Supplementary Material 2: Modelled probabilities of elimination of transmission

Reaching Elimination of Onchocerciasis Transmission with Long-term Vector Control and Ivermectin Treatment in West Africa: The Example of Togo

Luís-Jorge Amaral^{1,2}, Rachel N. Bronzan^{3,4}, Anders Seim⁵, Marie-Denise Milord³, Koffi Padjoudoum⁶, Ibrahim Gado Telou⁷, Sibabe Agoro⁷, Michel Datagni⁸, Piham Gnossike⁹, Jonathan I. D. Hamley^{1,10}, Martin Walker^{1,11}, Maria-Gloria Basáñez¹

Corresponding author: María-Gloria Basáñez (m.basanez@imperial.ac.uk)

Alternative corresponding author: Luís-Jorge Amaral (luis.amaral20@imperial.ac.uk)

¹ MRC Centre for Global Infectious Disease Analysis and London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK

² Global Health Institute, University of Antwerp, Antwerp, Belgium

³ Health & Development International, Newburyport, Massachusetts, USA

⁴ Gates Foundation, Seattle, Washington, USA

⁵ Health & Development International, Fjellstrand, Norway

⁶ National Onchocerciasis Control Program, Kara, Togo

⁷ Ministère de la Santé et de l'Hygiène Publique, Lomé, Togo

⁸ Health and Development International, Lomé, Togo

⁹ Neglected Tropical Diseases Coordinator, Ministère de la Santé et de l'Hygiène Publique, Lomé, Togo

¹⁰ Department of Visceral Surgery and Medicine, and Multidisciplinary Center for Infectious Diseases, University of Bern, Switzerland

¹¹ Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK

Table of Contents

Projected probabilities of elimination of onchocerciasis transmission	4
Table S7. Probability of elimination of onchocerciasis transmission (EOT) when simulating that iverm mass drug administration (MDA) stops in 2024, 2027 or 2030 per modelled (minimal, reference and enhanced) intervention scenarios in Savanes Table S7. Continued	nectin 4 5
Table S8. Probability of elimination of onchocerciasis transmission (EOT) when simulating that iverm mass drug administration (MDA) stops in 2024, 2027 or 2030 per modelled (minimal, reference and enhanced) intervention scenarios in Kara	nectin 6
Table S9. Probability of elimination of onchocerciasis transmission (EOT) when simulating that iverm mass drug administration (MDA) stops in 2024, 2027 or 2030 per modelled (minimal, reference and enhanced) intervention scenarios in Centrale	
Table S10. Probability of elimination of onchocerciasis transmission (EOT) when simulating that ivermectin mass drug administration (MDA) stops in 2024, 2027 or 2030 per modelled (minimal,	
reference and enhanced) intervention scenario in Plateaux Table S11. Probability of elimination of onchocerciasis transmission (EOT) when simulating that ivermectin mass drug administration (MDA) stops in 2014 or 2020 per modelled (minimal, reference	8 and
enhanced) intervention scenario in Maritime Table S12. Probability of elimination of onchocerciasis transmission (EOT) when simulating that	9
ivermectin mass drug administration (MDA) stops in 2024, 2027 or 2030 per modelled (minimal, reference and enhanced) intervention scenario in Maritime	10
Text S8. Villages projected not to reach elimination of onchocerciasis transmission (EOT) if ivermectin N stops in 2027, per region and special intervention zone (SIZ) status	ИDA 11
S8.1. Villages with recorded baseline microfilarial prevalence estimates (with BMP)	11
Table S13. Villages in Savanes not included in the special intervention zone (non-SIZ)	11
Table S14. Villages in Kara included in the special intervention zone (SIZ)	12
Table S15. Villages in Centrale included in the special intervention zone (SIZ)	12
Table S16. Villages in Centrale not included in the special intervention zone (non-SIZ)	13
Table S17. Villages in Plateaux not included in the special intervention zone (non-SIZ)	14
Table S17. Continued	15
Table S17. Continued	16
Table S18. Villages in Maritime not included in the special intervention zone (non-SIZ)	17
S8.2. Villages without recorded baseline microfilarial prevalence estimates (without BMP)	18
Table S19. Villages in Savanes included in the special intervention zone (SIZ)	18
Table S19. Continued	19
Table S20. Villages in Kara included in the special intervention zone (SIZ)	20
Table S20. Continued	21
Table S21. Villages in Centrale included in the special intervention zone (SIZ)	22
Table S22. Villages in Centrale not included in the special intervention zone (non-SIZ)	23
Table S23. Villages in Plateaux not included in the special intervention zone (non-SIZ)	24
Table S23. Continued	25
Table S23. Continued Table S24. Villages in Maritime not included in the special intervention zone (non SIZ)	26 27
Table S24. Villages in Maritime not included in the special intervention zone (non-SIZ)	21

Text S9. Calculation of prefecture-level likelihood of reaching elimination of onchocerciasis transmission	28
Table S25. Assigned midpoint values for village-level EOT probability ranges	28
Table S26. Definitions of prefecture-level EOT likelihood categories	29
Table S27. Prefecture-level likelihood of reaching EOT when simulating that ivermectin MDA stops in	
2024	30
Table S27. Continued	31
Table S27. Continued	32
Table S28. Prefecture-level likelihood of reaching EOT when simulating that ivermectin MDA stops in	
2027	33
Table S28. Continued	34
Table S28. Continued	35
Table S29. Prefecture-level likelihood of reaching EOT when simulating that ivermectin MDA stops in	
2030	36
Table S29. Continued	37
Table S29. Continued	38
Reported ivermectin treatment coverage of total population (%) per region and prefecture from 1991 to 2018 in Togo	39
Table S30. Reported coverage (% of total population) of ivermectin MDA for 1991-2018 in Savanes	39
Table S31. Reported coverage (% of total population) of ivermectin MDA for 1991-2018 in Kara	40
Table S32. Reported coverage (% of total population) of ivermectin MDA for 1991-2018 in Centrale	41
Table S33. Reported coverage (% of total population) of ivermectin MDA for 1991-2018 in Plateaux	42
Table S34. Reported coverage (% of total population) of ivermectin MDA for 1991-2018 in Maritime	43
Supplementary references	44

Projected probabilities of elimination of onchocerciasis transmission

Table S7. Probability of elimination of onchocerciasis transmission (EOT) when simulating that ivermectin mass drug administration (MDA) stops in 2024, 2027 or 2030 per modelled (minimal, reference and enhanced) intervention scenarios in Savanes

Region and SIZ status • Interventions	Modelled baseline endemicity	Probability of elimination of transmission (EOT, %) ^a (Number of villages following the scenario, with (BMP) or without (No BMP) recorded baseline microfilarial prevalence)								
		2024				2027			2030	
		Minimal	Reference	Enhanced	Minimal	Reference	Enhanced	Minimal	Reference	Enhanced
Savanes SIZ	Hypoendemic					≥90			•	
VC 1977-1993Annual MDA 1991-	Mesoendemic				(1	BMP; 14 No Bi	MP)			
2002	Hyperendemic	<5	20 – 59	60 – 89	<5	20 – 59	60 – 89	<5	20 – 59	60 – 89
 Biannual MDA from 		(3 No	(4 No	(10 No	(3 No	(4 No	(10 No	(3 No	(4 No	(10 No
2003		BMP)	BMP)	BMP)	BMP)	BMP)	BMP)	BMP)	BMP)	BMP)
Savanes SIZ	Hypoendemic									
• VC 1977-1993 (100%) ^a	Mesoendemic				(3	≥90 BMP; 14 No BI	MP)			
Annual MDA 1991- 2002Biannual MDA from 2003	Hyperendemic	60 – 89 (3 No BMP)		90 BMP)	60 – 89 (3 No BMP)		90 BMP)	60 – 89 (3 No BMP)		90 BMP)
Savanes non-SIZ	Hypoendemic					≥90				
		(2 No BMP; 3 BMP ^b)								
• VC 1977-1993	Mesoendemic	60 – 89	≥	90	60 – 89	≥:	90	60 – 89	≥9	90
 Annual MDA from 	nual MDA from (1 BMP ^b) (1 BMP) (1 BMP ^b) (1 BMP) (1 BMP) (1 BMP) (1 BMP)						MP)			
1991	Hyperendemic					<5 (0)				

Table S7. Continued

Region and SIZ status • Interventions	Modelled baseline endemicity	Probability of elimination of transmission (EOT, %) ^a (Number of villages following the scenario, with (BMP) or without (No BMP) recorded baseline micro prevalence)								ofilarial
			2024 2027 2030							
		Minimal	Reference	Enhanced	Minimal	Reference	Enhanced	Minimal	Reference	Enhanced
Savanes non-SIZ	Hypoendemic					≥90				
• VC 1977-1993 (100%) ^a	Mesoendemic					(0)				
 Annual MDA from 	Hyperendemic	20 – 59	60 – 89	≥90	20 – 59	60 – 89	≥90	20 – 59	60 – 89	≥90
1991		(2 No BMP; 1 BMP ^b)	(0)	(0)	(2 BMP; 1 BMP ^b)	(0)	(0)	(2 BMP; 1 BMP ^b)	(0)	(0)

^aProbability of elimination of onchocerciasis transmission simulated as the proportion (%) of 100 model runs for each baseline endemicity level and intervention scenario with 0% microfilarial prevalence 50 years after stopping ivermectin MDA.

^bVillage from preparatory surveys prior to the commencement of the OCP [1,2] (not in OCP database).

Table S8. Probability of elimination of onchocerciasis transmission (EOT) when simulating that ivermectin mass drug administration (MDA) stops in 2024, 2027 or 2030 per modelled (minimal, reference and enhanced) intervention scenarios in Kara

Region and SIZ status • Interventions	Modelled baseline endemicity	(Numb	Probability of elimination of transmission (EOT, %) ^a (Number of villages following the scenario, with (BMP) or without (No BMP) recorded baseline microfila prevalence)							ofilarial
			2024 2027 2030							
		Minimal	Reference	Enhanced	Minimal	Reference	Enhanced	Minimal	Reference	Enhanced
Kara SIZ	Hypoendemic		•							
						≥90				
• VC 1977-2007	Mesoendemic				(4 BMP	; 2 BMP ^b ; 42 N	lo BMP)			
 Annual MDA 1991- 										
2002	Hyperendemic	5 – 19	20 – 59	60 – 89	5 – 19	60 – 89	≥90	20 – 59	60 – 89	≥90
 Biannual MDA from 		(2 BMP;	(2 BMP;	(2 BMP;	(2 BMP;	(2 BMP;	(2 BMP;	(2 BMP;	(2 BMP;	(2 BMP;
2003		11 No	1 BMP ^b ;	2 No BMP)	11 No	1 BMP ^b ;	2 No BMP)	11 No	1 BMP ^b ;	2 No BMP)
		BMP)	5 No BMP)		BMP)	5 No BMP)		BMP)	5 No BMP)	
	Holoendemic	<5%								
					(2	BMP; 13 No B	MP)			

^aProbability of elimination of onchocerciasis transmission simulated as the proportion (%) of 100 model runs for each baseline endemicity level and intervention scenario with 0% microfilarial prevalence 50 years after stopping ivermectin MDA.

