[\

0 3 N WO W

O

10
11
12
13

14
15

Supplementary Information

Origin of Voc in Perovskite Solar Cells by Faradaic Junction Model

Mengfan Xue'f, Zhoujun Li'", Qiong Wang'?, Yihong Chen?, Jun Luo?, Ruotong
Bao'!, Dongjian Jiang?, Shengyao Wang?, Bing Wang', Tao Yu', Yingfang Yao?,
Wenjun Luo?*, Zhigang Zou'~
"Eco-materials and Renewable Energy Research Center (ERERC), Jiangsu Key
Laboratory for Nano Technology, National Laboratory of Solid State Microstructures

and Department of Physics, Nanjing University, Nanjing 210093, China

2National Laboratory of Solid State Microstructures, College of Engineering and
Applied Sciences, Nanjing University, Nanjing 210093, China

3School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

"These authors contributed equally to this work.

*Email: wiluo@nju.edu.cn;



mailto:wjluo@nju.edu.cn

* MAPbI, MAPDbI,
A FTO

MAPbI,-Dense APbl;s-S:oroiﬁg i 7\

l LB ASparse
N W I D0 W

*
AT » Dense
b sdde s

10 20 30 40
1 6 2 Theta (degree)

17  Figure S1. SEM images of dense (a) and sparse (b) MAPbI;; (¢c) XRD patterns of dense
18  and sparse MAPDI.
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21  Figure S2. UV-Vis spectra (a) and PL spectra (b) of dense and sparse MAPDI;.
22

23

24 Figure S3. SEM images of MAPbI3/TiO; (a) and MAPbI3/Spiro-OMeTAD (b).
25
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27  Figure S4. Linear sweep voltammetry (LSV) curves of TiO»/dense MAPDbI; and
28  TiOy/sparse MAPbI3 under chopped illumination, electrolyte: 0.1M n-BusNPF¢ in
29  CHxCl.
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32 Figure S5. In situ XPS spectra of Pb 4f (a) and I 3d (b) of sparse MAPbI; in the dark
33 and under illumination.
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Figure S6. In situ XPS spectra of Sn 3d (a), O 1s (b) and I 3d (c) in a MAPbI3/TiO; half
device in the dark and under illumination; in situ XPS spectra of Sn 3d (d), O 1s (e) and
I 3d (f) in a MAPDbI3/TiO; half device connected with a MAPbIs/Spiro-OMeTAD half

device in the dark and under illumination.
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Figure S7. In situ XPS spectra of C Is (a) and N 1s (b) in MAPbI3/Spiro-OMeTAD in

the dark and under illumination.
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Figure S8. Schematic diagrams of FTO/TiO2/MAPbI3/Spiro-OMeTAD in open circuit
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Figure S9. In situ FTIR spectra of FTO/TiO2/MAPbI3/Spiro-OMeTAD in the dark and

under illumination in open circuit conditions (a) and its enlarged area (b); in short circuit
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Figure S10. In situ FTIR spectra of FTO/Spiro-OMeTAD (a) and FTO/MAPbI; (b) in

the dark and under illumination for 20 min.
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Figure S11. The changes of in situ FTIR spectra of FTO/TiO,/MAPDIs/Spiro-



58  OMeTAD/Au before and after illumination for 20 min in open circuit and short circuit

59  conditions.
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62  Figure S12. The changes of in situ FTIR spectra of MAPbI3/Spiro-OMeTAD in the dark
63  and under illumination.
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66  Figure S13. Kinetic traces of MAPbI; and MAPDbI3/Spiro-OMeTAD at 6369 nm. Both
67  films were excited with a laser pulse of 700 nm and a fluence of 246 pJ cm™2. Spiro-
68  OMEeTAD is abbreviated as Spiro in the Figure.
69
70  Table S1: Time coefficients of MAPbI3 and MAPbI3/Spiro-OMeTAD of kinetic traces
71  at 6369 nm by exponential fitting.
t1 (ps) 12 (ps) 13 (ps)
MAPDI;/Spiro 5.1 210.0 1633.0
MAPbI3 52 131.0 1261.0

