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Intensity-Based Method 

The Intensity-based approach uses information at the pixel level to find a transformation function 
that makes a moving image spatially aligned with a fixed or target image, as shown in Equation 1 
[1]. 

𝑇̂𝛾 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐶(𝑇𝛾;𝐼𝐹,𝐼𝑀)                                                (1)  

where 𝑇̂ is the estimated transformation that aligns two images 𝐼𝐹  and 𝐼𝑀  as the fixed and moving 
image respectively, the goal of image registration is to find the optimal transformation 𝑇 that 
brings the images into a common coordinate system, aligning corresponding features and 
structures. In other words, image registration looks for a transformation (𝑇) that aligns the 
moving image with the fixed image in the best possible way, and this alignment is achieved by 
minimizing the cost function. The optimal transformation that achieves this alignment is denoted 
as 𝑇̂. The presence of a subscript 𝛾 denotes that the transform has been parameterized, and we 
presented the optimised parameters in our proposed pipeline in the appendix. To achieve this, a 
suitable metric is chosen to measure the similarity or dissimilarity between the images during the 
registration process. The metric acts as an objective function that guides the registration 
algorithm towards finding the best alignment. It quantifies how well the transformation 
parameters align the images and helps the algorithm iteratively refine these parameters until 
convergence. In this study, Mutual Information was employed as a metric for image registration. 
Mutual Information is a widely used metric, especially in scenarios involving multi-modal images. 
It measures the mutual dependence between the intensity distributions of the two images being 
registered. It is defined as follows [1]: 

𝑀𝐼(𝛾;𝐼𝐹,𝐼𝑀)=∑ ∑ 𝜌(𝑓,𝑚,𝛾)𝑙𝑜𝑔2(
𝜌(𝑓,𝑚,𝛾)

𝜌𝐹(𝑓)𝜌𝑀(𝑚;𝛾)
)

𝑚∈𝐼𝐹𝑚∈𝐼𝑀

                                                (2) 

where 𝜌 denotes the discrete joint probability. The marginal discrete probabilities of the fixed and 
moving image    s, 𝜌𝐹  and 𝜌𝑀, are obtained by summing 𝜌  over 𝑓 and 𝑚, respectively. Each 𝑓 and 
𝑚 corresponds to a particular feature in the fixed and moving image respectively. In this process, 
the moving image 𝐼𝑀  is transformed to match the fixed image  𝐼𝐹.  

By maximizing the mutual information between the images, the registration algorithm effectively 
identifies the transformation that aligns corresponding structures and features while accounting 
for potential intensity variations and relationships. To preserve the integrity of the image with no 
non-linear distortion and prevent any change to its intensity, we opted for Euler, Similarity and 
Affine registration and avoided non-linear registration. 
Euler’s registration is an image registration method involving only rotation and translation 
transformations, preserving the size and shape of image features as shown in Equation 4 [1]. 

𝑇(𝑥) = 𝑅(𝑥 − 𝑐) + 𝑡 + 𝑐                                                (4) 

 Using the matrix 𝑅 as a rotation matrix, along with the centre of rotation 𝑐 and translation 𝑡. On 
the other hand, Similarity transformation is defined as [1]: 

𝑇(𝑥) = 𝑠𝑅(𝑥 − 𝑐) + 𝑡 + 𝑐                                                (5) 

with 𝑠 a scalar and 𝑅 a rotation matrix. Similarity registration is a type of image registration 
method that involves scaling, rotation, and translation transformations. These transformations 
mean that the size of the image features can change during the registration process, in addition 
to their position and orientation. 



Affine registration is a transformation that involves rotating, translation, scaling, and shearing to 
align the imaging datasets. The Affine transformation is defined as [1]: 

𝑇(𝑥) = 𝐴(𝑥 − 𝑐) + 𝑡 + 𝑐                                                (6) 

where the matrix 𝐴 is unrestricted, implying that the image can undergo translation, rotation, 
scaling, and shearing without limitations which means that the size, shape, and orientation of the 
image features can change during the registration process. Typically, an iterative optimization 
approach is used to solve the optimization problem and determine the optimal transformation 
parameter vectors, γ. We utilized the Adaptive Stochastic Gradient Descent as the optimizer [1]: 

 𝛾𝑘+1 = 𝛾𝑘 + 𝑎𝑘𝑑𝑘                                                (7) 

where 𝑑𝑘  represents the search direction at iteration 𝑘, while 𝑎𝑘  is a scalar gain factor that 
governs the step size along the same search direction. For image registration, we employed 
different registration approaches. To further understand the performance of different image 
registration approaches, we applied the same transformation function from each approach to a 
mesh image, as depicted in Figure S1. 