^bVillage from preparatory surveys prior to the commencement of the OCP [1,2] (not in OCP database).

Table S9. Probability of elimination of onchocerciasis transmission (EOT) when simulating that ivermectin mass drug administration (MDA) stops in 2024, 2027 or 2030 per modelled (minimal, reference and enhanced) intervention scenarios in Centrale

Region and SIZ status Interventions	Modelled baseline endemicity	(Numb	Probability of elimination of transmission (EOT, %) ^a (Number of villages following the scenario, with (BMP) or without (No BMP) recorded baseline microfilar prevalence)							ofilarial
			2024 2027 2030							
		Minimal	Reference	Enhanced	Minimal	Reference	Enhanced	Minimal	Reference	Enhanced
Centrale SIZ	Hypoendemic			•			•			
						≥90				
• VC 1977-2007	Mesoendemic					(1 No BMP)				
Annual MDA 1991-										
2002	Hyperendemic	5 – 19	60 – 89	60 – 89	5 – 19	60 – 89	≥90	20 – 59	60 – 89	≥90
 Biannual MDA from 		(1 BMP;	(3 No	(1 BMP;	(1 BMP;	(3 No	(1 BMP;	(1 BMP;	(3 No	(1 BMP;
2003		3 No BMP)	BMP)	1 No BMP)	3 No BMP)	BMP)	1 No BMP)	3 No BMP)	BMP)	1 No BMP)
	Holoendemic					<5				
						(6 No BMP)				
Centrale non-SIZ	Hypoendemic					≥90				
					(13	BMP; 8 No B	MP)			
• VC 1989-2002	Mesoendemic	60 – 89	≥9	90	60 – 89	≥:	90	60 – 89	≥!	90
 Annual MDA from 		(8 BMP;	(18 BMP;	2 No BMP)	(8 BMP;	(18 BMP;	2 No BMP)	(8 BMP;	(18 BMP;	2 No BMP)
1991		11 No			11 No			11 No		
		BMP)			BMP)			BMP)		
	Hyperendemic	<5	60 -	- 89	<5	60 -	- 89	<5	60 -	- 89
		(2 No	(5 BMP; 3	B No BMP)	(2 No	(5 BMP; 3	B No BMP)	(2 No	(5 BMP; 3	No BMP)
		BMP)			BMP)			BMP)		

^aProbability of elimination of onchocerciasis transmission simulated as the proportion (%) of 100 model runs for each baseline endemicity level and intervention scenario with 0% microfilarial prevalence 50 years after stopping ivermectin MDA.

Table S10. Probability of elimination of onchocerciasis transmission (EOT) when simulating that ivermectin mass drug administration (MDA) stops in 2024, 2027 or 2030 per modelled (minimal, reference and enhanced) intervention scenario in Plateaux

Region and SIZ status • Interventions	Modelled baseline endemicity	Probability of elimination of transmission (EOT, %) ^a (Number of villages following the scenario, with (BMP) or without (No BMP) recorded baseline microfilarial prevalence)									
		2024				2027			2030		
		Minimal	Reference	Enhanced	Minimal	Reference	Enhanced	Minimal	Reference	Enhanced	
Plateaux non-SIZ	Hypoendemic		≥90 (12 BMP; 14 No BMP)								
• VC 1989-2002	Mesoendemic	60 – 89	≥:	90	60 – 89	≥9	90	60 – 89	≥9	90	
• Annual MDA from 1991		(3 BMP; 2 No BMP)	(12 BMP;	1 No BMP)	(3 BMP; 2 No BMP)	(12 BMP; 1 No BMP)		(3 BMP; 2 No BMP)	(12 BMP; 1 No BMP)		
	Hyperendemic	<5	<5	60 – 89	<5	<5	60 – 89	<5	<5	60 – 89	
		(0)	(3 No	(12 BMP;	(0)	(3 No	(12 BMP;	(0)	(3 No	(12 BMP;	
			BMP)	6 No BMP)		BMP)	6 No BMP)		BMP)	6 No BMP)	
Plateaux non-SIZ	Hypoendemic					≥90					
VC 1989-2002Annual MDA 1991-	Mesoendemic		(16 BMP; 25 No BMP)								
2013	Hyperendemic	<5	5 – 19	60 – 89	<5	5 – 19	60 – 89	<5	20 – 59	≥90	
 Biannual MDA from 		(3 No	(2 BMP;	(11 BMP;	(3 No	(2 BMP;	(11 BMP;	(3 No	(2 BMP;	(11 BMP;	
2014		BMP)	2 No BMP)	12 No	BMP)	2 No BMP)	12 No	BMP)	2 No BMP)	12 No	
				BMP)			BMP)			BMP)	

^aProbability of elimination of onchocerciasis transmission simulated as the proportion (%) of 100 model runs for each baseline endemicity level and intervention scenario with 0% microfilarial prevalence 50 years after stopping ivermectin MDA.

Table S11. Probability of elimination of onchocerciasis transmission (EOT) when simulating that ivermectin mass drug administration (MDA) stops in 2014 or 2020 per modelled (minimal, reference and enhanced) intervention scenario in Maritime

Region and SIZ status Interventions	Modelled baseline endemicity	Probability of elimination of transmission (EOT, %) ^a (Number of villages following the scenario, with (BMP) or without (No BMP) recorded baseline microfilarial prevalence)						
			2014			2020		
		Minimal	Reference	Enhanced	Minimal	Reference	Enhanced	
Maritime non-SIZ	Hypoendemic			≥	90			
				(6 BMP; 2	3 No BMP)			
• VC 1989-2002	Mesoendemic	20 – 59	≥9	90	60 – 89	2	:90	
 Annual MDA from 		(0)	(())	(3 No		(0)	
1991		BMP)						
	Hyperendemic	<5 20 – 59 <5 20 – 59						
		()	0)	(0)	(1	0)	(6 No BMP)	

^aProbability of elimination of onchocerciasis transmission simulated as the proportion (%) of 100 model runs for each baseline endemicity level and intervention scenario with 0% microfilarial prevalence 50 years after stopping ivermectin MDA.

Table S12. Probability of elimination of onchocerciasis transmission (EOT) when simulating that ivermectin mass drug administration (MDA) stops in 2024, 2027 or 2030 per modelled (minimal, reference and enhanced) intervention scenario in Maritime

Region and SIZ status Interventions	Modelled baseline endemicity	(Numb	Probability of elimination of transmission (EOT, %) ^a (Number of villages following the scenario, with (BMP) or without (No BMP) recorded baseline microfilarial prevalence)								
			2024 2027 2030								
		Minimal	Reference	Enhanced	Minimal	Reference	Enhanced	Minimal	Reference	Enhanced	
Maritime non-SIZ	Hypoendemic					≥90					
						(0)					
• VC 1989-2002	Mesoendemic	60 -	- 89	≥90	60	– 89	≥90		≥90		
 Annual MDA from 		(((0) (0) (0) (0)								
1991	Hyperendemic	<5 60-89 <5 60-89 <5 60-8						60 – 89			
		(((0) (1 BMP; (0) (1 BMP; (0) (1 BMP;						(1 BMP;		
				2 No BMP)			2 No BMP)			2 No BMP)	

^aProbability of elimination of onchocerciasis transmission simulated as the proportion (%) of 100 model runs for each baseline endemicity level and intervention scenario with 0% microfilarial prevalence 50 years after stopping ivermectin MDA.

Text S8. Villages projected not to reach elimination of onchocerciasis transmission (EOT) if ivermectin MDA stops in 2027, per region and special intervention zone (SIZ) status

Tables S13-S18 (villages with recorded BMP estimates) and Tables S19-S24 (villages without recorded BMP estimates) provide details, by region, prefecture and river basin, of villages for which EPIONCHO-IBM projects that elimination of onchocerciasis transmission (EOT) may not be achieved if ivermectin MDA stops in 2027 (i.e., with predicted EOT probability <90%). (For calculation of EOT probabilities see Main Text and Tables S7-S12.) These villages could be prioritised for focused pre-stop or stop-MDA surveys to evaluate their progress and obtain a more complete assessment of the epidemiological situation in the region towards the 2030 elimination goals. For example, in Plateaux non-SIZ, the formerly hyperendemic village of Kokote (Mono River Basin) had a sharp prevalence decline from 76% in 1977 to 56% in 1990 and to 2% in 2000. A survey in 2007, and a small survey (51 individuals) in 2014, detected no positive cases. However, a larger survey (253 individuals), also in 2014, identified one positive case, suggesting residual transmission. This finding is consistent with model outputs (Figure 5E of the Main Text), with an EOT probability of 60–89% (Table S17).

S8.1. Villages with recorded baseline microfilarial prevalence estimates (with BMP)

Table S13. Villages in Savanes not included in the special intervention zone (non-SIZ)

Village	Prefecture	Modelled prevalence trends	Latest parasitological survey		EOT probability (%) if MDA stops in 2027
		followed by villages (intervention scenario)	Year	Microfilarial prevalence (%) (95% CI)	
White Volta/O	ti River Basin		•		
Samomoni ^{a,b}	Tône	Hyperendemic with 100% vector control (minimal)	2015	0.8 (0.1–5.2)	20–59
Koundjouaré ^b	Kpendjal	Hyperendemic with 100% vector control (minimal)	2001	0.1 (0.0–0.3)	20–59

^aRecorded in a baseline survey prior to the start of the Onchocerciasis Control Programme in West Africa [1,2]. ^bFor these two villages the model indicates an EOT probability of 20-59%; surveys conducted in the 2000s showed residual prevalence, which along with model simulations, suggest that prevalence may have been sustained over time if EOT was not achieved by the mid-1990s, when VC stopped.

