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Supplementary Methods
Inclusion and exclusion criteria
To be included in the study, participants had to be between 15 and 40 years old with sufficient language skills for participation and had to have the capacity to give their informed consent. Exclusion criteria were the following: an IQ below 70, current or past head trauma with loss of consciousness (> 5 minutes), current or past known neurological or somatic disorders that could potentially affect structure or functioning of the brain, current or past alcohol dependence, polysubstance dependence within the past 6 month or medical indications against MRI. Recent-onset depression (ROD) and Recent-onset psychosis (ROP) criteria were assessed by the structured clinical interview for DSM-IV disorders (SCID) (1). ROP patients were included if they had a psychotic episode according to the DSM-IV-TR (Diagnostic and Statistical Manual of Mental Disorders, Text Revision) criteria for a lifetime affective and nonaffective psychotic episode within the past 3 months. In accordance with that ROD patients had to fulfill the DSM-IV-TR criteria for a lifetime major depressive episode within the past 3 months. For both groups the onset of the disease had to be within the last 24 months. Furthermore, ROD as well as ROP subjects were excluded if they were on an antipsychotic medication for longer than 90 days or above the minimum dosage of the first-episode psychosis range of DGPPN S3 Guidelines (2). To be included in the clinical high-risk for psychosis (CHR-P) group, participants either needed to fulfill ultra-high-risk criteria, which were assessed by the Structured Interview for Psychosis-Risk Syndromes (3) or the cognitive disturbances (COGDIS) criteria, assessed by the Schizophrenia Proneness Instrument (SPI-A) (4); in addition to the antipsychotic medication related exclusion criterion described above,  an antipsychotic medication for more than 30 days (cumulative number of days) at or above the same minimum dosage range let to exclusion. 
Additional exclusion criteria for healthy controls (HC) were Current or past DSM-IV-TR Axis-I disorder (not including nicotine dependency); CHR-P criteria positive (life time); Intake of psychopharmacological substances or illegal drugs for more than 5 days per year and/or during the past month prior examination; Affective or non-affective psychosis or major affective disorder (Major Depressive Disorder, Bipolar Disorder) of 1° relatives* (defined by treatment or diagnosis), if not due to a secondary medical condition.
Cognitive Domain Calculation
We calculated five cognitive domains similar to the MATRICS Consensus Cognitive Battery (MCCB) (5,6) and a global cognition score based on individual scores of the cognitive tests that were assessed. For the social cognition domain we calculated the scaled sum of the correctly identified emotions in the Diagnostic Analysis of Non-Verbal Accuracy (7) test. Working memory was calculated as the scaled average of the correct trials in the backward and forward digit span test (subtest of the Wechsler Adult Intelligence Scale) (8). For the speed of processing domain the scaled number of correctly named words in the semantic verbal fluency task (9) was subtracted from the scaled execution time of the Trail Making Test A (10) and the scaled number of correct digit-symbol substitutions (digit-symbol substitution task) (8) was added. This was then divided by three. We calculated attention as the scaled difference between number of correct answers and the number of errors in the continuous performance test - identical pairs (11). For the verbal learning score the scaled sum of trial 1 to 5 of the Rey Auditory Verbal Learning Task (12) was calculated. Global cognition was calculated as the average of the scaled values across the five domains. Scaling was performed over all subjects including HC. We corrected for confounding effects of age, sex, site and years of education as done before (13). Regression models based on HC were built for every cognition domain using age, sex, site and years of education as predictors. These models were then applied to the patient data and residuals were used for further analysis. 

MRI preprocessing
For preprocessing the Statistical Parametric Mapping software (SPM, version 12-6685; http://www.fil.ion.ucl.ac.uk/spm) and the Resting State fMRI data analysis Toolkit (REST, version 1.8; http://www.restfmri.net/) were used. The first 8 volumes were discarded, and images were slice-time corrected and realigned to the first volume. The functional maps were co-registered to the T1-weighted images, resliced, and normalized to the common Montreal Neurological Institute space. Furthermore, white matter, cerebrospinal fluid and the Friston 24 motion parameters, comprising translation and rotation in three directions, temporal derivatives and their quadratic terms (14), were regressed out as covariates. Finally, Smoothing was applied, motion was corrected using time series de-spiking, and scans were detrended. For our analysis participants with a mean framewise displacement over 0.50 mm for more than 38.5% of volumes were excluded.
Correction for site differences via ComBat
ComBat is a procedure originally developed for correcting batch effects in gene expression data, using an empirical bayesian framework. Recently, ComBat has been successfully used to account for potentially confounding site-effects in MRI data in over 50 studies (15). We used Munich as a reference site, as it was the site with the highest number of study participants. While correcting for site effects, ComBat allows for specification of variables whose variance should be preserved. To ensure that differences due to biological variation are maintained, we chose to preserve the variance in age and sex. We trained ComBat on HC subjects and the derived estimates were then applied to the patient data using the implementation neuroHarmonize (16).
Supplementary Tables
Supplementary Table 1
	[bookmark: _GoBack]Neuroimaging acquisition parameters for the structural MRI data across the different PRONIA sites. Adapted with minimal modifications from Koutsouleris et al. (2018) (3)/ Buciuman et al. (2023) (17)

