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Intensity-Based Method

The Intensity-based approach uses information at the pixel level to find a transformation function
that makes a moving image spatially aligned with a fixed or target image, as shown in Equation 1

[1].
Ty = argminC(Ty;Ir.Im) ¢Y)

where T is the estimated transformation that aligns two images Iz and I, as the fixed and moving
image respectively, the goal of image registration is to find the optimal transformation T that
brings the images into a common coordinate system, aligning corresponding features and
structures. In other words, image registration looks for a transformation (T) that aligns the
moving image with the fixed image in the best possible way, and this alignment is achieved by
minimizing the cost function. The optimal transformation that achieves this alignment is denoted
as T. The presence of a subscript y denotes that the transform has been parameterized, and we
presented the optimised parameters in our proposed pipeline in the appendix. To achieve this, a
suitable metric is chosen to measure the similarity or dissimilarity between the images during the
registration process. The metric acts as an objective function that guides the registration
algorithm towards finding the best alignment. It quantifies how well the transformation
parameters align the images and helps the algorithm iteratively refine these parameters until
convergence. In this study, Mutual Information was employed as a metric for image registration.
Mutual Information is a widely used metric, especially in scenarios involving multi-modal images.
It measures the mutual dependence between the intensity distributions of the two images being
registered. It is defined as follows[1]:
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where p denotes the discrete joint probability. The marginal discrete probabilities of the fixed and
moving image s, prand py,, are obtained by summing p over f and m, respectively. Each f and
m corresponds to a particular feature in the fixed and moving image respectively. In this process,
the moving image I, is transformed to match the fixed image Ir.

By maximizing the mutual information between the images, the registration algorithm effectively
identifies the transformation that aligns corresponding structures and features while accounting
for potential intensity variations and relationships. To preserve the integrity of the image with no
non-linear distortion and prevent any change to its intensity, we opted for Euler, Similarity and
Affine registration and avoided non-linear registration.

Euler’s registration is an image registration method involving only rotation and translation
transformations, preserving the size and shape of image features as shown in Equation 4 [1].

T(x)=R(x—c)+t+c 4

Using the matrix R as a rotation matrix, along with the centre of rotation ¢ and translation t. On
the other hand, Similarity transformation is defined as [1]:

T(x)=sR(x—c)+t+c 5)

with s a scalar and R a rotation matrix. Similarity registration is a type of image registration
method that involves scaling, rotation, and translation transformations. These transformations
mean that the size of the image features can change during the registration process, in addition
to their position and orientation.



Affine registration is a transformation that involves rotating, translation, scaling, and shearing to
align the imaging datasets. The Affine transformation is defined as[1]:

Tx)=A(x—c)+t+c (6)

where the matrix 4 is unrestricted, implying that the image can undergo translation, rotation,
scaling, and shearing without limitations which means that the size, shape, and orientation of the
image features can change during the registration process. Typically, an iterative optimization

approach is used to solve the optimization problem and determine the optimal transformation
parameter vectors, y. We utilized the Adaptive Stochastic Gradient Descent as the optimizer [1]:

Yier1 = Vi + Qrdy (7
where d; represents the search direction at iteration k, while a; is a scalar gain factor that
governs the step size along the same search direction. For image registration, we employed
different registration approaches. To further understand the performance of different image
registration approaches, we applied the same transformation function from each approach to a
mesh image, as depicted in Figure S1.

Figure S1. Visualization of transformation effects on a mesh image for different registration
approaches. (a) shows the original mesh image. (b), (c), and (d) show the results of image
registration using Euler, Similarity, and Affine registration approaches, respectively.

The results reveal distinct characteristics of each method. The Euler transformation performs
only rotation and translation, maintaining the square shape of the mesh. The Similarity
transformation adds scaling to rotation and translation, but it also preserves the square shape. In
contrast, the Affine transformation introduces shearing in addition to scaling, rotation, and
translation, altering the square mesh into a diamond shape. These visualizations provide insights
into how each method manipulates images during the registration process.
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Figure S2. Intensity-based image registration results for the Mammary-gland_1 sample from the
ANHIR dataset: (a) fixed image used as the reference for registration, (b) moving image to be
aligned with the fixed image , (c) Result of the Euler method, (d) Similarity method, (e) Affine
method, and (f) Overlay of the Affine method result on the fixed image, demonstrating alignment
accuracy.
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Figure S3. Intensity-based image registration results for the Mammary-gland_1 sample from the
ANHIR dataset: (a) Fixed image used as the reference for registration, (b) Moving image to be
aligned with the fixed image, (c) Result of the Euler method, (d) Similarity method, (e) Affine
method, and (f) Overlay of the Affine method result on the fixed image, demonstrating alignment
accuracy.
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Figure S4. Intensity-based image registration results for the Mammary-gland_1 sample from the
ANHIR dataset: (a) Fixed image used as the reference for registration, (b) Moving image to be
aligned with the fixed image, (c) Result of the Euler method, (d) Similarity method, (e) Affine
method, and (f) Overlay of the Affine method result on the fixed image, demonstrating alignment
accuracy.
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Figure S5. Intensity-based image registration results for the Mammary-gland_1 sample from the
ANHIR dataset: (a) Fixed image used as the reference for registration, (b) Moving image to be
aligned with the fixed image, (c) Result of the Euler method, (d) Similarity method, (e) Affine
method, and (f) Overlay of the Affine method result on the fixed image, demonstrating alignment
accuracy.



Figure S6. Intensity-based image registration results for the Mammary-gland_1 sample from the
ANHIR dataset: (a) Fixed image used as the reference for registration, (b) Moving image to be
aligned with the fixed image, (c) Result of the Euler method, (d) Similarity method, (e) Affine
method, and (f) Overlay of the Affine method result on the fixed image, demonstrating alignment
accuracy.



Figure S7. Results of feature-based image registration using our new approach on the COAD_05
sample. (a) Key points detected in the fixed image, (b) key points detected in the moving image,
(c) feature mapping between the two modalities, (d) image registration result using our approach,
and (e) overlay of the registered image over the fixed image, demonstrating the accuracy of the
alignment.
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Figure S8. Results of feature-based image registration using our new approach on the COAD_05
sample. (a) Key points detected in the fixed image, (b) key points detected in the moving image,
(c) feature mapping between the two modalities, (d) image registration result using our approach,
and (e) overlay of the registered image over the fixed image, demonstrating the accuracy of the

alignment.




ew approach on the COAD_05
sample. (a) Key points detected in the fixed image, (b) key points detected in the moving image,
(c) feature mapping between the two modalities, (d) image registration result using our approach,
and (e) overlay of the registered image over the fixed image, demonstrating the accuracy of the
alignment.




Figure S10. Results of feature-based image registration using our new approach on the COAD_05
sample. (a) Key points detected in the fixed image, (b) key points detected in the moving image,
(c) feature mapping between the two modalities, (d) image registration result using our approach,
and (e) overlay of the registered image over the fixed image, demonstrating the accuracy of the
alignment.
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