Table S14. Villages in Kara included in the special intervention zone (SIZ)

Village	Prefecture	Modelled prevalence trends followed	Latest parasitological survey		EOT probability (%) if MDA stops in 2027
		by villages	Year	Microfilarial	
		(intervention		prevalence	
		scenario)		(%)	
				(95% CI)	
Kara River Basi	n				
Kpesside	Kozah	Hyperendemic	2014	1.4	5–19
		(minimal)		(0.5–3.9)	
Leon	Doufelgou	Hyperendemic	2011	0.0	60–89
		(reference)		(0.0–1.4)	
Kéran River Bas	sin	1			
Unknowna	Binah or	Hyperendemic	1970	>70%	60–89
	Bimah	(reference)			
Tchitchira ^b	Kéran	Holoendemic	2015	8.2	<5
		(enhanced)		(5.1–12.9)	
Titira ^c	Kéran	Holoendemic	2006	1.6	<5
		(enhanced)		(0.5–4.6)	
Mô River Basin					
Bangan⁵	Bassar	Hyperendemic	2011	2.5	60–89
		(reference)		(1.2–5.4)	
Mô-village or	Bassar	Hyperendemic	2015	7.0	5–19
Mo-village		(minimal)		(4.2–11.7)	

^aRecorded in a baseline survey prior to the start of the Onchocerciasis Control Programme in West Africa [1,2]. ^bIn 2015, prevalence of *O. volvulus* infection in *Simulium damnosum* sensu lato was 0.1% (95% CI: 0.03-0.5%) in Bangan and 1.0% (95% CI: 0.9-2.1%) in Tchitchira [4].

Table S15. Villages in Centrale included in the special intervention zone (SIZ)

Village	Prefecture	Modelled prevalence trends	Latest parasitological survey		EOT probability (%) if MDA stops in
		followed by villages (intervention scenario)	Year Microfilarial prevalence (%) (95% CI)		2027
Mô River Basii	า		•		
Bouzalo ^{a,b}	Tchaoudjo	Hyperendemic (reference)	1993	7.5 (5.3–10.5)	60–89
Sagbadai	Tchaoudjo	Hyperendemic (minimal)	2007	1.8 (0.3–9.5)	5–19

^aIn 2015, the prevalence of *O. volvulus* infection in in *Simulium damnosum* sensu lato was 0.5% (95% CI: 0.2-1.3%%) in Bouzalo [4]. In 2018-2019, the prevalence was 0.6% [6] (calculated with the methodology presented in Katholi et al. [7]). ^bIn Bouzalo, annual biting rates decreased from over 40,000 bites/person/year before vector control to 30,000. The vector control extension during the Southern Extension of the OCP further decreased this to 10,000-15,000. In Tititra, annual biting rates decreased from 25,000 bites/person/year before vector control to 10,000-15,000 [5].

^cIn Tititra, annual biting rates decreased from 25,000 bites/person/year before control to 10,000-15,000 [5].

Table S16. Villages in Centrale not included in the special intervention zone (non-SIZ)

Village	Prefecture	Prefecture Modelled Latest parasitological prevalence survey		EOT probability (%) if MDA stops in 2027	
		trends	Year	Microfilarial	
		followed by		prevalence	
		villages		(%)	
		(intervention		(95% CI)	
		scenario)			
Anié River Basin (I	Mono)				
Agodeka ^a	Blitta	Hyperendemic	2012	0.0	60–89
		(enhanced)		(0.0–2.2)	
Didjaré-Edjaré	Blitta	Mesoendemic	2014	0.3	60–89
Kopé/Katakpui		(minimal)		(0.1–1.9)	
Kopé (Pagala)					
Gnama-Gnama	Blitta	Hyperendemic	2012	0.0	60–89
		(enhanced)		(0.0–5.4)	
Kpawa (Pagala)	Blitta	Hyperendemic	2013	0.0	60–89
		(enhanced)		(0.0–1.3)	
Niama-Niama	Blitta	Hyperendemic	2006	2.6	60–89
(Pagala)		(enhanced)		(0.9–7.5)	
N'Djavezi/Fazao	Sotouboua	Mesoendemic	2014	0.0	60–89
•		(minimal)		(0.0–3.8)	
Tigbada	Sotouboua	Mesoendemic	2013	1.0	60–89
_		(minimal)		(0.3–3.5)	
Asukawkaw River	Basin		JI.		
Abossoumkopé ^a	Blitta	Hyperendemic	2013	0.0	60–89
•		(enhanced)		(0.0-6.1)	
Landa-Mono River	Basin (Mono)	•		
Bodowda	Sotouboua	Mesoendemic	2013	0.0	60–89
		(minimal)		(0.0–4.5)	
Laoude/Somieda-	Sotouboua	Mesoendemic	2013	0.6	60–89
Laoude		(minimal)		(0.1–3.3)	
Sessaro	Sotouboua	Mesoendemic	2014	0.3	60–89
		(minimal)		(0.1–1.9)	
Souroutawi	Tchamba	Mesoendemic	2013	0.3	60–89
		(minimal)		(0.1–1.7)	
Mono River Basin	(Aou)			1	ı
Aou-Losso	Tchaoudjo	Mesoendemic	2013	0.6	60–89
		(minimal)		(0.1–3.1)	

^aVillages with the latest two (Agodeka) or three (Abossoumkopé) surveys with 0% prevalence [8].

Table S17. Villages in Plateaux not included in the special intervention zone (non-SIZ)

Village	Prefecture	Modelled prevalence trends followed by	-	arasitological urvey	EOT probability (%) if MDA stops
		villages (intervention scenario)	Year	Microfilarial prevalence (%) (95% CI)	in 2027
Amou River Bas	in (Mono)				
Otsanani- Adedakope	Ogou	Hyperendemic (enhanced) under biannual CDTI since 2014	2012	1.2 (0.3–3.5)	60–89
Anié River Basir	n (Mono)				
Alamassou	Ogou	Hyperendemic (enhanced) under biannual CDTI since 2014	2012	0.0 (0.0–1.5)	60–89
Anani/Dogo Kopé	Akébou	Hyperendemic (enhanced) under annual CDTI	2012	1.0 (0.4–3.0)	60–89
Gnamassilé	Amou	Hyperendemic (enhanced) under biannual CDTI since 2014	2014	0.0 (0.0–2.7)	60–89
Illougba	Ogou	Hyperendemic (enhanced) under biannual CDTI since 2014	2007	0.0 (0.0–1.9)	60–89
Kamalo-Kopéª	Anié	Hyperendemic (enhanced) under annual CDTI	2007	0.0 (0.0–2.9)	60–89
Konigbo	Anié	Hyperendemic (enhanced) under annual CDTI	2012	0.0 (0.0-1.1)	60–89
Wawa/Asukaw	kaw River Basin				
Kemedisso	Wawa	Mesoendemic (minimal) under annual CDTI	2007	0.0 (0.0–4.5)	60–89
Kra River Basin	<u> </u>	T			
Kokpli	Haho	Hyperendemic (enhanced) under biannual CDTI since 2014	2006	1.0 (0.3–3.4)	60–89
Mono River Bas	1				
Aglamassoe/ Tététou	Moyen- Mono	Mesoendemic (minimal) under annual CDTI	2014	0.0 (0.0–10.7)	60–89
Alabade Atsoude	Est-Mono	Hyperendemic (enhanced) under annual CDTI	2013	0.0 (0.0–1.9)	60–89

Table S17. Continued

Village	Prefecture	Modelled prevalence trends followed by	-	arasitological urvey	EOT probability (%) if MDA stops
		villages (intervention scenario)	Year	Microfilarial prevalence (%) (95% CI)	in 2027
Mono River Bas	in (continued)			,	
Atome	Ogou	Hyperendemic (enhanced) under biannual CDTI since 2014	2015	0.4 (0.1–2.3)	60–89
Aroukakopé (Amou-Oblo)	Est-Mono	Hyperendemic (enhanced) under annual CDTI	2011	0.0 (0.0–2.5)	60–89
Diome (Tététou)	Moyen- Mono	Hyperendemic (enhanced) under annual CDTI	1977	77.0 (71.8–81.4)	60–89
Fedigbe or Fétigbé	Ogou	Hyperendemic (enhanced) under biannual CDTI since 2014	2007	0.0 (0.0–1.8)	60–89
Game-Ekeme	Moyen- Mono	Hyperendemic (enhanced) under annual CDTI	2011	0.0 (0.0–5.8)	60–89
Game- Togbuihoe	Moyen- Mono	Hyperendemic (enhanced) under annual CDTI	2011	0.0 (0.0–4.8)	60–89
Kokote ^b	Est-Mono	Hyperendemic (enhanced) under annual CDTI	2014	0.4 (0.1–2.2)	60–89
Kpodji (Tététou)	Haho	Hyperendemic (reference) under biannual CDTI since 2014	2014	17.5 (9.8–29.4)	5–19
Kpogandi ^a	Ogou	Hyperendemic (enhanced) under biannual CDTI since 2014	2013	0.0 (0.0–2.9)	60–89
Onia-Kopé	Est-Mono	Hyperendemic (enhanced) under annual CDTI	1977	75.2 (67.5–81.6)	60–89
Safou-Kopé Atiba (Amou-Oblo)	Ogou	Hyperendemic (reference) under biannual CDTI since 2014	2014	4.1 (1.4–11.4)	5–19
Siyime (Tététou)	Haho	Mesoendemic/Hyper- endemic (reference) under biannual CDTI since 2014	2015	2.9 (1.2–6.6)	5–19

Table S17. Continued

Village	Prefecture	Modelled prevalence trends followed by	-	arasitological urvey	EOT probability (%) if MDA stops
		villages (intervention scenario)	Year	Microfilarial prevalence (%) (95% CI)	in 2027
Mono River Bas	in (continued)				
Tchagri	Ogou	Hyperendemic (enhanced) under biannual CDTI since 2014	2012	0.0 (0.0–1.0)	60–89
Tététou or Tetetou	Haho	Hyperendemic (enhanced) under biannual CDTI since 2014	2002	0.0 (0.0–1.6)	60–89
Ogou River Basi	n (Mono)				
Ateoue	Ogou	Hyperendemic (enhanced) under biannual CDTI since 2014	2000	4.1 (2.3–7.2)	60–89
Wawa River Bas	in (Gban-Houa)	С		•	
Dayes-Dodzi (Djodji)/ Kessibo- Dzodzi ^d	Wawa	Hyperendemic (enhanced) under annual CDTI	2000	2.2 (0.7–5.8)	60–89
Zio River Basin (Volta Lac-East)				
Tokpo	Agou	Hyperendemic (enhanced) under annual CDTI	2014	0.0 (0.0–2.4)	60–89

CDTI: Community-directed treatment with ivermectin

^aVillages with the latest two (Kpogandji) or four (Kamalo-Kopé) surveys with 0% prevalence [8].