	Site
	Scanner model
	Field strength
	Flip Angle
	Coil Channels
	Voxel size (mm)
	TR (ms)
	TE (ms)
	FOV (mm)
	 Slices

	Munich
	Philips Ingenia
	3T
	8
	32
	0.97 x 0.97 x 1
	9.5

	5.5
	250 x 250
	190

	Milan
	Philips Achieva Intera
	1.5T
	12
	8
	0.93 x 0.93 x 1
	Shortest (8.1)
	Shortest (3.7)
	240 x 240
	170

	Cologne
	Philips Achieva
	3T
	8
	8
	0.97 x 0.97 x 1
	9.5
	5.5
	250 x 250
	190

	Basel
	SIEMENS Verio
	3T
	8
	12
	1 x 1 x 1
	2000
	3.4
	256 x 256
	176

	Birming-ham
	Philips Achieva
	3T
	8
	32
	1 x 1 x 1
	8.4
	3.8
	288 x 287
	175

	Udine
	Philips Achieva
	3T
	12
	8
	0.93 x 0.93 x 1
	Shortest (8.1)
	Shortest (3.7)
	240 x 240
	170

	Münster
	SIEMENS Prisma fit
	3T
	8
	12
	1 x 1 x 1
	2130
	2.3
	256 x 256
	192

	Turku
	Philips Ingenuity
	3T
	7
	32
	1 x 1 x 1
	8.1
	3.7
	256 x 256
	176


Note. TR = repetition time; TE = echo time; FOV = field of view.
Supplementary Table 2
	Neuroimaging acquisition parameters for the resting-state functional MRI data across the different PRONIA sites. Adapted with minimal modifications from Buciuman et al. (2023)

	Site
	Scanner model
	Field strength
	Flip Angle
	Coil Channels
	Voxel size (mm)
	TE (ms)
	FOV (mm)
	 Slices
	Slice order

	Munich
	Philips Ingenia
	3T
	90
	32
	2.88 x 2.88 x 3
	30
	230 x 230
	53
	Ascending

	Milan
	Philips Achieva Intera
	1.5T
	90
	8
	3 x 3 x 3
	32
	240 x 240
	45
	Interleaved

	Cologne
	Philips Achieva
	3T
	90
	8
	2.88 x 2.88 x 3
	30
	230 x 230
	53
	Ascending

	Basel
	SIEMENS Verio
	3T
	82
	12
	2.98 x 2.98 x 3
	28
	256 x 256
	34
	Interleaved

	Birming-ham
	Philips Achieva
	3T
	85
	32
	3 x 3 x 3
	34.5
	240 x 240
	52
	Interleaved

	Udine
	Philips Achieva
	3T
	90
	8
	3 x 3 x 3
	32
	240 x 240
	45
	Interleaved

	Münster
	SIEMENS Prisma fit
	3T
	90
	12
	3 x 3 x 3
	26
	256 x 256
	 51
	Interleaved

	Turku
	Philips Ingenuity
	3T
	90
	32
	3 x 3 x 3
	30
	240 x 240
	53
	Interleaved


Note. TR = repetition time; TE = echo time; FOV = field of view.