72




73 Considering that charge transfer rate is an important factor that affect the interface
74  charge transfer process, we also measured the fs-TAS of MAPbI; and MAPDI3/Spiro-
75  OMEeTAD to further investigate the charge transfer time in perovskite solar cells, and
76  the kinetic traces are shown in Figure S13. The fit analysis of the two films is shown in
77  Table S1. While tl is carrier relaxation lifetime of photo-generated carriers in the
78  MAPDI;, 12 is the lifetime of surface trapping by the redox chemical reaction of 21" +
79  2h"—L," (* means the excited state) and 13 is the lifetime of I,". t1 in the two samples
80  is similar, but 12 and 13 in the MAPbI3/Spiro-OMeTAD are higher than that in the pure
81  MAPbI3, which suggest the longer lifetime of surface trapping and I,". The redox
82  chemical reaction process of 2I- + 2h*—1L," is hundreds of ps, which is close to the value
83  in the previous study!. Therefore, this faradaic junction charge transfer is very rapid

84  when current flows.
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87  Figure S14. Schematic diagrams of charger transfer processes in the simulated full

88  device (a) and the real full device (b).
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91  Figure S15. (a) Cross-section SEM image of a full device of FTO/TiO2/MAPDbI3/Spiro-
92 OMeTAD/Au; (b) TOF-SIMS spectra of FTO/TiO2/MAPbI3/Spiro-OMeTAD/Au in
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open circuit condition before and after illumination for 30 min.

The cross-section SEM image of a typical perovskite solar cell of
FTO/TiO2/MAPDI3/Spiro-OMeTAD/Au is shown in Figure S15a. TOF-SIMS was also
used to investigate ion distribution in a perovskite solar cell with different depths before
and after illumination in open circuit condition and the results are shown in Figure S15b.
By TOF-SIMS, the ion distribution in a solar cell is similar before and after illumination.
Therefore, the ion migration distance under illumination in open circuit condition is

possibly very short at the interface, which is hard to be detected.
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Figure S16. "H NMR spectra of Spiro-OMeTAD powder (DMSO-d6, 400MHz).
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Figure S17. '"H NMR spectra of Spiro-OMeTAD powder after exposure to I, vapor for
5 min in the dark (DMSO-d6, 400MHz).
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Figure S18. "H NMR spectra of Spiro-OMeTAD powder after exposure to I, vapor for
10 min in the dark (DMSO-d6, 400MHz).
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Figure S19. The CV curve of Pt wire in the electrolyte of 1 mM ferrocene and 0.1 M n-

BU4NPF6 in CHzClz.
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Figure S20. (a) I-t curves of MAPbI; at different reduction potentials (b) in the

electrolyte of 0.1 M n-BusNPFs in CH,Cl; (b) XRD patterns of raw MAPbI;, MAPbI;

at -1.07 V and -1.09 V vs. Fc/Fc*; SEM images of raw MAPDI; (c), MAPbI; after

electrochemical measurement at -1.07 V (d) and -1.09 V vs. Fc/Fc* (e); (f) EDS

mapping of MAPDI; after electrochemical measurement at -1.09 V vs. Fc/Fc*.
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Figure S21. (a) I-t curves of MAPbI; at different oxidation potentials (b) in the

electrolyte of 0.1 M n-BwNPF¢ in CH»Cly; (b) XRD patterns of MAPDI; after

electrochemical measurement at 0.14 V, 0.16 V and 0.18 V vs. Fc/Fc*; SEM images of

MAPDI; after electrochemical measurement at 0.14 V(c), 0.16 V (d) and 0.18 V (e) vs.