^bKokote is located around the Kpessi vector capture point of the Mono River Basin (Supplementary Material 1, Table S4). In contrast to the modelled projections followed by most hypoendemic villages in Plateaux, the village of Babame, also in Kpessi, had a microfilarial prevalence of 0.6% (95%CI: 0.1–3.4%) in 2014 [8].

^cIn locations where the Djodji form of *Simulium sanctipauli* was present, recent data indicate still high biting rates following its elimination, by other species in the *damnosum* complex [9,10].

^dVector control started earlier, in 1981, in this village's river basin to eliminate the Djodji form of *Simulium* sanctipauli [11], preceding its first survey, in which hyperendemicity was determined.

Table S18. Villages in Maritime not included in the special intervention zone (non-SIZ)

Village	Prefecture	Modelled prevalence trends followed by			EOT probability (%) if MDA stops
		villages (intervention scenario)	Year	Microfilarial prevalence (%) (95% CI)	in 2027
Yoto/Haho Rive	r Basin				
Yoto-Kopé	Yoto	Hyperendemic (enhanced)	2005	0.0 (0.0–2.5)	60–89

S8.2. Villages without recorded baseline microfilarial prevalence (without BMP)

Table S19. Villages in Savanes included in the special intervention zone (SIZ)

Village	Prefecture	Modelled prevalence trends followed by	-	rasitological urvey	EOT probability (%) if MDA stops
		villages	Year	Microfilarial	in 2027
		(intervention		prevalence	
		scenario)		(%)	
				(95% CI)	
Oti River Basin					
Bonsougou	Oti	Hyperendemic	2007	0.0	60–89
		(enhanced)		(0.0–3.8)	
Boutchakou	Oti	Hyperendemic	2015	0.8	60–89
		(enhanced)		(0.1–4.3)	
Djandjatie	Oti	Hyperendemic	2011	0.6	60–89
		(enhanced)		(0.1–3.5)	
Koukoumbou	Oti	Hyperendemic	2015	3.7	<5
		(minimal)		(1.3–10.2)	
Kpatibori	Oti	Hyperendemic	2014	9.1	<5
		(minimal)		(2.6–27.8)	
Kpintidjouaga	Kpendjal	Hyperendemic	2011	0.4	60–89
		(enhanced)		(0.1–2.1)	
Moukaga	Kpendjal	Hyperendemic	2006	0.0	60–89
		(enhanced)		(0.0-4.4)	
Naboli	Oti	Hyperendemic	2015	0.0	60–89
		(enhanced)		(0.0–2.6)	
Nambossi	Oti	Hyperendemic	2011	0.4	60–89
		(enhanced)		(0.1–2.0)	
Nassiele	Kpendjal	Hyperendemic	2006	1.3	60–89
		(enhanced)		(0.2-7.0)	
Natoundjenga	Kpendjal	Hyperendemic	2011	0.0	60–89
		(enhanced)		(0.0–2.9)	
Natounkpargou	Kpendjal	Hyperendemic with	2011	0.0	60–89
		100% vector control		(0.0–1.6)	
		(enhanced)			
Pancerys ^a	Kpendjal	Hyperendemic	2015	1.5	20–59
		(reference)		(0.6–3.9)	
Poporkou	Oti	Hyperendemic with	2015	0.0	60–89
		100% vector control		(0.0–2.3)	
		(enhanced)			

^aIn 2015, the prevalence of *O. volvulus* infection in *Simulium damnosum* sensu lato was 0.2% (95% CI: 0.03-1.3%) in Pancerys [4].

Table S19. Continued

Village	Prefecture	Prefecture Modelled prevalence trends followed by		ırasitological urvey	EOT probability (%) if MDA stops
		villages	Year	Microfilarial	in 2027
		(intervention		prevalence	
		scenario)		(%)	
				(95% CI)	
Oti River Basin					
Simboª	Oti	Hyperendemic	2011	2.0	20–59
		(reference)		(0.7–5.7)	
Sougtangou	Kpendjal	Hyperendemic	2011	1.3	20-59
		(reference)		(0.4–4.5)	
Tchountchonga	Oti	Hyperendemic	2011	0.5	20–59
		(reference)		(0.1–3.0)	
Tchri ^a	Oti	Hyperendemic	2015	1.0	<5
		(minimal)		(0.2–5.7)	
Yiyingou	Oti	Hyperendemic	2011	1.1	60–89
		(enhanced)		(0.4–3.1)	
Oti-Pendjari Rive	r Basin / Volta B	Blanche (White Volta)			
Lokpano	Tandjouaré	Hyperendemic with	2014	0.5	60–89
		100% vector control		(0.1–2.7)	
		(enhanced)			

aVillages for which it has been reported that the epidemiological situation was unsatisfactory, and may have received biannual CDTI in the late 1990's for approximately 2 years [12].

Table S20. Villages in Kara included in the special intervention zone (SIZ)

Village	Prefecture	Modelled prevalence trends followed by	-	arasitological urvey	EOT probability (%) if MDA stops
		villages	Year	Microfilarial	in 2027
		(intervention		prevalence	
		scenario)		(%)	
				(95% CI)	
Oti River Basin				1	
Kpabte	Doufelgou	Hyperendemic	2006	4.9	60–89
		(reference)		(2.8–8.5)	
Possao	Dankpen	Hyperendemic	2014	1.1	5–19
		(minimal)		(0.4-3.2)	
Kara River Basiı	n				
Aho-Lao	Kozah	Holoendemic	2000	22.8	<5
		(enhanced)		(18.8–27.4)	
Djamde Kawa	Kozah	Hyperendemic	2011	0.6	5–19
		(minimal)		(0.1-3.1)	
Kadjol II	Dankpen	Hyperendemic	2014	0.5	5–19
		(minimal)		(0.1–2.6)	
Kawa-Bassar	Bassar	Hyperendemic	2015	0.0	60–89
		(reference)		(0.0-2.7)	
Koulwere	Doufelgou	Hyperendemic	2015	1.7	5–19
		(minimal)		(0.6-4.9)	
Sakponé	Dankpen	Hyperendemic	2014	0.7	5–19
		(minimal)		(0.2-2.3)	
Sekou-Bas	Dankpen	Hyperendemic	2014	0.4	60–89
		(reference)		(0.1–2.2)	
Sikan ^a	Dankpen	Holoendemic	2014	1.2	<5
		(enhanced)		(0.5–3.0)	
Tchakassou	Bassar	Holoendemic	2015	4.2	<5
		(enhanced)		(2.4–7.2)	
Touguel	Dankpen	Holoendemic	2014	1.0	<5
		(enhanced)		(0.3-2.8)	
Wassi	Bassar	Holoendemic	2014	27.0	<5
		(reference)		(18.2–38.1)	
Kerán River Bas	sin				
Goulbi	Kéran	Holoendemic	2015	9.9	<5
		(enhanced)		(5.9–16.1)	
Hourta	Kéran	Hyperendemic	2015	2.3	5–19
		(minimal)		(0.6–7.8)	
Koffi-Ferme	Kéran	Holoendemic	2014	5.4	<5
		(enhanced)		(1.8–14.6)	
Koutantagou/	Kéran	Hyperendemic	2015	1.9	5–19
Koutantagou		(minimal)		(0.3–9.8)	
& Tapount					

Table S20. Continued

Village	Prefecture	Modelled prevalence trends followed by	-	rasitological urvey	EOT probability (%) if MDA
		villages	Year	Microfilarial	stops in 2027
		(intervention		prevalence	
		scenario)		(%)	
				(95% CI)	
Kerán River Basii	n (continued)				
Koutougou	Kéran	Holoendemic	2015	13.6	<5
Solla		(enhanced)		(7.8–22.7)	
Kpantiiyagou	Kéran	Holoendemic	2015	7.7	<5
		(enhanced)		(4.5–12.9)	
Narita /	Kéran	Holoendemic	2014	6.5	<5
Pesside		(enhanced)		(3.3–12.3)	
Sola	Kéran	Holoendemic	2000	41.8	<5
		(enhanced)		(32.2–52.0)	
Tchitchira	Kéran	Holoendemic	2002	59.0	<5
Ferme		(reference)		(42.3-74.5)	
Wasite &	Kéran	Holoendemic	2004	16.3	<5
Pesside		(reference)		(11.6–22.4)	
Ferme/Wassite					
Wartema	Kéran	Hyperendemic	2002	25.5	5–19
		(minimal)		(17.8–35.2)	
Mô River Basin					
Dandjessi	Bassar	Hyperendemic	2012	3.0	5–19
		(minimal)		(1.5–6.1)	
Katcha-	Bassar	Hyperendemic	2015	4.3	5–19
Konkomba		(minimal)		(2.3-7.7)	
Kissafo	Bassar	Hyperendemic	2012	3.3%	5–19
		(minimal)		1.9-5.8)	
Madjatom⁵	Bassar	Hyperendemic	2015	0.7	5–19
-		(minimal)		(0.1–3.7)	
Saboundi	Bassar	Hyperendemic	2015	1.5	5–19
		(minimal)		(0.3–5.7)	

^aVector control was very effective in Sikan, bringing the annual transmission potential to 0 in 2006 [5]. Ivermectin treatment coverage was reported at 90% of total population in 2003 [13].

^bSurveys with consistently low prevalence for 15 years [8].