Supplementary Table 3
Receptors included in receptor expression analysis
	Neurotransmitter system
	receptors

	acetylcholine
	VAChT, (18–20), M1 (21), a4b2 (22)

	dopamine
	D2 (23–27), DAT (28,29), D1 (30)

	cannabinoid
	CB1 (31,32)

	opioid
	KOR (33), MOR (34,35)

	glutamate
	mGlur5 (20,36,37) , NMDA (20)

	serotonin
	5Ht1a (38,39), 5Ht1b (38–40), 5HTT (38,39,41), 5Ht2a (38,39), 5Ht6 (42), 5Ht4 (39)

	GABA
	GABAa (28,43), GABAa alpha 5 subunit (44)

	norepinephrene
	NET (45,46)

	histamine
	H3 (47)
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Supplementary Figure 1. Flow chart of exclusion of cases.
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Supplementary Figure 2. Reference gradients derived from mean FC healthy subjects. (A) Spatial topography of first and second gradient. (B) Gradient scores in the two-dimensional gradient space. (C) Variance explained by gradients. VN = visual network; SMN = somatomotor network; DAN = dorsal attention network; VAN = salience ventral attention network; LN = limbic network; CN = control network; DMN = default mode network.
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Supplementary Figure 3. Correlations of mean receptor maps with single datasets. Maps of the same neurotransmitter were averaged into a single mean neurotransmitter map. Each map is highly correlated with the mean map. Names indicate the dataset and the used tracer.
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Supplementary Figure 4. Correlation of CPZE and mean VAN values for ROP. r = -.04, p = .581; 7 patients were excluded for this analysis because of depot medication.
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Supplementary Figure 5. Similarity of reference gradients with different thresholds. (A) Spatial topography of first and second gradient computed with a threshold of retaining the 20% strongest connections of the functional connectivity matrix before computing the affinity matrix. (B) Correlations of gradients with 10% and 20% thresholds. Reference gradients computed with the 20% threshold are switched in their order, but visual-to-sensorimotor gradients and sensory-to-association gradients show a high correspondence.
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Supplementary Figure 6. Association of clinical variables with gradient measures for CHR-P patients. Asterisks indicate significant correlations after FDR-correction; * pFDR < .05. (A) Correlations of within-network dispersion with clinical variables. (B) Correlations of between-network dispersion with clinical variables. (C) Correlations of mean-network values of gradient 1 with clinical variables. (D) Correlations of mean-network values of gradient 2 with clinical variables. Attn = attention; BDI = Becks Depression Inventory; CN = control network; Cog total = cognition total score; DAN = dorsal attention network; DMN = default-mode network; GAF DI = Global Assessment of Functioning Disability; GAF S = Global Assessment of Functioning Symptoms; GF R = Global Functioning Role Scale; GF S = Global Functioning Social Scale; LN = limbic network; Soc Cog = social cognition; SoP = speed of processing; SMN = somatomotor network; VAN = ventral attention network; VerLrn = verbal learning;  VisDys = visual dysfunctions; VN = visual network; WM = working memory.
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Supplementary Figure 7. Association of clinical variables with gradient measures for ROD patients. Asterisks indicate significant correlations after FDR-correction; * pFDR < .05. (A) Correlations of within-network dispersion with clinical variables. (B) Correlations of between-network dispersion with clinical variables. (C) Correlations of mean-network values of gradient 1 with clinical variables. (D) Correlations of mean-network values of gradient 2 with clinical variables. Attn = attention; BDI = Becks Depression Inventory; CN = control network; Cog total = cognition total score; DAN = dorsal attention network; DMN = default-mode network; GAF DI = Global Assessment of Functioning Disability; GAF S = Global Assessment of Functioning Symptoms; GF R = Global Functioning Role Scale; GF S = Global Functioning Social Scale; LN = limbic network; Soc Cog = social cognition; SoP = speed of processing; SMN = somatomotor network; VAN = ventral attention network; VerLrn = verbal learning;  VisDys = visual dysfunctions; VN = visual network; WM = working memory.
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Supplementary Figure 8. Association of clinical variables with gradient measures for ROP patients. Asterisks indicate significant correlations after FDR-correction; * pFDR < .05. (A) Correlations of within-network dispersion with clinical variables. (B) Correlations of between-network dispersion with clinical variables. (C) Correlations of mean-network values of gradient 1 with clinical variables. (D) Correlations of mean-network values of gradient 2 with clinical variables. Attn = attention; BDI = Becks Depression Inventory; CN = control network; Cog total = cognition total score; DAN = dorsal attention network; DMN = default-mode network; GAF DI = Global Assessment of Functioning Disability; GAF S = Global Assessment of Functioning Symptoms; GF R = Global Functioning Role Scale; GF S = Global Functioning Social Scale; LN = limbic network; Soc Cog = social cognition; SoP = speed of processing; SMN = somatomotor network; VAN = ventral attention network; VerLrn = verbal learning;  VisDys = visual dysfunctions; VN = visual network; WM = working memory.
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CPZE and mean network values in VAN for ROP.
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