Fc/Fc'.
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Figure S22. (a) I-t curve of MAPbDI3 at 0.80 V vs. Fc¢/Fc¢' in the electrolyte of 0.1 M n-
BuwNPFs in CH>Cly; the XRD pattern (b) and SEM image (c) of MAPbI; after
electrochemical measurement at 0.80 V vs. Fc¢/Fc'; (d) UV-Vis spectra of the

electrolytes before and after electrochemical measurement of MAPbI; at 0.80 V vs.
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Figure S23. UV-Vis spectra (a) and UPS spectra (b) of MAPbI;.
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Figure S25. In situ FTIR spectra of FTO/TiO2/MAPbBr3/Spiro-OMeTAD in the dark
and under illumination in open circuit conditions (a) and its enlarged area (b); (c) FTIR
spectra of MAPbBr3 in the dark and under illumination for 20 min; (d) FTIR spectra of
Spiro-OMeTAD before and after the exposure to Br, for 1 h.
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Figure S26. (a) The changes of in-situ FTIR spectra of FTO/TiO2/MAPDbI3/Spiro-
OMeTAD and FTO/TiO2/MAPbBr3/Spiro-OMeTAD in the dark and under illumination
of 20 min; (b) the changes of FTIR spectra of Spiro-OMeTAD before and after the

exposure to I, for 30 s and Br; for 1 h in the dark.
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Figure S27. XPS spectra of Br 3d (a) and UV-Vis spectra (b) of FTO/Spiro-OMeTAD

before and after the exposure to Br; in the dark.

To further confirm the universality of the faradic junction model in other wide
bandgap perovskite solar cells, interface charge transfer processes in MAPbBr3 solar
cells were also investigated by in situ FTIR, XPS and UV-Vis and the results are shown
in Figure S25-S27, respectively. Similar to in MAPDbI; solar cells, in situ FTIR spectra
of the FTO/Ti0O2/MAPbBr3/Spiro-OMeTAD suggest that the stronger peaks of benzene
ring and new peaks of C-H under illumination come from oxidation of Spiro-OMeTAD
(Figure S25a and S25b). However, the FTIR peaks do not changes on single MAPbBr3
under illumination (Figure S25¢), and Spiro-OMeTAD can be oxidized by Br; in the
dark (Figure S25d). Therefore, the oxidation of Spiro-OMeTAD in
FTO/TiO2/MAPbBr3/Spiro-OMeTAD comes from Br, on the surface of MAPbBr3
under illumination. Different from the results in MAPbI; solar cells, the peaks of
benzene ring indicate a stronger increase at the lower wavenumber of 1566 cm™! (Figure
S26). Moreover, XPS and UV-Vis spectra suggest that the existence of Br™ in Spiro-
OMeTAD exposed in Br; vapor in the dark, which comes from the oxidation of Spiro-

OMeTAD (Figure S27).
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Figure S28. CV curves (a) and i-t curves of MAPbBr; at different reduction potentials
(b) in the electrolyte of 0.1M n-BusNPFg in CH,Cly; (¢) XRD patterns of raw MAPbBr3,
MAPDBT; after electrochemical measurement at -1.10 V and -1.12 V vs. F¢/Fc¢'; SEM
images of raw MAPbBr3; (d), MAPbBr; after electrochemical measurement at -1.10 V

(e) and -1.12 V (f) vs. Fc/Fc™; (g) EDS mapping of MAPDbBr3; after electrochemical

measurement at -1.10 V vs. Fc/Fc™.
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Figure S29. CV curves (a) and i-t curves of MAPbBr3 at different oxidation potentials
(b) in the electrolyte of 0.1M n-BusNPFs in CH,Cl; (¢) XRD patterns of MAPbBr3
after electrochemical measurement at 0.61 V, 0.64 V and 0.66 V vs. Fc/Fct'; SEM
images of MAPbBr3 after electrochemical measurement at 0.61 V (d), 0.64 V (e) and
0.66 V (f) vs. Fc/Fc*. The oxidation corrosion of MAPbBr3; at 0.66 V vs. Fc/Fc' is
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Figure S30. (a) I-t curve of MAPbBr3 at 1.10 V in the electrolyte of 0.1 M n-BusNPFs
in CH>Cl; the XRD pattern (b) and SEM image (c) of MAPbBr; after electrochemical

measurement at 1.10 V vs. Fc/Fc*; (d) UV-Vis spectra of electrolytes before and after
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electrochemical measurement of MAPbBr3 at 1.10 V vs. Fc/Fc*.