Table S21. Villages in Centrale included in the special intervention zone (SIZ)

Village Prefectur		Modelled prevalence trends followed by	-	arasitological urvey	EOT probability (%) if MDA
		villages	Year	Microfilarial	stops in 2027
		(intervention		prevalence	
		scenario)		(%)	
				(95% CI)	
Mô River Basin	1			T	
Agbamassoumou	Sotouboua	Hyperendemic	2012	0.0	60–89
		(reference)		(0.0–1.5)	
Assawoh-Koura	Sotouboua	Holoendemic	2015	10.3	<5
		(enhanced)		(5.7–18.0)	
Banda	Sotouboua	Holoendemic	2015	4.4	<5
		(enhanced)		(2.3–8.5)	
Batto	Sotouboua	Holoendemic	2014	32.7	<5
		(minimal)		(21.2–46.6)	
Dantchessi	Sotouboua	Hyperendemic	2006	8.5	5–19
		(minimal)		(5.0–14.0)	
Koida or Kouida	Sotouboua	Holoendemic	2015	5.8	<5
		(enhanced)		(3.5–9.6)	
Moussoukoudjou	Sotouboua	Hyperendemic	2006	3.0	60–89
		(reference)		(1.0-8.5)	
Naboun-Koura	Sotouboua	Hyperendemic	2009	0.6	60–89
		(reference)		(0.1–3.1)	
Sakpagninga	Sotouboua	Holoendemic	2003	15.8	<5
		(enhanced)		(9.4–25.0)	
Tchakpissi	Sotouboua	Holoendemic	2015	10.5	<5
•		(enhanced)		(4.2–24.1)	
Tchatou Koura	Sotouboua	Hyperendemic	2015	3.3	5–19
		(minimal)		(1.5-7.1)	
Tchetchekou	Sotouboua	Hyperendemic	2015	3.5	5–19
		(minimal)		(1.6-7.4)	

Table S22. Villages in Centrale not included in the special intervention zone (non-SIZ)

Village	Prefecture	Modelled prevalence trends followed by	•	arasitological urvey	EOT probability (%) if MDA
		villages	Year	Microfilarial	stops in 2027
		(intervention		prevalence	
		scenario)		(%)	
				(95% CI)	
Anié River Basin	(Mono) / Asuk	awkaw			
Agbandi-Mono	Blitta	Hyperendemic	2015	0.3	60–89
		(enhanced)		(0.1–1.8)	
Yeloum	Blitta	Hyperendemic	2012	1.3	60–89
Bagnan		(enhanced)		(0.5–3.9)	
Katchalikadi	Sotouboua	Hyperendemic	2012	1.6	60–89
		(enhanced)		(0.5–5.7)	
Kpeida	Sotouboua	Mesoendemic	2013	0.0	60–89
		(minimal)		(0.0-2.0)	
Okou-Kopé	Blitta	Mesoendemic	2012	0.0	60–89
Ť		(minimal)		(0.0–3.0)	
Panlao	Sotouboua	Mesoendemic	2013	0.0	60–89
		(minimal)		(0.0–1.9)	
Yovo-Kopé	Blitta	Mesoendemic	2012	0.0	60–89
-		(minimal)		(0.0–2.5)	
Mono River Bas	in			1	1
Akawolo	Tchamba	Mesoendemic	2011	0.0	60–89
		(minimal)		(0.0–1.6)	
Kpambouré	Sotouboua	Mesoendemic	2002	3.3	60–89
(Aou)		(minimal)		(1.8–5.9)	
Oudjomboi	Tchamba	Mesoendemic	2011	0.5	60–89
		(minimal)		(0.1–2.5)	
Sada-Mono	Sotouboua	Mesoendemic	2002	4.5	60–89
		(minimal)		(2.7–7.2)	
Ogou River Basi	n (Mono)			•	
Blou-	Tchamba	Mesoendemic	2011	0.4	60–89
Elavagnon		(minimal)		(0.1–2.5)	
Ogouda &	Tchamba	Hyperendemic	2015	3.5	60–89
Sombo		(reference)		(1.2–9.7)	
Soukounde	Tchamba	Mesoendemic	2011	0.0	60–89
		(minimal)		(0.0-4.2)	
Talaba	Tchamba	Mesoendemic	2011	0.0	60–89
		(minimal)		(0.0–2.7)	
Kpaza Koue Rive	er Basin				
Takade	Sotouboua	Hyperendemic	2015	14.5	<5
		(minimal)		(10.7–19.2)	

Table S23. Villages in Plateaux not included in the special intervention zone (non-SIZ)

Village Prefecture	Prefecture	Modelled prevalence trends followed by	-	arasitological survey	EOT probability (%) if MDA stops in 2027
		villages (intervention scenario)	Year	Microfilarial prevalence (%) (95% CI)	
Amou River Bas	sin (Mono)			, ,	
Amoutchou	Ogou	Hyperendemic (enhanced) under biannual CDTI since 2014	2012	1.5 (0.5–4.4)	60–89
Amouto (Amou-Oblo)	Haho	Hyperendemic (reference) under biannual CDTI since 2014	2012	2.7 (1.1–6.0)	5–19
Atinkpassa	Ogou	Hyperendemic (reference) under biannual CDTI since 2014	2017	3.4 (1.2–9.6)	5–19
Glelou & Omouva	Amou	Hyperendemic (enhanced) under biannual CDTI since 2014	2011	1.3 (0.5–3.8)	60–89
Igbowou- Amou ^a	Amou	Hyperendemic (minimal) under biannual CDTI since 2014	2017	6.9 (3.2–14.2)	<5
llekohan	Ogou	Hyperendemic (enhanced) under biannual CDTI since 2014	2012	1.2 (0.3–4.2)	60–89
Kpati Copé ^a	Amou	Hyperendemic (minimal) under biannual CDTI since 2014	2017	6.7 (3.1–13.9)	<5
Tsokple or Tchokple ^a	Amou	Hyperendemic (minimal) under biannual CDTI since 2014	2017	12.4 (7.2–20.4)	<5
Anié River Basi	n (Mono)				
Atewe-Zongo	Anié	Hyperendemic (enhanced) under annual CDTI	2015	0.5 (0.1–2.9)	60–89
Pidina	Amou	Hyperendemic (enhanced) under biannual CDTI since 2014	2014	0.7 (0.1–3.6)	60–89
Tchékélé	Ogou	Hyperendemic (enhanced) under biannual CDTI since 2014	2013	0.5 (0.1–3.0)	60–89

^aAnti-OvAg seroprevalence in children under 15 years of age was 52.9% (9/17) in Igbowou-Amou, 60% (15/25) in Kpati Copé, and 48.4% (15/31) in Tsokple [14].

Table S23. Continued

Village	Prefecture	Modelled prevalence trends followed by	-	arasitological urvey	EOT probability (%) if MDA stops
		villages (intervention scenario)	Year	Microfilarial prevalence (%) (95% CI)	in 2027
Deveho River E	Basin (Mono) / Z	io River Basin		,	
Tutu Zionou ^a	Kpélé	Hyperendemic (reference) under annual CDTI	2017	2.5 (0.7–8.8)	<5
Menou (or Me	nu) River Basin	1			l
Ahlon Dzindzi	Wawa	Mesoendemic (minimal) under annual CDTI	2008	0.5 (0.1–2.8)	60–89
Denou Bumuebi	Danyi	Hyperendemic (enhanced) under biannual CDTI since 2014	ndemic 2008 nced) nual CDTI		60–89
Guin Kopé	Wawa	Hyperendemic (reference) under annual CDTI	2008	5.3 (3.3–8.4)	<5
Odomi Abra	Wawa	Hyperendemic (reference) under annual CDTI	2008	6.7 (4.2–10.6)	<5
S. Outouala	Danyi	Hyperendemic (enhanced) under biannual CDTI since 2014	2008	3.6 (1.7–7.8)	60–89
Mono River Ba	sin	565 202 :			
Glive	Ogou	Hyperendemic (enhanced) under biannual CDTI since 2014	2012	2.4 (0.7–8.5)	60–89
Hetre	Ogou	Hyperendemic (enhanced) under biannual CDTI since 2014	2012	0.6 (0.1–3.2)	60–89
Moba Kopé	Ogou	Hyperendemic (enhanced) under biannual CDTI since 2014	2013	1.2 (0.3–4.2)	60–89
Tanago	ago Ogou Hypere (enha under bia since		2012	1.1 (0.2–6.0)	60–89
Toigbo	Ogou	Hyperendemic (enhanced) under biannual CDTI since 2014	2005	6.9 (4.5–10.5)	60–89

^aThe only other surveyed village (Kouma-Kunda) from the Deveho (Mono) River Basin was classified as hypoendemic at baseline. In contrast to the model projections followed by most of the other hypoendemic villages in Plateaux, this village recorded a microfilarial prevalence of 1.3% (95%CI: 0.2–5.2%) in 2014 [8].

Table S23. Continued

Village	Prefecture	Modelled prevalence trends followed by	-	arasitological urvey	EOT probability (%) if MDA stops
		villages (intervention scenario)	Year	Microfilarial prevalence (%) (95% CI)	in 2027
Todje (or Todz	ie) River Basin				
Ananivikodzi	Agou	Hyperendemic (enhanced) under annual CDTI	2000	0.0 0.0–8.8)	60–89
Klo-Mayondi	Kloto	Hyperendemic (reference) under annual CDTI	2000	16.4 (12.5–21.3)	<5
Kpime-Seva (Tététou)	Kloto	Hyperendemic (reference) under annual CDTI	2000	12.5 (8.6–17.6)	<5
Nyive	Kloto	Hyperendemic (reference) under annual CDTI	2004	7.1 (4.1–12.0)	<5
Tome	Agou	Mesoendemic (minimal) under annual CDTI	2001	4.3 (2.4–7.5)	60–89
Wawa/Asukaw	kaw River Basin	· · · · · · · · · · · · · · · · · · ·			
Sukul-Kpodji	Wawa	Hyperendemic (enhanced) under annual CDTI	2014	0.7 (0.1–4.1)	60–89

Table S24. Villages in Maritime not included in the special intervention zone (non-SIZ)

Village	Prefecture	Modelled prevalence trends followed by	-	arasitological urvey	EOT probability
		villages (intervention scenario)	Year	Microfilarial prevalence (%) (95% CI)	(%) if MDA stops in 2027
Haho River Basin (M	ono)			(
Afangadji ^a	Yoto	Hyperendemic (enhanced)	2017	1.3 (0.2–7.1)	60–89
Togba	Yoto	Hyperendemic (enhanced)	2015	0.6 (0.1–3.5)	60–89
Mono River Basin					
Afomonou	Bas-Mono	Mesoendemic (minimal)	2012	0.9 (0.2–4.9)	60–89
Dzrekpon/Djrekpon	Yoto	Hyperendemic (enhanced)	2015	1.6 (0.3–8.9)	60–89
Gbandidi	Bas-Mono	Mesoendemic (minimal)	2012	0.6 (0.1–3.1)	60–89
Gogokondji	Yoto	Hyperendemic (enhanced)	2017	0.0 (0.0–9.6)	60–89
Lakata-Kondji	Yoto	Hyperendemic (enhanced)	2015	0.0 (0.0–5.7)	60–89
Mawussou	Yoto	Hyperendemic (enhanced)	2015	1.2 (0.2–6.7)	60–89
Zio River Basin					
Afokonou	Zio	Mesoendemic (minimal)	2015	0.0 (0.0–5.7)	60–89
Kayido	Avé	Hyperendemic (reference) or Hyperendemic (enhanced)	2012	3.6 (1.0–12.3)	<5 or 60–89
Konta & Agbatehi	Avé	Hyperendemic (enhanced)	2012	2.4 (1.0–5.4)	60–89

CDTI: Community-directed treatment with ivermectin.

