | 0.001            |
|                                | High              | High                  | 0.001               | 0.000            |
|                                |                   |                       |                     |                  |
| Indo-Pacific<br>( $n = 1315$ ) | Low               | Low                   | 0.382               | 0.332            |
|                                | Low               | Medium                | 0.126               | 0.079            |
|                                | Low               | High                  | 0.060               | 0.026            |
|                                | Medium            | Low                   | 0.089               | 0.106            |
|                                | Medium            | Medium                | 0.135               | 0.106            |
|                                | Medium            | High                  | 0.118               | 0.078            |
|                                | High              | Low                   | 0.005               | 0.038            |
|                                | High              | Medium                | 0.031               | 0.107            |
|                                | High              | High                  | 0.054               | 0.129            |
|                                |                   |                       |                     |                  |

**Supplementary Table 7 | Defaunation impacts on the functional diversity of primary and occasional frugivore assemblages (diet  $\geq 30\%$  fruit) and potential impacts on natural restoration potential.** Magnitude of functional change is based on the ‘HL or OE’ defaunation scenario whereby any species with any threat score, or threat score is unknown, for either category is considered impacted.  $n$  = total number of eligible grid cells in each tropical realm or globally (see Methods).

|                                | Functional change | Restoration potential | Functional richness | Functional shift |
|--------------------------------|-------------------|-----------------------|---------------------|------------------|
|                                |                   |                       | Prop. of cells      | Prop. of cells   |
| Global<br>( $n = 13035$ )      | Low               | Low                   | 0.593               | 0.559            |
|                                | Low               | Medium                | 0.119               | 0.105            |
|                                | Low               | High                  | 0.124               | 0.104            |
|                                | Medium            | Low                   | 0.054               | 0.049            |
|                                | Medium            | Medium                | 0.030               | 0.023            |
|                                | Medium            | High                  | 0.027               | 0.020            |
|                                | High              | Low                   | 0.013               | 0.053            |
|                                | High              | Medium                | 0.018               | 0.039            |
|                                | High              | High                  | 0.023               | 0.049            |
|                                | Low               | Low                   | 0.366               | 0.076            |
| Neotropics<br>( $n = 1717$ )   | Low               | Medium                | 0.142               | 0.023            |
|                                | Low               | High                  | 0.156               | 0.019            |
|                                | Medium            | Low                   | 0.122               | 0.141            |
|                                | Medium            | Medium                | 0.062               | 0.058            |
|                                | Medium            | High                  | 0.087               | 0.058            |
|                                | High              | Low                   | 0.016               | 0.287            |
|                                | High              | Medium                | 0.015               | 0.137            |
|                                | High              | High                  | 0.035               | 0.200            |
|                                | Low               | Low                   | 0.755               | 0.797            |
|                                | Low               | Medium                | 0.075               | 0.085            |
| Afrotropics<br>( $n = 2184$ )  | Low               | High                  | 0.042               | 0.042            |
|                                | Medium            | Low                   | 0.054               | 0.038            |
|                                | Medium            | Medium                | 0.015               | 0.019            |
|                                | Medium            | High                  | 0.004               | 0.015            |
|                                | High              | Low                   | 0.026               | 0.001            |
|                                | High              | Medium                | 0.015               | 0.000            |
|                                | High              | High                  | 0.015               | 0.003            |
|                                | Low               | Low                   | 0.413               | 0.361            |
|                                | Low               | Medium                | 0.080               | 0.076            |
|                                | Low               | High                  | 0.016               | 0.020            |
| Indo-Pacific<br>( $n = 1536$ ) | Medium            | Low                   | 0.102               | 0.087            |
|                                | Medium            | Medium                | 0.094               | 0.042            |
|                                | Medium            | High                  | 0.079               | 0.025            |
|                                | High              | Low                   | 0.031               | 0.100            |
|                                | High              | Medium                | 0.080               | 0.136            |
|                                | High              | High                  | 0.103               | 0.154            |