  
Figure S1. Visualization of transformation effects on a mesh image for different registration 
approaches. (a) shows the original mesh image. (b), (c), and (d) show the results of image 
registration using Euler, Similarity, and Affine registration approaches, respectively. 

The results reveal distinct characteristics of each method. The Euler transformation performs 
only rotation and translation, maintaining the square shape of the mesh. The Similarity 
transformation adds scaling to rotation and translation, but it also preserves the square shape. In 
contrast, the Affine transformation introduces shearing in addition to scaling, rotation, and 
translation, altering the square mesh into a diamond shape. These visualizations provide insights 
into how each method manipulates images during the registration process. 

 



 

Figure S2. Intensity-based image registration results for the Mammary-gland_1 sample from the 
ANHIR dataset: (a) fixed image  used as the reference for registration, (b) moving image to be 
aligned with the fixed image , (c) Result of the Euler method, (d) Similarity method, (e) Affine 
method, and (f) Overlay of the Affine method result on the fixed image, demonstrating alignment 
accuracy. 

 

 



 

 

Figure S3. Intensity-based image registration results for the Mammary-gland_1 sample from the 
ANHIR dataset: (a) Fixed image used as the reference for registration, (b) Moving image to be 
aligned with the fixed image, (c) Result of the Euler method, (d) Similarity method, (e) Affine 
method, and (f) Overlay of the Affine method result on the fixed image, demonstrating alignment 
accuracy. 



 

Figure S4. Intensity-based image registration results for the Mammary-gland_1 sample from the 
ANHIR dataset: (a) Fixed image used as the reference for registration, (b) Moving image to be 
aligned with the fixed image, (c) Result of the Euler method, (d) Similarity method, (e) Affine 
method, and (f) Overlay of the Affine method result on the fixed image, demonstrating alignment 
accuracy. 



 

Figure S5. Intensity-based image registration results for the Mammary-gland_1 sample from the 
ANHIR dataset: (a) Fixed image used as the reference for registration, (b) Moving image to be 
aligned with the fixed image, (c) Result of the Euler method, (d) Similarity method, (e) Affine 
method, and (f) Overlay of the Affine method result on the fixed image, demonstrating alignment 
accuracy. 



 

Figure S6. Intensity-based image registration results for the Mammary-gland_1 sample from the 
ANHIR dataset: (a) Fixed image used as the reference for registration, (b) Moving image to be 
aligned with the fixed image, (c) Result of the Euler method, (d) Similarity method, (e) Affine 
method, and (f) Overlay of the Affine method result on the fixed image, demonstrating alignment 
accuracy. 



 
Figure S7. Results of feature-based image registration using our new approach on the COAD_05 
sample. (a) Key points detected in the fixed image, (b) key points detected in the moving image, 
(c) feature mapping between the two modalities, (d) image registration result using our approach, 
and (e) overlay of the registered image over the fixed image, demonstrating the accuracy of the 
alignment. 



 
Figure S8. Results of feature-based image registration using our new approach on the COAD_05 
sample. (a) Key points detected in the fixed image, (b) key points detected in the moving image, 
(c) feature mapping between the two modalities, (d) image registration result using our approach, 
and (e) overlay of the registered image over the fixed image, demonstrating the accuracy of the 
alignment. 



 
Figure S9. Results of feature-based image registration using our new approach on the COAD_05 
sample. (a) Key points detected in the fixed image, (b) key points detected in the moving image, 
(c) feature mapping between the two modalities, (d) image registration result using our approach, 
and (e) overlay of the registered image over the fixed image, demonstrating the accuracy of the 
alignment. 



 
Figure S10. Results of feature-based image registration using our new approach on the COAD_05 
sample. (a) Key points detected in the fixed image, (b) key points detected in the moving image, 
(c) feature mapping between the two modalities, (d) image registration result using our approach, 
and (e) overlay of the registered image over the fixed image, demonstrating the accuracy of the 
alignment. 
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