^aIn 2020-2023, stop-MDA surveys in Afangadji indicated active transmission [15].

Text S9. Calculation of prefecture-level likelihood of reaching elimination of onchocerciasis transmission

The term "likelihood" is employed here as a categorical variable ('very likely', 'likely', 'possibly', 'unlikely' and 'very unlikely') to denote the range of joint elimination of transmission (EOT) probabilities, rather than referring to the formal statistical notion of likelihood used in inferential analyses. To calculate the likelihood of reaching EOT for each prefecture, we multiplied village-level EOT probabilities (for surveyed villages) using midpoint values across the village-level EOT probability ranges (Table S25).

Table S25. Assigned midpoint values for village-level EOT probability ranges

EOT probability range per village (%)	Midpoint value (%)
<5	2.5
5–19	12.0
20–59	39.5
60–89	74.5
≥90	100.0ª

^aFor the ≥90% EOT probability, a value of 100.0 was used in the calculation of the prefecture-level EOT likelihood. Most villages projected to reach ≥90% EOT probabilities have values close to 100%; therefore, this approach prevents underestimating the overall likelihood in prefectures that have many villages with high EOT probabilities.

Each village's midpoint was used to calculate the joint EOT probability for the entire prefecture, by multiplying the midpoint probabilities (Table S25) of *all* surveyed villages within that prefecture (i.e., with or without recorded baseline microfilarial prevalence). This approach assumes independence of EOT probabilities across villages within prefectures, and across prefectures, as EPIONCHO-IBM models closed populations (i.e., not considering movement between villages or prefectures of humans or flies),

$$P_j = \prod_{i=1}^{i=n_j} P_{i,j}$$

Where P_j is the joint EOT probability for prefecture j (j = 1, ..., 34) and $P_{i,j}$ the midpoint EOT probability for village i in prefecture j. The calculated joint EOT probabilities for each prefecture were assigned to one of the five likelihood categories (Table S26).

Table S26. Definitions of prefecture-level EOT likelihood categories

EOT likelihood category	Probability range	Description
Very likely	≥90.00%	Very high probability of reaching EOT, with all surveyed villages being projected to reach ≥90% EOT probability
Likely	50.00-89.99%	High probability of reaching EOT, with most surveyed villages being projected to reach ≥90% EOT probability
Possibly	5.00–49.99%	Moderate probability of reaching EOT, with most surveyed villages being projected to reach at least 60–89% EOT probability
Unlikely	0.01–4.99%	Low probability of reaching EOT, reflecting the presence of surveyed villages with projected <20% EOT probability
Very unlikely	<0.01%	Very low probability of reaching EOT, indicating the presence of several surveyed villages with projected <5% EOT probability

Tables S27-S29 present prefecture-specific EOT likelihood categories when simulating that ivermectin MDA stops in 2024, 2027 or 2030, indicating the total number of surveyed villages per prefecture and the number of villages for each midpoint value. Extending treatment to 2027 slightly improves the EOT likelihood for the prefectures in Kara, although it does only alter the overall likelihood categories for Doufelgou from 'Unlikely' to 'Possibly' and for Binah (from 'Possibly' to 'Likely') (Table S28). Extending treatment to 2030 increases somewhat the EOT likelihood for Dankpen prefecture (from 'Very unlikely' to 'Unlikely') (Table S29). Under biannual MDA, extending treatment to 2030 improves the likelihood for Plateaux prefectures, with Haho and Ogou prefectures changing from 'Unlikely' to 'Possibly', and with Danyi prefecture changing from 'Possibly' to 'Very likely'. The villages within each prefecture with projected EOT probabilities <90% if MDA stops in 2027 are presented in Tables S13-S18 (for villages with recorded BMP estimates) and Tables S19-S24 (for those without recorded BMP estimates). As the calculation of joint EOT probabilities is strongly dependent on the number of surveyed villages in each prefecture, Figure 7 of the Main Text also shows, as pie-charts, the proportions of surveyed villages in each prefecture according to their projected EOT probability ranges if ivermectin MDA stops in 2027. The size of the pie-charts reflects the number of surveyed villages.

Table S27. Prefecture-level likelihood of reaching EOT when simulating that ivermectin MDA stops in 2024

Region	No.		N	/lidpoint value (%)		Joint EOT probability	EOT
Prefecture	villages		(EOT prob	ability range pe	r village, %)		(%)	likelihood
		2.5% (<5%)	12.0% (5–19%)	39.5% (20–59%)	74.5% (60–89%)	100.0 (≥90%)		category
Savanes				•				
Kpendjal, including Kpendjal-Ouest	9	0	0	3	5	1	1.4	Unlikely
Oti, including Oti- Sud	29	3	0	2	7	17	<0.01	Very unlikely
Tandjoaré or Tandjouaré	5	0	0	0	1	4	74.5	Likely
Tône, including Cinkassé	6	0	0	2	0	4	15.6	Possibly
Kara				-				
Assoli	3	0	0	0	0	3	≥90	Very likely
Bassar	17	2	8	0	0	7	<0.01	Very unlikely
Binah or Bimah	4	0	0	1	0	3	39.5	Possibly
Dankpen	19	2	3	1	1	12	<0.01	Very unlikely
Doufelgou	5	0	1	2	1	1	1.4	Unlikely
Kéran	13	10	3	0	0	0	<0.01	Very unlikely
Kozah	27	1	2	0	1	23	0.03	Unlikely

Table S27. Continued

Region No. Prefecture villages	No. villages			Aidpoint value (ability range pe	-		Joint EOT probability (%)	EOT likelihood category
		2.5% (<5%)	12.0% (5–19%)	39.5% (20–59%)	74.5% (60–89%)	100.0 (≥90%)		
Centrale								
Blitta	28	0	0	0	10	18	5.3	Possibly
Sotouboua, including Mô	34	7	3	0	14	10	<0.01	Very unlikely
Tchamba	16	0	0	0	7	9	12.7	Possibly
Tchaoudjo or Tchaudjo	8	0	1	0	2	5	6.7	Possibly
Plateaux								
Agou	13	0	0	0	3	10	30.8	Possibly
Akébou	2	0	0	0	1	1	74.5	Likely
Amou	8	3	0	0	3	2	<0.01	Very unlikely
Anié	12	0	0	0	3	9	41.4	Possibly
Danyi	5	0	0	0	2	3	55.5	Likely
Est-Mono	15	0	0	0	4	11	30.8	Possibly
Haho	21	0	3	0	3	15	0.07	Unlikely
Kloto	5	3	0	0	0	2	<0.01	Very unlikely

Table S27. Continued

Region Prefecture	No. villages		(EOT prob	Joint EOT probability (%)	EOT likelihood			
		2.5% (<5%)	12.0% (5–19%)	39.5% (20–59%)	74.5% (60–89%)	100.0 (≥90%)		category
Plateaux (continued)		•	_				
Kpélé	2	1	0	0	0	1	2.5	Unlikely
Moyen-Mono	6	0	0	0	4	2	30.8	Possibly
Ogou	37	0	2	0	16	19	0.01	Unlikely
Wawa	10	2	0	0	4	4	0.02	Unlikely
Maritime								
Avé ^a	5	0	0	1	1	3	29.4	Possibly
Bas-Mono, includes areas previously from Lacs ^a	2	0	0	0	2	0	55.5	Likely
Golfe, including Lomé and Agoè- Nyivé ^a	0	0	0	0	0	0	-	Non- endemic
Lacs ^b	0	0	0	0	0	0	-	Non- endemic
Voª	0	0	0	0	0	0	-	Non- endemic
Yoto ^a	22	0	0	4	3	15	1.0	Unlikely
Zio ^a	12	0	0	0	1	11	74.5	Likely

^aIn all of Maritime, excepting the endemic villages in the Haho River Basin (Mono) of Yoto Prefecture, control interventions may have stopped earlier than 2024 [15].

Table S28. Prefecture-level likelihood of reaching EOT when simulating that ivermectin MDA stops in 2027

Region	No.		N	/lidpoint value (%)		Joint EOT probability	EOT likelihood
Prefecture	villages		(EOT prob	ability range per	village, %)		(%)	
		2.5% (<5%)	12.0% (5–19%)	39.5% (20–59%)	74.5% (60–89%)	100.0 (≥90%)		category
Savanes								
Kpendjal, including Kpendjal-Ouest	9	0	0	3	5	1	1.4	Unlikely
Oti, including Oti- Sud	29	3	0	2	7	17	<0.01	Very unlikely
Tandjoaré or Tandjouaré	5	0	0	0	1	4	74.5	Likely
Tône, including Cinkassé	6	0	0	2	0	4	15.6	Possibly
Kara	1			1	1			l
Assoli	3	0	0	0	0	3	≥90	Very likely
Bassar	17	2	6	0	2	7	<0.01	Very unlikely
Binah or Bimah	4	0	0	0	1	3	74.5	Likely
Dankpen	19	2	3	0	1	13	<0.01	Very unlikely
Doufelgou	5	0	1	0	2	2	6.7	Possibly
Kéran	13	10	3	0	0	0	<0.01	Very unlikely
Kozah	27	1	2	0	0	24	0.04	Unlikely

Table S28. Continued

Region Prefecture	No. villages		(EOT prob	Joint EOT probability (%)	EOT likelihood			
		2.5% (<5%)	12.0% (5–19%)	39.5% (20–59%)	74.5% (60–89%)	100.0 (≥90%)		category
Centrale			•	_				
Blitta	28	0	0	0	10	18	5.3	Possibly
Sotouboua, including Mô	34	7	3	0	14	10	<0.01	Very unlikely
Tchamba	16	0	0	0	7	9	12.7	Possibly
Tchaoudjo or Tchaudjo	8	0	1	0	2	5	6.7	Possibly
Plateaux			•	_				
Agou	13	0	0	0	3	10	30.8	Possibly
Akébou	2	0	0	0	1	1	74.5	Likely
Amou	8	3	0	0	3	2	<0.01	Very unlikely
Anié	12	0	0	0	3	9	41.4	Possibly
Danyi	5	0	0	0	2	3	55.5	Likely
Est-Mono	15	0	0	0	4	11	30.8	Possibly
Haho	21	0	3	0	3	15	0.07	Unlikely
Kloto	5	3	0	0	0	2	<0.01	Very unlikely

Table S28. Continued

Region Prefecture	No. villages		N (EOT prob	Joint EOT probability (%)	EOT likelihood			
		2.5% (<5%)	12.0% (5–19%)	39.5% (20–59%)	74.5% (60–89%)	100.0 (≥90%)		category
Plateaux (continued)				-				
Kpélé	2	1	0	0	0	1	2.5	Unlikely
Moyen-Mono	6	0	0	0	4	2	30.8	Possibly
Ogou	37	0	2	0	16	19	0.01	Unlikely
Wawa	10	2	0	0	4	4	0.02	Unlikely
Maritime								
Avéª	5	0	0	1	1	3	29.4	Possibly
Bas-Mono, includes areas previously from Lacs ^a	2	0	0	0	2	0	55.5	Likely
Golfe, including Lomé and Agoè- Nyivé ^a	0	0	0	0	0	0	-	Non- endemic
Lacs ^a	0	0	0	0	0	0	-	Non- endemic
Voª	0	0	0	0	0	0	-	Non- endemic
Yoto ^a	22	0	0	4	3	15	1.0	Unlikely
Zio ^a	12	0	0	0	1	11	74.5	Likely

^aIn all of Maritime, excepting the endemic villages in the Haho River Basin (Mono) of Yoto Prefecture, control interventions may have stopped earlier than 2024 [15].