Similar to MAPDbI3, the electrochemical reduction and oxidation potentials of
MAPDBBr; were measured by CV curves and i-t curves (Figure S28-S30). When the
potential is negative than -1.12 V vs. F¢/Fc', MAPDBI; is irreversibly reduced into Pb°
(Figure S28). When the potential is positive than 0.66 V vs. Fc/Fc*, MAPDbBr3 is
irreversibly oxidized into Bry (Figure S29 and S30). Therefore, the onset reduction

corrosion potential and oxidation corrosion potential of MAPbBr3 is -1.12 V and 0.66

V vs. Fc/Fc*, respectively.
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Figure S31. UV-Vis spectra (a) and UPS spectra (b) of MAPbBrs3.
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Figure S32. (a) A schematic diagram of the bulk band positions of MAPbBr3 and surface
electrochemical potentials of MAPbBr3, TiO,, and Spiro-OMeTAD in the dark; (b) a
schematic diagram of interface charge transfer in TiO./MAPbBr3/Spiro-OMeTAD
under illumination; (c) current-voltage curves of FTO/TiO,/MAPbBr3/Spiro-
OMeTAD/Au in the dark and under illumination.
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The Voc loss also comes from recombination processes of photo-generated carriers,
which are different by energy band alignment theory and faradaic junction model
(Figure S34). By energy band alignment theory, surface physical recombination
happens in perovskites (Figure S34a)’. In contrast, by faradaic junction model,
recombination processes are back chemical reactions, such as I''™*+ xe- —I" (or Br'!*™*
+ ¢ —Br’) at MAPbI; (MAPbBr;3)/Spiro-OMeTAD interface and Pb@®* + xh* —Pb**
at MAPbl; (MAPbBr3)/TiO; interface (Figure S34b). Voc can be improved by
suppressing the back chemical reactions®. Therefore, the difference between our
experimental values and the theoretical values of Voc by faradic junction model

possibly comes from slow interface charge transfer rate and back chemical reactions.
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Figure S35. The XRD pattern (a), UV-vis spectra (b) and SEM image (c) of FAPbI3; the
XRD pattern (d), UV-vis spectra (e) and SEM image (f) of CsSFAMAPbI;.
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Figure S36. (a) Current-voltage curves MAPbI;, CsSFAMAPbDI; and FAPbI; solar cells
in the dark and under illumination; cyclic voltammetry (CV) curves of reduction
reactions (b) and oxidation reactions (c) of MAPbI;, CsSFAMAPDI; and FAPDI3; i-t
curves of MAPbI; (d), CsSFAMAPDI; (e) and FAPDI; (f) at different reduction potentials;
i-t curves of MAPDI; (g), CsFAMAPbI; (h) and FAPDbI; (i) at different oxidation
potentials; 0.1 M n-BusNPF¢ in CH>Cl.
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Figure S37. UV-Vis spectra (a) and UPS spectra (b) of TiO».
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Figure S38. UV-Vis spectra (a) and UPS spectra (b) of Spiro-OMeTAD.
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Figure S39. Schematic diagrams for interface charge transfer in a MAPDbI3 solar cell (a)

and a MAPbBr3 solar cell (b) under illumination by band alignment theory. Ecg and

Evg are the positions of conduction band and valence band; ELumo and Enomo are the

positions of the lowest unoccupied molecular orbital and the highest occupied

molecular orbital; Eg, and Ep, are the quasi-fermi level of electrons and holes.
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Figure S40. (a) Schematic diagrams of the conduction band and valence band of

MAPDI3, TiO> and SnO»; (b) current-voltage curves of FTO/TiOo/MAPbIs/Spiro-

OMeTAD/Au and FTO/SnO,/MAPbI3/Spiro-OMeTAD/Au in the dark and under



259  illumination; (¢) CV curves of reduction reactions of TiO, and SnO», electrolyte: 0.1 M

260 l’l-BU.4NPF(, il’l CHzClz.
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263  Figure S41. Schematic diagrams for the origin of Voc in perovskite solar cells by energy
264  band alignment theory (a) and electrode potential theory in faradaic junction model (b);
265  Ecsand Evg are the positions of conduction band and valence band; Er, and Ef;, are the
266  quasi-fermi level of electrons and holes. Vox and Vg are the oxidation and reduction
267  electrode potentials.
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