Table S29. Prefecture-level likelihood of reaching EOT when simulating that ivermectin MDA stops in 2030

Region	No.		N	/lidpoint value (%)		Joint EOT probability	EOT likelihood
Prefecture	villages		(EOT prob	ability range per	r village, %)		(%)	
		2.5% (<5%)	12.0% (5–19%)	39.5% (20–59%)	74.5% (60–89%)	100.0 (≥90%)		category
Savanes								
Kpendjal, including Kpendjal-Ouest	9	0	0	3	5	1	1.4	Unlikely
Oti, including Oti- Sud	29	3	0	2	7	17	<0.01	Very unlikely
Tandjoaré or Tandjouaré	5	0	0	0	1	4	74.5	Likely
Tône, including Cinkassé	6	0	0	2	0	4	15.6	Possibly
Kara			_					
Assoli	3	0	0	0	0	3	≥90	Very likely
Bassar	17	2	0	6	2	7	<0.01	Very unlikely
Binah or Bimah	4	0	0	0	1	3	74.5	Likely
Dankpen	19	2	0	3	1	13	0.01	Unlikely
Doufelgou	5	0	0	1	2	2	19.2	Possibly
Kéran	13	10	0	3	0	0	<0.01	Very unlikely
Kozah	27	1	0	2	0	24	0.30	Unlikely

Table S29. Continued

Region Prefecture	No. villages		(EOT prob	Joint EOT probability (%)	EOT likelihood			
		2.5% (<5%)	12.0% (5–19%)	39.5% (20–59%)	74.5% (60–89%)	100.0 (≥90%)		category
Centrale	1		•	1			-	1
Blitta	28	0	0	0	10	18	5.3	Possibly
Sotouboua, including Mô	34	7	0	3	14	10	<0.01	Very unlikely
Tchamba	16	0	0	0	7	9	12.7	Possibly
Tchaoudjo or Tchaudjo	8	0	1	0	2	5	6.7	Possibly
Plateaux				1	I I		-1	
Agou	13	0	0	0	3	10	30.8	Possibly
Akébou	2	0	0	0	1	1	74.5	Likely
Amou	8	3	0	0	0	5	<0.01	Very unlikely
Anié	12	0	0	0	3	9	41.4	Possibly
Danyi	5	0	0	0	0	5	≥90	Very likely
Est-Mono	15	0	0	0	4	11	30.8	Possibly
Haho	21	0	0	3	0	18	6.2	Possibly
Kloto	5	3	0	0	0	2	<0.01	Very unlikely

Table S29. Continued

Region Prefecture	No. villages		(EOT prob	Joint EOT probability (%)	EOT likelihood			
		2.5% (<5%)	12.0% (5–19%)	39.5% (20–59%)	74.5% (60–89%)	100.0 (≥90%)		category
Plateaux (continued)				-				
Kpélé	2	1	0	0	0	1	2.5	Unlikely
Moyen-Mono	6	0	0	0	4	2	30.8	Possibly
Ogou	37	0	0	2	0	35	15.6	Possibly
Wawa	10	2	0	0	4	4	0.02	Unlikely
Maritime								
Avé ^a	5	0	0	1	1	3	29.4	Possibly
Bas-Mono, includes areas previously from Lacs ^a	2	0	0	0	2	0	55.5	Likely
Golfe, including Lomé and Agoè- Nyivé ^a	0	0	0	0	0	0	-	Non- endemic
Lacs ^a	0	0	0	0	0	0	-	Non- endemic
Vo ^a	0	0	0	0	0	0	-	Non- endemic
Yoto ^a	22	0	0	4	3	15	1.0	Unlikely
Zio ^a	12	0	0	0	1	11	74.5	Likely

^aIn all of Maritime, excepting the endemic villages in the Haho River Basin (Mono) of Yoto Prefecture, control interventions may have stopped earlier than 2024 [15].

Reported ivermectin treatment coverage of total population (%) per region and prefecture from 1991 to 2018 in Togo

Table S30. Reported coverage (% of total population) of ivermectin MDA for 1991-2018 in Savanes

Vasu	Prefecture										
Year	Cinkassé	Kpendjal	Oti	Tandjouaré	Tône						
1991	0	0	0	0	0						
1992	0	0	0	0	0						
1993	0	NA	0	NA	NA						
1994	0	NA	0	NA	NA						
1995	0	NA	82.1	NA	NA						
1996	0	NA	NA	NA	NA						
1997	0	0	0	0	0						
1998	0	NA	NA	NA	NA						
1999	0	NA	NA	NA	NA						
2000	0	69.8	70.3	79.0	68.0						
2001	72.7	69.1	73.5	77.6	73.1						
2002	NA	72.0	76.1	81.9	76.8						
2003	NA	70.3	74.6	77.7	75.5						
2004	NA	69.5	73.5	78.1	81.6						
2005	NA	69.5	73.5	78.1	83.4						
2006	NA	83.9	80.8	63.4	84.0						
2007	NA	83.7	83.9	83.6	84.4						
2008	NA	85.1	84.6	85.0	85.0						
2009	NA	85.1	84.9	85.7	84.1						
2010	NA	81.3	85.3	85.0	84.8						
2011	NA	85.0	83.7	85.4	79.8						
2012	NA	84.9	83.5	85.5	68.0						
2013	80.5	83.0	80.8	85.9	82.6						
2014	80.3	83.3	81.3	82.4	77.6						
2015	81.7	85.1	82.2	83.0	81.5						
2016	81.4	83.3	82.5	83.2	83.4						
2017	81.7	82.3	80.7	79.2	82.7						
2018	80.5	82.2	80.3	82.0	84.5						

Some parts of Savanes may have started receiving ivermectin MDA in 1988-1990 [4]. Coverage data from [4,8].

Table S31. Reported coverage (% of total population) of ivermectin MDA for 1991-2018 in Kara

Voor				Prefecture			
Year	Assoli	Bassar	Binah	Dankpen	Doufelgou	Kéran	Kozah
1991	0	0	0	0	0	55.7	60.9
1992	65.2	63.5	68.2	0	65.9	59.6	71.5
1993	50.1	58.4	62.5	0	54.1	53.6	66.0
1994	NA	64.4	71.2	0	66.4	59.3	61.4
1995	82.5	73.0	71.5	64.1	71.9	73.0	76.5
1996	73.7	73.8	75.8	NA	77.4	75.5	82.6
1997	0	0	0	0	0	0	0
1998	83.9	79.8	87.7	80.4	81.8	71.8	75.9
1999	69.3	74.3	76.1	79.9	80.7	86.7	73.8
2000	66.4	69.4	79.3	75.5	77.8	77.5	75.6
2001	77.2	76.1	77.5	75.7	75.1	80.3	72.6
2002	80.7	85.0	77.6	75.2	82.4	79.7	80.0
2003	87.8	87.5	87.7	85.3	86.3	86.3	82.6
2004	87.1	86.3	86.9	85.6	84.4	85.7	85.7
2005	85.0	86.4	86.6	82.2	85.9	85.8	85.8
2006	85.8	86.5	85.3	85.8	85.6	85.5	87.0
2007	85.1	85.0	83.5	85.9	86.3	84.9	86.5
2008	86.8	84.5	84.8	85.3	86.3	85.6	86.7
2009	87.0	86.7	87.2	84.8	87.1	85.5	86.9
2010	86.2	80.4	86.9	83.8	86.6	85.4	83.8
2011	83.6	85.5	85.3	84.8	88.2	85.4	85.7
2012	85.9	83.7	83.3	85.2	85.8	85.6	85.3
2013	86.4	85.3	86.4	83.8	85.6	85.0	86.4
2014	81.9	79.9	82.5	81.2	77.9	85.1	79.1
2015	85.6	82.1	85.1	80.4	83.7	85.2	83.9
2016	82.2	82.4	85.2	80.8	81.5	82.7	82.6
2017	80.8	82.3	83.2	78.9	82.6	83.7	80.4
2018	81.6	81.8	84.8	78.1	81.1	81.5	84.7

Some parts of Kara may have started receiving ivermectin MDA in 1988-1990 [4]. Coverage data from [4,8].

Table S32. Reported coverage (% of total population) of ivermectin MDA for 1991-2018 in Centrale

Voor	Prefecture									
Year	Blitta	Sotouboua	Tchamba	Tchaoudjo						
1991	62.8	59.3	62.1	57.6						
1992	73.1	NA	NA	NA						
1993	67.2	67.4	69.3	71.7						
1994	58.6	54.8	59.8	58.5						
1995	75.9	68.9	84.1	81.7						
1996	82.6	81.5	87.9	86.8						
1997	0	0	0	0						
1998	NA	NA	NA	NA						
1999	NA	NA	NA	NA						
2000	73.7	72.1	75.4	68.5						
2001	77.1	72.2	72.5	73.1						
2002	76.3	72.2	72.9	75.8						
2003	82.0	82.5	82.3	85.9						
2004	83.3	84.0	85.8	86.4						
2005	84.5	85.3	81.9	85.2						
2006	85.8	79.4	84.0	84.5						
2007	88.7	82.4	87.3	85.5						
2008	88.3	86.1	86.6	85.7						
2009	88.3	85.8	86.8	85.8						
2010	86.4	81.8	80.1	84.2						
2011	87.1	86.1	75.7	84.6						
2012	85.2	59.4	89.3	84.7						
2013	89.5	83.4	82.3	85.2						
2014	76.6	83.6	74.5	80.3						
2015	86.4	84.0	82.8	85.5						
2016	84.4	84.0	82.6	84.6						
2017	86.4	84.9	81.9	83.5						
2018	82.5	85.8	NA	88.7						

Coverage data from [4,8].

Table S33. Reported coverage (% of total population) of ivermectin MDA for 1991-2018 in Plateaux

	Prefecture											
Year	Agou	Akébou	Amou	Anié	Danyi	Est-Mono	Haho	Kloto	Kpélé	Moyen- Mono	Ogou	Wawa
1991	41.3	0	0	51.5	0	54.3	0	0	0	0	54.1	0
1992	NA	0	59.3	NA	0	73.3	0	0	0	0	66.0	91.3
1993	46.2	62.9	57.5	64.8	62.8	66.8	55.7	70.7	64.3	66.0	58.8	62.7
1994	72.1	65.7	59.7	45.4	67.7	58.2	68.1	75.0	74.7	60.3	60.7	64.9
1995	71.5	NA	76.4	69.7	83.9	79.0	73.0	63.0	NA	76.7	75.1	78.2
1996	78.2	81.6	80.7	80.8	90.4	80.5	19.1	74.2	NA	NA	80.0	75.8
1997	0	0	0	0	0	0	0	0	0	0	0	0
1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2000	53.7	NA	67.1	70.1	63.4	47.5	71.8	67.7	NA	71.0	55.4	62.4
2001	56.5	74.3	68.9	NA	73.3	50.6	68.3	73.3	76.5	77.1	65.6	58.1
2002	74.0	NA	73.8	NA	75.2	72.8	78.8	76.9	NA	73.7	76.1	73.6
2003	79.9	NA	77.9	NA	78.7	74.9	79.9	81.4	NA	80.5	74.0	70.9
2004	85.0	NA	81.4	NA	81.3	80.3	81.1	86.0	NA	85.1	84.1	80.7
2005	85.1	NA	85.9	NA	84.5	84.2	83.2	86.0	NA	85.5	83.1	81.1
2006	84.9	NA	85.1	NA	85.1	85.4	85.1	85.7	NA	85.6	83.7	85.5
2007	85.2	NA	85.6	NA	85.4	83.7	85.2	85.3	NA	84.2	85.6	85.2
2008	85.2	NA	85.4	NA	85.3	85.2	85.8	85.7	NA	86.0	87.0	84.8
2009	85.5	NA	86.9	NA	84.8	85.7	86.0	85.9	NA	88.1	85.2	85.3
2010	86.6	NA	85.7	NA	85.8	85.0	86.5	86.0	NA	85.7	85.3	85.1
2011	81.5	NA	84.5	NA	83.0	78.2	79.1	84.0	NA	81.5	83.8	80.5
2012	89.1	NA	84.2	NA	82.7	81.1	79.4	83.4	NA	84.8	82.2	81.2
2013	85.0	79.9	81.7	84.1	82.5	82.1	82.6	84.0	84.1	83.6	84.1	80.2
2014	93.0	83.7	81.0	84.7	82.9	80.4	83.8	82.6	83.6	82.6	82.4	69.8
2015	83.9	82.4	81.4	83.6	84.4	76.7	85.0	84.7	84.3	82.3	78.3	80.6
2016	84.0	85.3	83.5	82.7	83.9	81.1	84.0	85.4	85.8	83.0	82.4	85.3
2017	84.4	85.8	79.5	77.5	86.2	82.2	83.8	84.8	85.5	82.0	82.4	85.4
2018	NA	NA	79.8	NA	86.0	NA	85.7	87.5	NA	NA	83.3	NA

Coverage data from [4,8].

Table S34. Reported coverage (% of total population) of ivermectin MDA for 1991-2018 in Maritime

Vaar	Prefecture											
Year	Avé	Bas-Mono	Golfe	Lacs	Vo	Yoto	Zio					
1991	0	0	0	0	NA	0	0					
1992	0	0	0	0	NA	0	0					
1993	68.6	69.6	65.8	85.7	NA	63.7	61.4					
1994	57.3	59.3	47.5	62.7	NA	59.8	70.7					
1995	NA	75.6	80.4	NA	NA	NA	72.3					
1996	NA	74.8	83.5	NA	NA	19.1	70.8					
1997	0	0	0	0	NA	0	0					
1998	NA	NA	NA	NA	NA	NA	NA					
1999	NA	NA	NA	NA	NA	NA	NA					
2000	65.2	72.0	NA	NA	NA	60.8	64.3					
2001	62.7	74.0	75.3	85.8	NA	64.1	76.6					
2002	79.6	NA	NA	76.5	NA	79.5	80.2					
2003	78.3	NA	NA	74.2	NA	81.4	85.3					
2004	86.7	NA	NA	86.5	NA	89.2	85.3					
2005	86.1	NA	NA	87.2	NA	88.4	85.4					
2006	86.7	NA	NA	88.9	NA	85.8	85.4					
2007	82.8	NA	NA	82.7	NA	80.4	85.6					
2008	85.5	NA	NA	84.5	NA	86.7	85.4					
2009	87.6	NA	NA	88.0	NA	86.2	85.5					
2010	85.9	NA	NA	87.0	NA	87.9	85.3					
2011	84.1	NA	NA	82.0	NA	78.7	84.6					
2012	58.0	NA	NA	82.8	NA	85.8	77.8					
2013	85.7	83.6	NA	NA	NA	84.6	81.8					
2014	82.8	79.1	NA	NA	NA	81.7	78.3					
2015	84.0	83.0	NA	NA	NA	81.6	81.7					
2016	84.1	84.9	2.4	NA	NA	80.8	81.7					
2017	NA	0	NA	NA	NA	NA	NA					
2018	NA	0	NA	NA	NA	NA	NA					

Coverage data from [4,8].

Supplementary references

- World Health Organization, Onchocerciasis Control Programme in the Volta River Basin Area & Brinkmann UK. Baseline data on the epidemiology of onchocerciasis in Northern Togo. Onchocerciasis Control Programme in the Volta River Basin Area. 1977. Available at: https://iris.who.int/handle/10665/339680. Accessed 21 March 2025.
- World Health Organization, United Nations Development Programme, Food and Agriculture Organization of the United Nations & International Bank for Reconstruction and Development. Onchocerciasis control in the Volta river basin area: report of the mission for preparatory assistance to the governments of Dahomey, Ghana, Ivory Coast, Mali, Niger, Togo and Upper Volta. 1973. World Health Organization. Available at: https://iris.who.int/handle/10665/277239. Accessed 21 March 2025.
- 3. Boatin B, Molyneux DH, Hougard JM, et al. Patterns of epidemiology and control of onchocerciasis in west Africa. J Helminthol **1997**; 71:91–101.
- 4. Komlan K, Vossberg PS, Gantin RG, et al. *Onchocerca volvulus* infection and serological prevalence, ocular onchocerciasis and parasite transmission in northern and central Togo after decades of *Simulium damnosum* s.l. vector control and mass drug administration of ivermectin. PLoS Negl Trop Dis **2018**; 12:e0006312.
- World Health Organization, African Programme for Onchocerciasis Control. Progress report
 of the special intervention zones of the ex-OCP, January August 2006. Dar-es-Salaam,
 Tanzania 5-8 December 2006. African Programme for Onchocerciasis Control, 2006.
 Available at: https://iris.who.int/handle/10665/275951. Accessed 21 March 2025.
- 6. Johanns SI, Gantin RG, Wangala B, et al. *Onchocerca volvulus*-specific antibody and cellular responses in onchocerciasis patients treated annually with ivermectin for 30 years and exposed to parasite transmission in central Togo. PLoS Negl Trop Dis **2022**; 16:e0010340.
- 7. Katholi CR, Toé L, Merriweather A, Unnasch TR. Determining the prevalence of *Onchocerca volvulus* infection in vector populations by polymerase chain reaction screening of pools of black flies. J Infect Dis **1995**; 172:1414–47.
- 8. Vinkeles Melchers NVS, Agoro S, Togbey K, et al. Impact of ivermectin and vector control on onchocerciasis transmission in Togo: Assessing the empirical evidence on trends in infection and entomological indicators. PLoS Negl Trop Dis **2024**; 18:e0012312.
- 9. Post RJ, Cheke RA, Boakye DA, et al. Stability and change in the distribution of cytospecies of the *Simulium damnosum* complex (Diptera: Simuliidae) in southern Ghana from 1971 to 2011. Parasit Vectors **2013**; 6:205.
- 10. Lamberton PHL, Cheke RA, Walker M, et al. Onchocerciasis transmission in Ghana: biting and parous rates of host-seeking sibling species of the *Simulium damnosum* complex. Parasit Vectors **2014**; 7:511.
- 11. Cheke RA, Fiasorgbor GK, Walsh JF, Yameogo L. Elimination of the Djodji form of the blackfly Simulium sanctipauli sensu stricto as a result of larviciding by the WHO Onchocerciasis Control Programme in West Africa. Med Vet Entomol **2008**; 22:172–74.

- 12. Onchocerciasis Control Programme in West Africa (Joint Programme Committee). Progress Report of the World Health Organization for 1998 (1 September 1997 31 August 1998). Available at: https://iris.who.int/bitstream/handle/10665/311230/JPC19.2-eng.pdf?sequence=1. Accessed 21 March 2025.
- 13. Organisation Mondiale de la Santé, Programme Africain de Lutte contre l'Onchocercose, Badila C. Initiation aux techniques de lutte contre l'onchocercose: application des techniques d'épandage de larvicides, d'évaluation entomologique, des techniques d'évaluation épidémiologique et de traitement à l'ivermectine. Rapport de stage dans les Zones d'Interventions Spéciales (SIZ) de lutte contre l'onchocercose au Togo et au Benin, 4 août 14 décembre 2003. Ouagadougou: Programme Africain de Lutte contre l'Onchocercose, 2003. Available at: https://iris.who.int/handle/10665/367599. Accessed 21 March 2025.
- 14. Korbmacher F, Komlan K, Gantin RG, et al. *Mansonella perstans, Onchocerca volvulus* and *Strongyloides stercoralis* infections in rural populations in central and southern Togo. Parasite Epidemiol Control **2018**; 3:77–87.
- 15. USAID, Act to End NTDs West, FHI 360, Health and Development International. Act to End Neglected Tropical Diseases | West FY 2023 Work plan-Togo (October 1, 2022-September 30, 2023), 2023. Available at: https://www.actntdswest.org/sites/default/files/inline-files/Act%20West%20FY23%20Workplan-Togo.pdf. Accessed 21 March 2025.